Exercise 1

Choose a project topic for your "final exam" from the list given on the course webpage, and inform the lecturer about your choice by e-mail. Please also mention in the e-mail whether you plan to give a talk about your project (2.5. or 4.5.) or, instead, take an oral exam later in May. If you have no particular preference, choose a few most promising topics, and I will make the selection for you. You can also suggest a topic outside the list.

Exercise 2

Consider some $d, d^{\prime} \geq 1$ and denote $N:=d+d^{\prime}$. Suppose $\psi \in \mathcal{S}_{N}$ and assume $A \in \mathbb{R}^{N \times N}$ is an invertible matrix and $y \in \mathbb{R}^{d^{\prime}}$. For every $z \in \mathbb{R}^{d}$ we can then identify $(z, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}} \cong \mathbb{R}^{N}$, and thus define

$$
g(z):=\psi(A(z, y)), \quad z \in \mathbb{R}^{d} .
$$

Show that $g \in \mathcal{S}_{d}$. Is it also true in general if you do not assume A to be invertible? (This result was used in the proof of Theorem 11.4.1. Hint: Induction.)

Exercise 3

Suppose $N, M \in \mathbb{N}_{+}$and assume that $\mathbf{R}_{j} \in \mathbb{R}^{3}, Z_{j} \in \mathbb{Z}$ are given for $j=1,2, \ldots, M$. Show that the operator $H:=H_{0}+\alpha V_{\mathrm{c}}$ is self-adjoint with $D(H)=D\left(H_{0}\right)$ for every $\alpha \in \mathbb{R}$ on the Hilbert space $L^{2}\left(\left(\mathbb{R}^{3}\right)^{N}\right)$, and that it is essentially self-adjoint on the test-functions spaces $\mathcal{S}_{3 N}$ and $\mathcal{D}_{3 N}$.
Here V_{c} is defined as in the lecture notes: for $x=\left(\mathbf{x}_{i}\right)_{i=1}^{N} \in\left(\mathbb{R}^{3}\right)^{N}$ set

$$
V_{\mathrm{c}}(x):=-\sum_{i=1}^{N} \sum_{j=1}^{M} \frac{Z_{j}}{\left|\mathbf{x}_{i}-\mathbf{R}_{j}\right|}+\sum_{i=1}^{N} \sum_{i^{\prime}=1}^{i-1} \frac{1}{\left|\mathbf{x}_{i^{\prime}}-\mathbf{x}_{i}\right|}+\sum_{j=1}^{M} \sum_{j^{\prime}=1}^{j-1} \frac{Z_{j^{\prime}} Z_{j}}{\left|\mathbf{R}_{j^{\prime}}-\mathbf{R}_{j}\right|} .
$$

(This provides the mathematical definition for the "Molecular Hamiltonian" given in Section 11.4. Hint: Theorem 11.4.1.)

Exercise 4

Translation semigroups

Consider $N \geq 2$ spinless particles of mass $m_{i}>0, i=1,2, \ldots, N$, and let $\mathcal{H}:=L^{2}\left(\left(\mathbb{R}^{3}\right)^{N}\right)$ denote the corresponding Hilbert space. A translation by $\mathbf{y} \in \mathbb{R}^{3}$ on \mathcal{H} is defined via the formula

$$
\begin{equation*}
\left(\tau_{\mathbf{y}} \psi\right)\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right):=\psi\left(\mathbf{x}_{1}-\mathbf{y}, \ldots, \mathbf{x}_{N}-\mathbf{y}\right), \quad x \in\left(\mathbb{R}^{3}\right)^{N}, \psi \in \mathcal{H} \tag{1}
\end{equation*}
$$

(a) Explain why (1) defines an operator on \mathcal{H}. Prove that every $\tau_{\mathbf{y}}$ is unitary.
(b) Show that $\tau_{\mathbf{y}} \tau_{\mathbf{y}^{\prime}}=\tau_{\mathbf{y}+\mathbf{y}^{\prime}}$ for all $\mathbf{y}, \mathbf{y}^{\prime} \in \mathbb{R}^{3}$. When do the operators $\tau_{\mathbf{y}}$ and $\tau_{\mathbf{y}^{\prime}}$ commute?
(c) Consider some fixed $\mathbf{y} \in \mathbb{R}^{3}$, and prove that $t \mapsto \tau_{t \mathbf{y}}$ defines a strongly continuous unitary semigroup.

Exercises 5

Translation invariant pair potentials

Consider N, m_{i}, \mathcal{H} and $\tau_{\mathbf{y}}$, defined as in the previous Exercise. Assume that each pair $\left(i^{\prime}, i\right), i^{\prime} \neq i$, of particles interacts via a potential which depends only their separation, as determined by the function $V_{i^{\prime} i} \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$.
(a) Prove that the resulting Hamiltonian

$$
\begin{equation*}
H:=-\sum_{i=1}^{N} \frac{1}{2 m_{i}} \nabla_{\mathbf{x}_{i}}^{2}+\sum_{i=1}^{N} \sum_{\substack{i^{\prime}=1, i^{\prime} \neq i}}^{N} V_{i^{\prime} i}\left(\mathbf{x}_{i^{\prime}}-\mathbf{x}_{i}\right) \tag{2}
\end{equation*}
$$

is self-adjoint on $\mathcal{H}:=L^{2}\left(\left(\mathbb{R}^{3}\right)^{N}\right)$ with $D(H)=D\left(H_{0}\right)$.
(b) Show that H is translation invariant: $\tau_{\mathbf{y}} H \subset H \tau_{\mathbf{y}}$, for every $\mathbf{y} \in \mathbb{R}^{3}$. (Hint: It suffices to check the translation invariance for test-functions. Explain why.)
(c) Suppose $\psi_{0} \in \mathcal{H}$ is given and denote $\psi_{t}:=\mathrm{e}^{-\mathrm{i} t H} \psi_{0}$ for $t>0$. Consider some fixed $\mathbf{y} \in \mathbb{R}^{3}$, denote $\phi_{0}:=\tau_{\mathbf{y}} \psi_{0}$, and set then $\phi_{t}:=\mathrm{e}^{-\mathrm{i} t H} \phi_{0}$ for $t>0$. Show that $\phi_{t}=\tau_{\mathbf{y}} \psi_{t}$ for all $t \geq 0$. (Hint: spectral theory, in particular, the new material on page 63b.)

