Introduction to mathematical physics:
Quantum dynamics
NB. The date for the exercise session has not been fixed yet: please check the web page of the course for the time and place of the session.

Exercise 1

Proof of Proposition 10.3

Let $d \leq 3$, and consider $H_{0}=-\frac{1}{2} \nabla^{2}$ on $L^{2}\left(\mathbb{R}^{d}\right)$. Prove that every $\psi \in D\left(H_{0}\right)$ can be chosen continuous. Show that for any $\varepsilon>0$ there is $c_{\varepsilon} \geq 0$ such that for all $\psi \in D\left(H_{0}\right)$,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}}|\psi(x)|=\|\psi\|_{\infty} \leq \varepsilon\left\|H_{0} \psi\right\|+c_{\varepsilon}\|\psi\| . \tag{1}
\end{equation*}
$$

(Hint: Recall the Riemann-Lebesgue lemma; in particular, note that by Remark "a)" on p. 73 of the lecture notes to the inverse Fourier transform one clearly has $\|\psi\|_{\infty} \leq\|\mathcal{F} \psi\|_{1}$ for all $\psi \in L^{2}$. Show then that the assumptions imply $\mathcal{F} \psi \in L^{1}\left(\mathbb{R}^{d}\right)$, and try to prove the inequality (1) for some constants. After this, consider the functions $f_{r}(x):=\psi\left(r^{-1} x\right)$ with $r>0$.)

Exercise 2

Let $d=1$, and consider $H_{0}=-\frac{1}{2} \nabla^{2}$ on $L^{2}(\mathbb{R})$. By Exercise 1 every element of $D\left(H_{0}\right)$ is then a continuous function. However, they are even more regular:
(a) Show that, if $\psi \in D\left(H_{0}\right)$, then $\psi \in C^{(1)}(\mathbb{R})$ and with $\phi:=H_{0} \psi$ we have for all $x, x_{0} \in \mathbb{R}$

$$
\begin{equation*}
\psi(x)=\psi\left(x_{0}\right)+\left(x-x_{0}\right) \psi^{\prime}\left(x_{0}\right)-2 \int_{x_{0}}^{x} \mathrm{~d} y(x-y) \phi(y) . \tag{2}
\end{equation*}
$$

(b) Conversely, show that, if $\psi \in C^{(1)}(\mathbb{R})$ is such that $\psi, \psi^{\prime} \in L^{2}(\mathbb{R})$ and there are some $x_{0} \in \mathbb{R}$ and $\phi \in L^{2}(\mathbb{R})$ such that (2) holds for almost every $x \in \mathbb{R}$, then $\psi \in D\left(H_{0}\right)$ and $\phi=H_{0} \psi$.
(Hint: Recall that $-2 H_{0}=\partial_{x} \partial_{x}$ and use Exercise 10.2.)

Exercise 3

Let $d=1$ and consider a real potential $V \in L^{\infty}(\mathbb{R})$ which is piecewise continuous: it is continuous apart from some isolated points in $Z \subset \mathbb{R}$. By Theorem $10.4, H=H_{0}+V$ is self-adjoint on $D\left(H_{0}\right)$.
(a) Suppose $\lambda \in \mathbb{R}$ is an eigenvalue of H with an eigenvector ψ, that is, assume $\psi \in D(H)$ and $H \psi=\lambda \psi$. Show that then between any two consecutive points of discontinuity of V (that is, on any open interval in $\mathbb{R} \backslash Z) \psi$ is twice continuously differentiable and satisfies the ordinary differential equation $-\frac{1}{2} \psi^{\prime \prime}(x)+V(x) \psi(x)=\lambda \psi(x)$. (Hint: Exercise 2.)
(b) State also the converse: Suppose $\lambda \in \mathbb{R}$ and $\psi: \mathbb{R} \rightarrow \mathbb{C}$ satisfies $-\frac{1}{2} \psi^{\prime \prime}(x)+V(x) \psi(x)=$ $\lambda \psi(x)$ on any open interval on which V is continuous (in particular, $\psi^{\prime \prime}(x)$ exists at every point of such intervals). What do you still need to check so that ψ is an eigenvector of H ? Is it possible that the corresponding eigenvalue is not λ ?

Exercise 4

Continuation from Exercise 3...
Consider H in the special case $V(x)=-E_{0} \mathbb{1}_{\{|x|<a\}}$ where $a, E_{0}>0$ are some given parameters. (This setup is called a one-dimensional potential well.)

Assume λ is an eigenvalue of H, and find explicitly all of the corresponding eigenvectors. What is the dimension of the eigenspace? Derive also an implicit formula satisfied by any eigenvalue of H. Does H have eigenvalues for all $a, E_{0}>0$?

Exercise 5

Free Schrödinger operator on $(0,1)$

In analogy to Exercise 10.4, define an operator T on $\mathcal{H}:=L^{2}(\Omega)$ with $\Omega:=(0,1)$ by using the domain

$$
D(T)=\left\{\psi \in \mathcal{H} \mid \exists f \in D\left(H_{0}\right) \text { such that }\left.f\right|_{\Omega}=\psi\right\}
$$

and setting $T \psi:=\left.H_{0} f\right|_{\Omega}$ for $\psi \in D(T)$. Show that the definition makes sense: $T \psi$ does not depend on the choice of f.
For each of the domains D listed below, consider the restriction $A:=\left.T\right|_{D}$ of T to D. Show that every such A is a symmetric densely defined operator.
(a) (Dirichlet boundary conditions)

$$
D=\{\psi \in D(T) \mid \psi(0)=0, \psi(1)=0\} .
$$

(b) (Mixed Dirichlet and Neumann) There is $\alpha \in \mathbb{R}$ such that

$$
\begin{aligned}
& D=\left\{\psi \in D(T) \mid \psi^{\prime}(0)=\alpha \psi(0), \psi(1)=0\right\}, \quad \text { or } \\
& D=\left\{\psi \in D(T) \mid \psi(0)=0, \psi^{\prime}(1)=\alpha \psi(1)\right\} .
\end{aligned}
$$

(c) (General Neumann) There are $\alpha, \beta \in \mathbb{R}$ such that

$$
D=\left\{\psi \in D(T) \mid \psi^{\prime}(0)=\alpha \psi(0), \psi^{\prime}(1)=\beta \psi(1)\right\}
$$

(d) (Generalized periodic) There are $\varphi \in \mathbb{R}$ and a 2×2 matrix M, such that $M_{i j} \in \mathbb{R}$, $i, j=1,2$ and $\operatorname{det} M=1$, and we define

$$
D=\left\{\psi \in D(T) \left\lvert\,\binom{\psi(1)}{\psi^{\prime}(1)}=\mathrm{e}^{\mathrm{i} \varphi} M\binom{\psi(0)}{\psi^{\prime}(0)}\right.\right\} .
$$

(In fact, all of these operators are self-adjoint. Moreover, they yield the full collection of selfadjoint extensions in $L^{2}(\Omega)$ of the operator $f \mapsto-f^{\prime \prime}$ with the domain $C_{c}^{\infty}(\Omega)$. Therefore, they are all candidates for a possible definition of the generator of "free" evolution on $(0,1)$. Hint: try first to figure out why T is not self-adjoint.)

