GAUSSIAN FIELDS AND MULTIPLICATIVE CHAOS (spring 2017)

EXERCISE LIST

1. Recall the proof of Lemma 1.3. (use literature if needed): If probability measures pi, j1o on
the probability space (€2, F) agree on a m-system 7 that generates F, then they are equal.

N

. In order to show that Corollary 1.7 fails if one omits the assumption ’identically distributed’,
give an example of independent random variables X; > 0 with £X; =1 for all £ > 1 and
such that ).~ | X} converges almost surely.

3. Prove in detail that the subset N,-;00 UkK:(?) B(xg,27") of the Banach space E is compact

(this set appears in the proof of Thm 2.1).

4. Let X : (2, F) — E, where F is a separable Banach space. Show that X is measurable if
it is weakly measurable, i.e. for any A € E’ the map w — A(X(w)) is measurable.

5. Let E be a separable Banach space and let X7, X, be E-valued random variables defined
on a common probability space. Show that the sum X; 4+ X, is also a random variable
(i.e. that it is measurable).

[Hint: Exercise 3.]

6. (i) Show in detail that under the conditions of Thm 3.4 one actually has exponential
integrability E eMYl < 0o for all X > 0.

(ii) In a similar way, in Kwapien’s Thm 3.8 one has E MY I” < 0o for all A > 0.

[Hint: prove this first for the tail sum ), euy taking m large enough.]

J

. Assume that p : [0, 00) — [0, 00) is strictly increasing, continuous, continuously differentiable
on (0,00) and p(0) = 0. Use Fubini to verify that for a random variable X we have

Ep(|X|) = / T HBB(X] > A).

8. Let Y)Y, (K > 1) be Gaussian real random variables such that Y} 25 Y in probability.
Show that Y is also Gaussian.

9. Is the conclusion of the previous exercise true if Y and Yj:s takes value in R? Is it true if
they take values in a separable Banach space?

10. Complete the proof of lemma 4.4 by verifying that ux = u.
[Hint: ask the instructor for help if needed.]

11. Verify by using the form of the characteristic function that a Gaussian random variable
on F (assumed to be separable) is symmetric if and only if mx :=EX = 0.
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12.

13.

14.

15.

16.

17.

18.

19.

Prove in detail by using just the definition of the Cameron-Martin norm that the Cameron-
Martin space H,, is a Banach space (only the completeness remains to be checked.)

Assume that E is a Banach space and X : (Q, F,du) — E is Bochner-integrable. Assume
that the measurable subsets A; € F for j = 1,2, ... are disjoint. Prove that

Xdp =Y / Xdpu,
/LJ;‘i1 Aj j=174;

where the series on the right converges in F.
[Recall that one defines [, Xdu := [, xa(w)X (w)du(w) for subsets A € F]

Show that if F, F' are Banach spaces, X : (0, F,du) — E is Bochner-integrable, and
T : E — F is linear and bounded operator, then 7'(X) is also Bochner integrable and

T(/QXd,u) ~ [1rorin

Equip [0, 27) with the Lebesgue o-algebra and measure. Consider the ¢>°-valued map X,
where -

X(t) = (e",e* e ), te][0,2m).
(i) Is X weak™-measurable?
(ii)) Is X strongly measurable?
(iii) Is X weakly measurable?

[Hint: for (iii)"" ask the instructor for help if needed.]

Assume that E is a Banach space and h; € E (j > 1). Let Xj:s be i.i.d. standard normals.
Assume that the series

X = i Xihy
k=1

converges. Prove in detail that X is a centred Gaussian F-valued random variable.

Same assumptions than in Exercise 18. Denote by p := ux the distribution of X. Assume
also that the linear span of vectors hy is dense in E, and they are independent in the sense
that for each j one has that h; & span{hy : k # j}. Try to describe the Cameron-Maryin
space H, in this situation!

Assume that H is a (separable) Hilbert space and p is a Gaussian measure on H. Assume
that T': H — H is an injective linear map such that the covariance operator of u takes
the form C'=TT*. Show that then H, = TH and ||z|/ g, = ||T""z||# for any z € H,.

Let p = pp be the distribution of the standard Brownian motion on [0, 1] in the space
L*(0,1). Give a new simpler proof food the fact that H, = {f € W2(0,1) : f(0) = 1}
by using exercise 20 and the operator T': L*(0,1) — L?(0,1), where T'f(z) = [; f(u)du.
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20. Assume that X is a Gaussian centred random variable on the Banach space E. Let F; be

another Banach space, and let A : £; — E5 be a bounded linear operator.

(i) Check that AX is also Gaussian with values in Ey. How do you express the covariance
operator of AX.

(ii) Assuming that A is injective on Hy prove that Hyx = AHx and ||Au||lg, = ||ullmy
for u € Hx.

(il)  How do you formulate the result in (ii) if the injectivity assumption is dropped?

21. The Ornstein-Uhlenbeck process on ¢ € [0, 1] may be defined as X (t) = e”¥/2B(e!), where

22,

B is the standard Brownian motion.

(i) Determine the covariance structure of the Ornstein-Uhlenback process on t € [0, 1].
(ii) Find the Cameron-Martin space of X.

[Hint: in (ii) you may apply the previous exercise. ]

Try to use exercise 20 to compute the Cameron-Martin space of the Brownian bridge on
[0, 1] assuming that you know it for the standard Brownian motion on [0, 1].

23. Use Theorem 4.22 of lectures to prove the Borell theorem:

Thm. (C. Borell) Assume that u is a centered Gaussian measure on the Banach space
E. Let A C E be a symmetric set (A= —A). Then for any h € H, it holds that

(A +h) > p(A)e M/

[Suggestion: Note that pu(A + h) = (W(A+ h) + w(A — h) = p_n(A) + pr(A)), and use
Theorem 4.22 (ii) to estimate the last written expression.|

24. Use the previous exercise to give a lower bound (up to a constant) for the probability A,

as u — 00), where

A, =P(|B(t) — usin(rt)| <1 for 0 <t <1).

25. Assume that p : [0,00) — [0, 00) is increasing and continuous. If § € (0,1), prove that

1)
I /O Iog(Ju)dp(u) < 0o

if and only if

lim /log(1/u)p(u) =0 and / ple™) < .
u—0+ log(1/6)
Moreover, then it holds that
I=p0loa(U8) + [ ple),
log(1/5)



26.

27.

28.

Let T be a compact metric space. Prove Dini’s theorem: if the sequence of continuous
functions f, : T — R converges pointwise monotonically on 7" to a continuous limit
function, then the convergence is uniform.

Strengthen Theorem 3.3 of the lectures and prove that if E is a separable Banach space
and X,,:s are E-valued, independent, and symmetric random variables such that the sum

N
>,
n=1

converges in distribution to an E-valued random variable X. Show that it then converges in
probability, and hence by Theorem 3.3 also almost surely towards a limit random variable
X with the same distribution as X.

[Suggestion: For 1 < n,m denote the distribution (measure) of the partial sum > ;=" | X,

by fin.m, and denote by u the distribution of X. Verify that the set {pnm : n,m > 1} is
tight. The convergence of the original series in probability is equivalent to i, L0 as
n — oo, or equivalently i, ,, 0. Assuming the contrary we may thus use tightness and

pick subsequences ny, m; with n, — oo, such that ny, n, N # 0 Deduce that ux v = p,
or in other words, if Y is distributed as v and independent of X we have X ~ Y + X.
Show that this is impossible.]

Prove General Ito-Nishio’s theorem (The original one dealt with uniform convergence of
expansions to Brownian motion ): Let £ be a separable Banach space. Assume that X,,:s
are E-valued, independent, and symmetric random variables such that for any A\ € E’ it

holds that almost surely
N
A (Z Xn> — A(X),
n=1

where X is a F-valued random variable. Show that then the above series converges almost
surely to X in the norm topology.

[ Suggestion: Denote Sy := 32 | X,,. Show first that Sy L (X — Sy) for each N. Appy
Lemma 4.16 of the lectures to deduce tightness of the partial sums {Sy}. Use Prohorov to
prove that any subsequence of Sy has a further subsequence that converges in distribution,
and then apply the condition of Ito-Nishio Theorem to verify that the limit has the same
distribution as X. This yields convergence in distribution to X for the full series, and the
rest follows from exercise 27.]

28. Show in detail how Theorem 6.10 (Slepian’s inequality) follows in the general case as soon

as it is knows in the case where 7' is finite.

29. Prove Corollary 6.11 of the lectures.

30. Show by a 2-dimensional counterexample that if one replaces sup X; by sup | X;| and sup Y;

by sup |Y;| in Slepian’s inequality (Thm. 6.10), then the obtained statement is false!



31.

32.

33.

Try to find the Karhunen-Loewe expansion for the d-dimensional Brownian sheet X |
which is the centered Gaussian field on s € [0, 1]¢ with the covariance structure

d
E XX, = [[min(sp,ux),  s,ue0,1]"

k=1

Let 11 be a centered Gaussian measure on a separable Banach space . Prove that the
linear operator R,, : L*(du) — F is compact, where (as before)

R, = /E zdp(x)u(dr)  for ¢ e L*(dp).

[Suggestion: Let € > 0. Use Fernique’s exponential tail for y and Cauchy-Schwarz to verify
that you get an e/2-approximation in operator norm to ﬁu if the integration over F is
replaced by just integration over the ball B(0,rq) and r¢ is taken large enough. Then, for
any 6 > 0 use regularity of p to pick a finite set F° C B(0,7¢) so that u(B(0,r9) \ (F +
B(0,6))) < 6. For z € B(0,ry) choose g(z) be a measurable function such that g(z) =0
if o ¢ F 4 B(0,0), and |g(z) — x| < ¢ for z € F 4+ B(0,6). Finally, check that the finite
dimensional operator

6 s /B L ().

yields an e-approximation in operator norm to Eu if 0 is taken small enough.]

Let p be a centered Gaussian measure on a separable Banach space E. Show that Bp,
(the closed unit ball of the Cameron-Martin space) is a compact subset of E.

[Suggestion: After the previous exercise, it is enough (why) to verify the following func-
tional analysis fact: Let T': H — E be a compact linear operator from a Hilbert space
H to a Banach space E. Then the image of the unit ball, T By is a compact subset of
E. Note, however that this is not true (can you find a counterexample?) even for one-
dimensional operators if H is replaced by a general Banach space! If needed, ask for help
in functional analysis from the instructor.



