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Theoretical exercises:

T1. Let ψ : [−a, a]→ R be a non-negative continuous point spread function (PSF)
whose integral over [−a, a] equals one. Let f : R → R be a nicely behav-
ing function that has value zero for all x ≤ 0 and x ≥ 1. The continuum
convolution is defined by

(ψ ∗ f)(x) =

∫ a

−a
ψ(x′)f(x− x′) dx′. (1)

Let n > 2 and take ∆x = 1/n. Choose evaluation points for the interval [0, 1]:

xj = (j − 1)∆x for j = 1, 2 . . . , n. (2)

Then f(x) is represented by the vector f ∈ Rn containing values at grid points:

f = [f1, f2, . . . , fn]T = [f(x1), f(x2), . . . , f(xn)]T ∈ Rn. (3)

Also, we define a computational representation vector for the PSF:

p = [p−ν ,p−ν+1, . . . ,p−1,p0,p1, . . . ,pν−1,pν ]
T (4)

with pj = ψ(j∆x) for j = −ν, . . . , ν. Discrete convolution is given by

(p ∗ f)j =
ν∑

`=−ν

p` fj−`, (5)

where fj−` is defined using zero extension for the cases j− ` < 1 and j− ` > n.

(a) What is a good choice for ν when n is given?

(b) Explain why (ψ ∗ f)(xj) ≈ ∆x(p ∗ f)j with the approximation getting
better as n → ∞. You do not have to give a rigorous mathematical
proof. Study the discussion in Section 2.1.2 of the textbook and convince
yourself (and the teaching assistant) that the claim holds.



T2. Thin lines depict pixels and thick lines X-rays in this image:

Give a numbering to the nine pixels (f ∈ R9) and to the six X-rays (m ∈ R6),
and construct the matrix A for the measurement model m = Af . The length
of the side of a pixel is one.

Hint: see Section 2.3.4 of the textbook.



Matlab exercises:

M1. Consider equations x1 + x2 = 1, x2 = −2 and −1
3
x1 + x2 = −2.

(a) Write the equations in the matrix form Ax = y. (That is, specify the
elements in the 3× 2 matrix A and the vector y ∈ R3.)

(b) Use Matlab to compute the singular value decomposition A = UDV T .

(c) Read Section 4.1 of the textbook. Using the result of (b), construct D+

and the minimum norm solution x+ := V D+UTy in Matlab. Draw the
three lines specified by the equations and the point x+ in the (x1, x2)-
plane. Discuss the result.

M2. Computational version of Exercise T1 above. Let f and ψ be defined
by the Matlab routines targetf.m and PSF.m written in the lectures.

(a) Choose n and use the routine deco02 data comp.m to evaluate (ψ ∗f)(xj)
for all xj defined in (2). Call the resulting vector m̃ ∈ Rn and plot it
using blue dots.

(b) Using the same n than in (a), compute ∆x(p∗ f)j defined in (5) in vector
form Af , including the multiplication by the constant ∆x. In other words,
use the command convmtx to construct the convolution matrix A.

Call the resulting vector m = Af and plot it (to the same plot than m̃;
remember to use the command hold on) using red dots. Are the blue
and red dots close to each other?

(c) Define relative square norm error between the vectors m ∈ Rn and m̃ ∈
Rn by the formula

‖m̃−m‖2
‖m̃‖2

· 100%,

where ‖m‖2 = (m2
1 + m2

2 + . . . + m2
n)1/2 is the usual Euclidean square

norm. In Matlab you can use the command norm to compute it.

How large do you have to take n in (a) and (b) to make the relative square
norm error between m and m̃ smaller than 1%? How about 0.1%?


