
GAUSSIAN FIELDS AND MULTIPLICATIVE CHAOS (spring 2017)

EXERCISE LIST

1. Recall the proof of Lemma 1.3. (use literature if needed): If probability measures µ1, µ2 on
the probability space (Ω,F) agree on a π-system T that generates F , then they are equal.

2. In order to show that Corollary 1.7 fails if one omits the assumption ’identically distributed’,
give an example of independent random variables Xk ≥ 0 with EXk = 1 for all k ≥ 1 and
such that

∑∞
k=1Xk converges almost surely.

3. Prove in detail that the subset ∩n=1∞∪K(n)
k=1 B(xk, 2−n) of the Banach space E is compact

(this set appears in the proof of Thm 2.1).

4. Let X : (Ω,F) → E, where E is a separable Banach space. Show that X is measurable if
it is weakly measurable, i.e. for any λ ∈ E ′ the map ω → λ(X(ω)) is measurable.

5. Let E be a separable Banach space and let X1, X2 be E-valued random variables defined
on a common probability space. Show that the sum X1 + X2 is also a random variable
(i.e. that it is measurable).

[Hint: Exercise 3.]

6. (i) Show in detail that under the conditions of Thm 3.4 one actually has exponential
integrability E eλ‖Y ‖ <∞ for all λ > 0.

(ii) In a similar way, in Kwapien’s Thm 3.8 one has E eλ‖Y ‖2 <∞ for all λ > 0.

[Hint: prove this first for the tail sum
∑∞

k=m εkuk taking m large enough.]

7. Assume that p : [0,∞)→ [0,∞) is strictly increasing, continuous, continuously differentiable
on (0,∞) and p(0) = 0. Use Fubini to verify that for a random variable X we have

E p(|X|) =

∫ ∞
0

p′(t)P(|X| > λ).

8. Let Y, Yk (k ≥ 1) be Gaussian real random variables such that Yk
P−→ Y in probability.

Show that Y is also Gaussian.

9. Is the conclusion of the previous exercise true if Y and Yk:s takes value in Rd? Is it true if
they take values in a separable Banach space?

10. Complete the proof of lemma 4.4 by verifying that µX = µ.

[Hint: ask the instructor for help if needed.]

11. Verify by using the form of the characteristic function that a Gaussian random variable
on E (assumed to be separable) is symmetric if and only if mX := EX = 0.
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12. Prove in detail by using just the definition of the Cameron-Martin norm that the Cameron-
Martin space Hµ is a Banach space (only the completeness remains to be checked.)

13. Assume that E is a Banach space and X : (Ω,F , dµ)→ E is Bochner-integrable. Assume
that the measurable subsets Aj ∈ F for j = 1, 2, . . . are disjoint. Prove that∫

⋃∞
j=1 Aj

Xdµ =
∞∑
j=1

∫
Aj

Xdµ,

where the series on the right converges in E.

[Recall that one defines
∫
A
Xdµ :=

∫
Ω
χA(ω)X(ω)dµ(ω) for subsets A ∈ F .]

14. Show that if E,F are Banach spaces, X : (Ω,F , dµ) → E is Bochner-integrable, and
T : E → F is linear and bounded operator, then T (X) is also Bochner integrable and

T

(∫
Ω

Xdµ

)
=

∫
ω

T ◦ Fdµ.

15. Equip [0, 2π) with the Lebesgue σ-algebra and measure. Consider the `∞-valued map X,
where

X(t) = (eit, e2it, e3it, . . .), t ∈ [0, 2π).

(i) Is X weak∗-measurable?

(ii) Is X strongly measurable?

(iii) Is X weakly measurable?

[Hint: for (iii)∗∗ ask the instructor for help if needed.]

16. Assume that E is a Banach space and hj ∈ E (j ≥ 1). Let Xk:s be i.i.d. standard normals.
Assume that the series

X =
∞∑
k=1

Xkhk

converges. Prove in detail that X is a centred Gaussian E-valued random variable.

17. Same assumptions than in Exercise 18. Denote by µ := µX the distribution of X. Assume
also that the linear span of vectors hk is dense in E, and they are independent in the sense
that for each j one has that hj 6∈ span{hk : k 6= j}. Try to describe the Cameron-Maryin
space Hµ in this situation!

18. Assume that H is a (separable) Hilbert space and µ is a Gaussian measure on H. Assume
that T : H → H is an injective linear map such that the covariance operator of µ takes
the form C = TT ∗. Show that then Hµ = TH and ‖x‖Hµ = ‖T−1x‖H for any x ∈ Hµ.

19. Let µ = µB be the distribution of the standard Brownian motion on [0, 1] in the space
L2(0, 1). Give a new simpler proof food the fact that Hµ = {f ∈ W 1,2(0, 1) : f(0) = 1}
by using exercise 20 and the operator T : L2(0, 1)→ L2(0, 1), where Tf(x) =

∫ x
0
f(u)du.
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20. Assume that X is a Gaussian centred random variable on the Banach space E. Let E1 be
another Banach space, and let A : E1 → E2 be a bounded linear operator.

(i) Check that AX is also Gaussian with values in E2. How do you express the covariance
operator of AX.

(ii) Assuming that A is injective on HX prove that HAX = AHX and ‖Au‖HAX = ‖u‖HX
for u ∈ HX .

(ii) How do you formulate the result in (ii) if the injectivity assumption is dropped?

21. The Ornstein-Uhlenbeck process on t ∈ [0, 1] may be defined as X(t) = e−t/2B(et), where
B is the standard Brownian motion.

(i) Determine the covariance structure of the Ornstein-Uhlenback process on t ∈ [0, 1].

(ii) Find the Cameron-Martin space of X.

[Hint: in (ii) you may apply the previous exercise.]

22. Try to use exercise 20 to compute the Cameron-Martin space of the Brownian bridge on
[0, 1] assuming that you know it for the standard Brownian motion on [0, 1].

23. Use Theorem 4.22 of lectures to prove the Borell theorem:

Thm. (C. Borell) Assume that µ is a centered Gaussian measure on the Banach space
E. Let A ⊂ E be a symmetric set (A = −A). Then for any h ∈ Hµ it holds that

µ(A+ h) ≥ µ(A)e
−‖h‖2Hµ/2.

[Suggestion: Note that µ(A + h) =
(
µ(A + h) + µ(A − h) = µ−h(A) + µh(A)

)
, and use

Theorem 4.22 (ii) to estimate the last written expression.]

24. Use the previous exercise to give a lower bound (up to a constant) for the probability Au
as u→∞), where

Au = P
(
|B(t)− u sin(πt)| ≤ 1 for 0 ≤ t ≤ 1

)
.

25. Assume that ρ : [0,∞)→ [0,∞) is increasing and continuous. If δ ∈ (0, 1), prove that

I :=

∫ δ

0

√
log(1/u)dρ(u) <∞

if and only if

lim
u→0+

√
log(1/u)ρ(u) = 0 and

∫ ∞
√

log(1/δ)

ρ(e−u
2

) <∞.

Moreover, then it holds that

I = ρ(δ)
√

log(1/δ) +

∫ ∞
√

log(1/δ)

ρ(e−u
2

).
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26. Let T be a compact metric space. Prove Dini’s theorem: if the sequence of continuous
functions fn : T → R converges pointwise monotonically on T to a continuous limit
function, then the convergence is uniform.

27. Strengthen Theorem 3.3 of the lectures and prove that if E is a separable Banach space
and Xn:s are E-valued, independent, and symmetric random variables such that the sum

N∑
n=1

Xn

converges in distribution to an E-valued random variableX. Show that it then converges in
probability, and hence by Theorem 3.3 also almost surely towards a limit random variable
X̃ with the same distribution as X.

[Suggestion: For 1 ≤ n,m denote the distribution (measure) of the partial sum
∑n+m

k=n+1Xk

by µn,m, and denote by µ the distribution of X. Verify that the set {µn,m : n,m ≥ 1} is

tight. The convergence of the original series in probability is equivalent to µn,m
P→ 0 as

n → ∞, or equivalentlyµn,m
d→ 0. Assuming the contrary we may thus use tightness and

pick subsequences n`,m` with n` → ∞, such that n`, n`
d→ ν 6= 0 Deduce that µ ∗ ν = µ,

or in other words, if Y is distributed as ν and independent of X we have X ∼ Y + X.
Show that this is impossible.]

28. Prove General Ito-Nishio’s theorem (The original one dealt with uniform convergence of
expansions to Brownian motion ): Let E be a separable Banach space. Assume that Xn:s
are E-valued, independent, and symmetric random variables such that for any λ ∈ E ′ it
holds that almost surely

λ

(
N∑
n=1

Xn

)
→ λ(X),

where X is a E-valued random variable. Show that then the above series converges almost
surely to X in the norm topology.

[ Suggestion: Denote SN :=
∑N

n=1Xn. Show first that SN ⊥ (X − SN) for each N . Appy
Lemma 4.16 of the lectures to deduce tightness of the partial sums {SN}. Use Prohorov to
prove that any subsequence of SN has a further subsequence that converges in distribution,
and then apply the condition of Ito-Nishio Theorem to verify that the limit has the same
distribution as X. This yields convergence in distribution to X for the full series, and the
rest follows from exercise 27.]

28. Show in detail how Theorem 6.10 (Slepian’s inequality) follows in the general case as soon
as it is knows in the case where T is finite.

29. Prove Corollary 6.11 of the lectures.

30. Show by a 2-dimensional counterexample that if one replaces supXt by sup |Xt| and supYt
by sup |Yt| in Slepian’s inequality (Thm. 6.10), then the obtained statement is false!
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31. Try to find the Karhunen-Loewe expansion for the d-dimensional Brownian sheet Xs ,
which is the centered Gaussian field on s ∈ [0, 1]d with the covariance structure

EXsXu =
d∏

k=1

min(sk, uk), s, u ∈ [0, 1]d.

32. Let µ be a centered Gaussian measure on a separable Banach space E. Prove that the
linear operator R̃µ : L2(dµ)→ E is compact, where (as before)

R̃µφ =

∫
E

xφ(x)µ(dx) for φ ∈ L2(dµ).

[Suggestion: Let ε > 0. Use Fernique’s exponential tail for µ and Cauchy-Schwarz to verify

that you get an ε/2-approximation in operator norm to R̃µ if the integration over E is
replaced by just integration over the ball B(0, r0) and r0 is taken large enough. Then, for
any δ > 0 use regularity of µ to pick a finite set F ⊂ B(0, r0) so that µ(B(0, r0) \ (F +
B(0, δ))) < δ. For x ∈ B(0, r0) choose g(x) be a measurable function such that g(x) = 0
if x 6∈ F + B(0, δ), and |g(x) − x| ≤ δ for x ∈ F + B(0, δ). Finally, check that the finite
dimensional operator

φ 7→
∫
B(0,r0)

g(x)φ(x)µ(dx).

yields an ε-approximation in operator norm to R̃µ if δ is taken small enough.]

33. Let µ be a centered Gaussian measure on a separable Banach space E. Show that BHµ

(the closed unit ball of the Cameron-Martin space) is a compact subset of E.

[Suggestion: After the previous exercise, it is enough (why) to verify the following func-
tional analysis fact: Let T : H → E be a compact linear operator from a Hilbert space
H to a Banach space E. Then the image of the unit ball, TBH is a compact subset of
E. Note, however that this is not true (can you find a counterexample?) even for one-
dimensional operators if H is replaced by a general Banach space! If needed, ask for help
in functional analysis from the instructor.]
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