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Theoretical exercises:

T1. Define a function g : R→ R by

g(x) =

{
1 for − 0.1 ≤ x ≤ 0.1,
0 otherwise.

Compute the function g ∗ g analytically (by hand), where

(g ∗ g)(x) =

∫ ∞
−∞

g(x′)g(x− x′) dx′.

Outside which interval [a, b] ⊂ R is (g ∗ g)(x) = 0?

T2. Assume that the n×n matrix U is orthogonal: UUT = I = UTU .

(a) Show that ‖UTy‖ = ‖y‖ for any y ∈ Rn.

(b) Take n = 2, let U be as above and let x, y ∈ R2. Show that the angle
between the vectors x and y is the same than the angle between the
vectors Ux and Uy.

T3. Let A be a real-valued n×n matrix.

(a) Show that the matrix ATA is symmetric.

(b) Show that if λ is an eigenvalue of ATA, then λ ≥ 0.

T4. Let A be a real-valued n×n matrix. Recall from basic linear algebra that a
symmetric matrix can be diagonalized and its eigenvectors can be chosen to
be orthonormal. Denote the eigenvalues of ATA by

d21 ≥ d22 ≥ · · · ≥ d2r > d2r+1 = d2r+1 = · · · = d2n = 0,

and the corresponding orthonormal eigenvectors by V (1), V (2), . . . , V (n). Insert
the eigenvectors as columns to a matrix called V . Also, write V = [V1 V2] with

V1 = [V (1) V (2) · · ·V (r)], V2 = [V (r+1) V (r+2) · · ·V (n)].

Then

V TATAV =

[
Σ2 0
0 0

]
,

where the r×r matrix Σ is defined by Σ2 = diag(d21, . . . , d
2
r). Here V T

1 A
TAV1 =

Σ2. Show that AV2 = 0. Now define a n×r matrix U1 by U1 = AV1Σ
−1.

Show that UT
1 U1 = I. Therefore the columns of U1 are orthonormal. Show

that we can define an orthonormal n×n matrix in the form U = [U1 U2].
Finally, derive the SVD by showing that

UTAV =

[
Σ 0
0 0

]
.

Hint: use the block forms of the matrices.



Matlab exercises:

M1. Let the point spread function p ∈ R5 and the vector f ∈ R16 be defined by

p = [p−2, p−1, p0, p1, p2]
T = [

1

16
,

3

16
,
1

2
,

3

16
,

1

16
, ]T ,

f = [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16]
T

= [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T .

Note the non-standard indexing of the vector p. Define the discrete convolution
vector (p ∗ f) ∈ R16 by

(p ∗ f)j =
2∑

`=−2

p`fj−`, 1 ≤ j ≤ 16, (1)

where we use the following definition for out-of-bounds indices:

fj−` = 0 for j − ` < 1 and j − ` > 16. (2)

Boundary condition (2) is called zero extension.

(a) Use a for-loop to calculate the vector p ∗ f straight from definition (1)
using the boundary condition (2).

(b) Use the command convmtx for building a convolution matrixA. Calculate
the vector p ∗ f as Af . Check that you get the same result than in (a).

(b) Use the command conv2 to calculate the vector p∗ f . Check that you get
the same result than in (a).

M2. Periodic boundary conditions are defined by

f0 = f16, f−1 = f15, f−2 = f13, . . . ,
f17 = f1, f18 = f2, f19 = f3, . . .

(3)

(a) Use a for-loop to calculate the vector p ∗ f straight from definition (1)
using the boundary condition (3).

(b) Use the command convmtx for building a convolution matrix A. Mod-
ify the convolution matrix so that it implements the periodic boundary
conditions (3). Calculate the vector p ∗ f as Af . Check that you get the
same result than in (a).

(b) Use Fast Fourier Transform (FFT) to calculate the vector p ∗ f with the
periodic boundary conditions (3). In principle this approach takes the
simple form

ifft(fft(p) · fft(f)), (4)

where · stands for element-wise vector product. However, in (4) the
vectors p and f have to have the same length, so you need to “zero-pad”
vector p so that it has 16 elements. In the zero-padding process you need
to be careful with the location of the centerpoint of the PSF. Studying
the command fftshift may help you.

Check that you get the same result than in (a).


