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ABSTRACT. These are the lecture notes for the course Geometric measure theory and singular
integrals, given in Spring 2017 at the University of Helsinki. They contain the constructive
part of P. Jones’L∞ traveling salesman theorem in the plane, following the book of Bishop
and Peres, and two proofs of an L1 traveling salesman theorem for doubling measures,
due to Badger and Schul (the first proof assumes a quantitative form of non-atomicity
from the measure, and follows an argument of Tolsa).

As an application of the traveling salesman theorems, the notes contain a proof of
the Mattila-Melnikov-Verdera theorem from 1996, on the Cauchy transform and uniform
rectifiability. Several additional topics are also discussed:
• David’s theorem, stating that non-atomic measures with bounded Cauchy transform

have linear growth,
• the Denjoy conjecture (aka Calderón’s theorem), stating that positive-length subsets

of rectifiable curves are non-removable for bounded analytic functions,
• and finally the fact that sufficiently irregular sets, including the four-corners Cantor

set, are removable for bounded analytic functions.
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1. INTRODUCTION

Remark 1.1. The material for the lecture notes has been gathered and combined from
various sources, see the list of references. The main sources are the books of Bishop-
Peres [2], Falconer [9], Mattila [12], and Tolsa [17], and the article of Badger-Schul [1].

These lecture notes have two main goals. First, to describe and prove various "trav-
eling salesman theorems", see Section 2.2 for an overview. Second, to explore the con-
nections between rectifiability, the Cauchy transform, and removability. In particular, we
prove the following theorem of P. Mattila, M. Melnikov and J. Verdera [13] from 1996:

Theorem 1.2. Let E ⊂ C be a 1-AD regular set such that the Cauchy transform associated to
H1|E is bounded on L2(H1|E). Then, the set E is uniformly 1-rectifiable.

The Cauchy integral operator associated to a Radon measure µ is, formally speaking,
the object

Cµf(z) =

∫
f(w)

z − w
dµw.

For more details and results, see Section 6. A "1-AD-regular set" is short for a 1-Ahlfors-
David regular set, defined below:

Definition 1.3 (AD regularity). Let 0 ≤ s ≤ n. A Borel set E ⊂ Rn is called s-Ahlfors-
David regular, or s-AD regular in short, if there is a constant M ≥ 1 such that

rs

M
≤ Hs(E ∩B(x, r)) ≤Mrs, x ∈ E, 0 < r ≤ diam(E).

More generally, a Borel measure µ is called s-AD regular, if rs/M ≤ µ(B(x, r)) ≤ Mrs

for x ∈ sptµ and 0 < r ≤ diam(sptµ); thus, a Borel set E is s-AD regular, if and only if
Hs|E is s-AD regular.

The distinction between AD regular sets and measures is mostly semantic: if µ is s-AD
regular with 0 ≤ s ≤ n, then µ = Hs|E for an s-AD regular set E. Since only 1-AD
regular sets and measures will be considered in these lecture notes, I will abbreviate

AD-regular = 1-AD-regular.

Here is one possible definition of uniform 1-rectifiability:

Definition 1.4 (Uniform rectifiability). Let n ≥ 2. A set E ⊂ Rn is called uniformly 1-
rectifiable, if there is a constant C ≥ 1 with the following property: for every ball B ⊂ Rn,
the intersectionE∩B can be covered by a continuum ΓB satisfyingH1(ΓB) ≤ C diam(B).
A Radon measure µ is called uniformly 1-rectifiable, if spt µ is uniformly 1-rectifiable.

Remark 1.5. The basic example of a uniformly 1-rectifiable set is an AD regular contin-
uum. In fact, if E is 1-AD regular to begin with (as in Theorem 1.2), then it is known
(see [7], the discussion at the end of p. 14) that E is uniformly 1-rectifiable, if and only
if E is contained in an AD regular continuum. In the plane, and for compact sets, this
equivalence is quite easy to prove, even without the a priori AD regularity assumption.
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Exercise 1.6. Let E ⊂ R2 a uniformly 1-rectifiable compact set. Prove that there exists an
AD regular continuum Γ ⊃ E with diam(Γ) ∼ diam(E), where all the implicit constants
only depend on C. Hint: read Section 3 first.

Remark 1.7. At least two essentially different proofs of Theorem 1.2 are now available: the
original from [13], based on curvature, and then a more recent one based on the notion
of reflectionless measures, due to B. Jaye and F. Nazarov [10]. In these lecture notes, I take
the original route; that said, many of the details are gathered and pieced together from
resources more recent than [13].

Remark 1.8. Theorem 1.2 says that if µ is a priori AD regular, then the L2-boundedness of
Cµ on L2(µ) implies that µ is uniformly 1-rectifiable. It is fair to ask, whether the a priori
regularity assumption is sensible. G. David [5] has shown that if µ is non-atomic to begin
with, and Cµ is bounded on L2(µ),1 then

µ(B(x, r)) ≤ Cr, x ∈ R2, r > 0,

where C ≥ 1 depends on the constants in the L2-boundedness; on the other hand, Cδ0 is
nearly trivially bounded on L2(δ0). I postpone the proof of David’s result to Section 6,
see Proposition 6.9.

The inequality µ(B(x, r)) ≤ Cr from David’s result is, of course, the "upper" inequality
required for AD regularity. The lower regularity is definitely not necessary for the L2(µ)-
boundedness of Cµ. For instance, fix any s-AD regular set E ⊂ R2 with s > 1 and
0 < Hs(E) <∞, and let µ = Hs|E . A simple computation shows that∫

dµw

|z − w|q
≤ C, z ∈ R2,

for any 0 ≤ q < s. Now, fix some such q < s, and let p <∞ be the dual exponent. Then,
cheating a little bit (to be precise, you should do the following for the ε-truncations)

‖Cµ(f)‖pLp(µ) =

∫
|Cµ(f)|p dµ ≤

∫ (∫
|f(w)|
|z − w|

dµw

)p
dµz

≤
∫ ∫

|f(w)|p dµw
(∫

dµw

|z − w|q

)p/q
dµz .E,s

∫
|f(w)|p dµw.

So, Cµ is bounded on Lp(µ). It is also easy to see that Cµ is bounded on Lq(µ): if f ∈ Lq(µ)
and g ∈ Lp(µ), then∣∣∣∣∫ Cµ(f) · g dµ

∣∣∣∣ =

∣∣∣∣∫ f · Cµ(g) dµ

∣∣∣∣ ≤ ‖f‖Lq(µ)‖Cµ(g)‖Lp(µ) . ‖f‖Lq(µ)‖g‖Lp(µ)

by the previous computation, and now ‖Cµ‖Lq(µ)→Lq(µ) <∞ by duality. Finally, standard
Marcinkiewicz interpolation gives ‖Cµ‖L2(µ)→L2(µ) <∞.

So, in conclusion, the upper AD regularity condition µ(B(x, r)) . r is necessary in
Theorem 1.2, for non-atomic measures, whereas the lower inequality µ(B(x, r)) & r is
there to make life interesting. For measures decaying much more rapidly than O(r), the
problem is too easy.

1In the the usual sense that all ε-truncations are uniformly bounded on L2(µ), see Section 6.
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2. UNIFORM RECTIFIABILITY AND β-NUMBERS

To prove Theorem 1.2, one needs to develop the theory of uniformly 1-rectifiable sets.
One of the seminal results in this theory was the Analyst’s traveling salesman theorem of P.
Jones from 1990 [11], which provided a useful "multi-scale" characterisation of uniform 1-
rectifiability (the terminology "uniformly rectifiable" was coined shortly afterwards by G.
David and S. Semmes in another seminal paper [7]). Jones’ characterisation is formulated
in terms of β-numbers, which I will now discuss.

2.1. Various β-numbers. Let µ be a Radon measure on Rn. In the typical application,
µ = H1|E for a set E with positive and σ-finite 1-dimensional measure. For p ∈ [1,∞), a
compact set B (which will always be a ball or a cube) and a straight line ` ⊂ Rn, write

βµ,p(B, `) :=

[∫
B

(
dist(x, `)

diam(B)

)p dµx

µ(B)

]1/p

,

where we agree that βµ,p(B, `) = 0, if µ(B) = 0. Then, define

βµ,p(B) := inf
lines `

βµ,p(B, `).

It is clear from Hölder’s inequality that

βµ,p1(B) ≤ βµ,p2(B), 1 ≤ p1 ≤ p2 <∞. (2.1)

How about p =∞? The definition practically writes itself: again, for a line ` ⊂ Rn, define
the auxiliary number

β̃µ,∞(B, `) := µ− ess sup
x∈B

dist(x, `)

diam(B)
,

and then set
β̃µ,∞(B) := inf

lines `
β̃µ,∞(B, `).

It is clear from (2.1) that the numbers βp,µ(B) tend to a limit as p → ∞, and the limit is
bounded by β̃µ,∞(B).

Exercise 2.2. Prove or disprove:

β̃µ,∞(B) = lim
p→∞

βµ,p(B).

There is another fairly natural definition for β̃µ,∞, which will be used more in in these
lecture notes (both for historical reasons, and for convenience). For any set E ⊂ Rn (such
as E = sptµ), write

βE,∞(B, `) := sup
x∈B∩E

dist(x, `)

diam(B)
.

The number βE,∞(B) is then defined in the obvious way. Thanks to the following in-
equalities, it makes little practical difference, which convention for β∞ is used:

β̃µ,∞(B) ≤ βsptµ,∞(B) .λ β̃µ,∞(λB), λ > 1, (2.3)

where
λB = {x : dist∞(x,B) ≤ (λ− 1) diam∞(B)}, λ ≥ 1. (2.4)

Here dist∞ and diam∞ refer to distance and diameter in the L∞-distance ‖x − y‖∞ =
max{|xi − yi| : 1 ≤ i ≤ n}. This detail will be convenient in the sequel, where the



TRAVELING SALESMAN THEOREMS AND THE CAUCHY TRANSFORM 5

notation is mostly applied to cubes: with the current definition, λQ remains a cube for
all λ ≥ 1, see Figure 1.

Q

2Q

3Q

FIGURE 1. The cubes Q, 2Q and 3Q with our convention of "λE".

2.2. An overview of traveling salesman theorems.

2.2.1. Jones’ traveling salesman theorem for β∞-numbers. As mentioned above, this is where
it all started in 1990:

Theorem 2.5 (Jones). Let D be the family of closed2 dyadic cubes in Rn, and let E ⊂ Rn be a
compact set satisfying

β2
∞(E) :=

∑
Q∈D

β2
E,∞(2Q)`(Q) <∞. (2.6)

Then, for any δ > 0, there exists a compact connected set Γ ⊂ Rn such that E ⊂ Γ, and

H1(Γ) ≤ (1 + δ) diam(E) + Cδβ
2
∞(E).

The proof of Jones’ theorem in the plane is contained in Section 4. In fact, Jones also
proved the converse for n = 2, using complex analysis. The result was generalised to
higher dimensions, with a different, geometric proof, by K. Okikiolu [15] a bit later: for
rectifiable curves Γ of finite length, the sum β2

∞(Γ) is bounded by . H1(Γ). Jones also
observed in [11] that if, in place of (2.6), the β∞-numbers satisfy the following Carleson
condition, ∑

Q⊂R
β2
E,∞(2Q)`(Q) . `(R), R ∈ D, (2.7)

with implicit constants independent of R of course, then E can be covered by an AD
regular continuum: in particular, E is uniformly 1-rectifiable. Note that the Carleson
condition (2.7) can sometimes hold, even if the full sum in (2.6) diverges: this is, for
instance, the case for unbounded AD regular curves (unless they happen to be lines, or
otherwise sufficiently flat at infinity).

2This distinction makes no different in this theorem, but it will be useful later, and I want to keep the
same notation everywhere.
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2.2.2. Traveling salesman theorems for βp-numbers. The Lp-versions of the β-numbers do
not make sense for sets, unless there is some canonical measure supported on the set.
For measures µ, however, it is reasonable to ask whether a condition for the βµ,p-numbers
p ∈ [1,∞], analogous to either (2.6) or (2.7) gives some geometric information about the
support of µ. The answer is positive, to a certain extent, and this was one of the main
results in David and Semmes’ paper [7], where the notion of uniform rectifiability was
first introduced.

Theorem 2.8 (David-Semmes). Assume that E ⊂ Rn is a 1-AD regular set, let µ := H1|E ,
and let p ∈ [1,∞]. Assume that the βµ,p-numbers satisfy the Carleson condition∑

Q⊂R
β2
µ,p(2Q)`(Q) . `(R), R ∈ D. (2.9)

Then E is uniformly 1-rectifiable (in fact, sptµ can be covered by a 1-AD regular continuum).

Using the inequalities (2.3), the case p = ∞ reduces easily to the previous result of
Jones, but the cases p ∈ [1,∞) are a priori harder, because a "cube-wise" comparison
"βµ,p(Q) ∼ β̃µ,∞(Q)" is not true for p < ∞.3 However, for 1-AD regular measures (and
more generally "smooth" measures, to be introduced in Section 5), these cases can also be
reduced to the case p =∞ via the following trick (Theorem 7.52 in Tolsa’s book [17]):

Theorem 2.10 (Tolsa). Let µ be a smooth Radon measure in Rn. Then∑
Q⊂R

β2
sptµ,∞(2Q)`(Q) .

∑
Q⊂2R

β2
µ,p(3Q)`(Q)

for any cube R ∈ D, and any p ∈ [1,∞).

Recall that a Radon measure µ on Rn is called doubling, if there exists a constantDµ ≥ 1
such that

µ(B(x, 2r)) ≤ Dµµ(B(x, r)), x ∈ sptµ, r > 0.

The constant Dµ is called the doubling constant of µ. It turns out that Theorem 2.9 holds
for all doubling measures,4 and the following results are some of the main topics of these
lecture notes. They are due to M. Badger and R. Schul [1] from 2016.

Theorem 2.11 (Badger-Schul). Let µ be a doubling measure on Rn with compact support E :=
sptµ, let p ∈ [1,∞), and assume that the numbers βµ,p satisfy

β2
p(µ) :=

∑
Q∈DE
Q⊂λE

β2
µ,p(2Q)`(Q) <∞,

where λ = λn ≥ 1 is a sufficiently large constant, and DE = {Q ∈ D : Q ∩ E 6= ∅}. Then E
can be covered by a continuum Γ ⊂ Rn with

H1(Γ) .Dµ,n diam(E) + β2
p(µ).

3One can check that if E is AD regular, and µ = H1|E , then βE,∞(2Q) . βµ,1(5Q)1/2. This bound is
sometimes quite useful, but not good enough for direct application to the traveling salesman problem.

4It is an open research topic, which are the "minimal" a priori assumptions on a measure, so that summa-
bility of the β-numbers implies rectifiability, as in Theorem 2.9. Without any a priori assumptions, the situa-
tion does not look very promising at the moment [14].
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Corollary 2.12. Assume that µ is a doubling measure on Rn and p ∈ [1,∞]. If the numbers βµ,p
satisfy the Carleson condition∑

Q∈Dsptµ

Q⊂R

β2
µ,p(2Q)`(Q) . `(R), R ∈ D,

then µ is uniformly 1-rectifiable.

Proof. The case p = ∞ already follows from the work of Jones and does not require
doubling from µ. The case p ∈ [1,∞) uses Theorem 2.11 as follows. Fix a ballB ⊂ Rn. By
Theorem 2.11, the intersection B ∩ (sptµ) can be covered by a continuum ΓB of length

H1(ΓB) . diam(B ∩ (sptµ)) +
∑

Q∈Dsptµ

Q⊂λB

β2
µ,p(2Q)`(Q) . diam(B).

The last inequality follows from the Carleson condition, and the fact that λB can be
covered by . 1 cubes R ∈ D with `(R) ∼ diam(B). �

Section 5 contains two proofs for Theorem 2.11: The first one only works for "smooth"
measures (which means "doubling + quantitatively non-atomic"), in which case the result
can be reduced to Jones’ L∞ traveling salesman theorem via Tolsa’s trick, Theorem 2.10.
The second one is the original proof by Badger and Schul, and works for all doubling
measures.

3. PRELIMINARIES ON COMPACT AND (MOSTLY) CONNECTED SETS

This section is not strictly necessary for the sequel, but it would be odd to read about
traveling salesman theorems without knowing the material here. I take the following
result for granted (see [8, Exercise 6.3.12]):

Theorem 3.1. A connected set Γ ⊂ Rn with finite length is arcwise connected: for every pair
x, y ∈ Γ there exists an injective curve ψ([0, 1]) ⊂ Γ such that ψ(0) = x and ψ(1) = 1.

The rest of the material from this section is from Falconer’s book [9]. Let’s recall the
Hausdorff metric on non-empty compact subsets of Rn. For K ⊂ Rn and δ > 0, write
K(δ) := {x ∈ Rn : dist(x,K) < δ}. Then, for non-empty compact sets K1,K2 ⊂ Rn, let

dH(K1,K2) = inf{δ > 0 : K1 ⊂ K2(δ) and K2 ⊂ K1(δ)}.

Then (exercise, if this is news) dH is a metric on non-empty compact subsets of Rn. A
very useful result is that "the set of compact sets is a compact space" (at least almost):

Theorem 3.2 (Blaschke selection theorem). Let F be an infinite family of non-empty compact
sets in Rn, all lying in some fixed closed ball B ⊂ Rn. Then, there exists a sequence of distinct
sets {Kj}j∈N ⊂ F , and a non-empty compact set K ⊂ B such that Kj → K in the Hausdorff
metric.

Remark 3.3. The conclusion would be pretty obvious without the requirement that that
the setsKj be distinct. Also, the familyF = {{k} ⊂ R : k ∈ N} shows that the hypothesis
involving B is necessary.
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Proof. Induction: let {K1
j } ⊂ F be any sequence of distinct sets, and assume that the se-

quence {Km
j } has already been defined for somem ≥ 1. Define a subsequence {Km+1

j } ⊂
{Km

j } as follows. Cover B by a finite number Bm of balls of diameter 1/m. Then, every
setKm

j intersects every ball in some finite sub-collection Bmj ; there are only finitely many
different sub-collections, and infinitely many distinct sets, so there must be a fixed sub-
collection B̃m such that B̃m = Bmj for infinitely many indices j. Define the subsequence
{Km+1

j } by picking only those indices j. Then, it is clear that

dH(Km+1
i ,Km+1

j ) ≤ 2

m
, i, j ∈ N,

because Km+1
i and Km+1

j both intersect all the balls in B̃m, and are covered by them.
Because {Km+p

j } is always a subsequence of {Km
j }, it follows that

dH(Km+p
j ,Km

i ) ≤ 2

m
(3.4)

for all i, j and p ≥ 0. Now, let Km := Km
m . From (3.4), one sees that dH(Km,Km+p) ≤

2/m, which implies that {Km}m∈N is a Cauchy sequence in dH . So, it remains to show
that dH is a complete metric.

Define

K :=
⋂
m≥0

⋃
k≥m

Kk =:
⋂
m≥0

Em.

This is clearly a non-empty compact set. Further, since Km+p ⊂ Km(2/m) for all p ≥ 0, it
follows that Em+p ⊂ Km(2/m) for p ≥ 0, and consequently

K ⊂ Km(2/m), m ≥ 0.

If the converse inclusion were also true, then dH(K,Km) ≤ 3/m, and the proof would be
complete. So, it suffices to check that the converse inclusion is true.

Pick x ∈ Km. Then x ∈ Km+p(2/m) for all p ≥ 0, so also x ∈ Em+p(2/m). Now, it
suffices to choose a sequence {ym+p} with ym+p ∈ Em+p with |x − ym+p| ≤ 2/m. The
sequence has a subsequence convergent to a point y ∈ K satisfying |x − y| ≤ 2/m. This
proves that Km ⊂ K(2/m). �

A tree T is a continuum without loops: that is, for every pair x, y ∈ T , there is a unique
path γ([0, 1]) ⊂ Γ with γ(0) = x and γ(1) = y. For x, y ∈ T , let dγ(x, y) be the path distance
between x, y: dγ(x, y) = H1(γx,y), where γx,y is the unique path joining x to y in T . This
is a metric on T , and satisfies dγ(x, y) ≥ |x − y|. The diameter of a set K ⊂ T in the dγ
metric is denoted by diamγ(K).

For the purposes below, the key feature of trees is the following: they can be easily
chopped into pieces of smaller diameter preserving connectedness. That would not be
so easy for arbitrary continuums.

Lemma 3.5 (Tree-chopping lemma). Let T ⊂ Rn be a tree with finite length. Then, given
δ > 0, we can express T as the union of H1-essentially disjoint sub-trees T1, . . . , Tm with the
following properties:

(a) diam(Tk) ≤ min{δ,H1(Tk)} for 1 ≤ k ≤ m,
(b) m . H1(T )/δ + 1.
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Remark 3.6. The inequality diam(Tk) ≤ H1(Tk) follows simply from the fact that Tk is
connected. Indeed, consider any connected set Γ ⊂ Rn, and fix x, y ∈ Γ. Then consider
the map πx(z) = |z − x|. It is clear that πx is 1-Lipschitz, and from the connectedness of
Γ it follows easily that πx(Γ) ⊃ [0, |x− y|]. Hence,

|x− y| = H1([0, |x− y|]) ≤ H1(πx(Γ)) ≤ H1(Γ),

and now the inequality diam(Γ) ≤ H1(Γ) follows by taking a sup on the left hand side.

Proof of Lemma 3.5. If diam(T ) ≤ δ, there is nothing to prove. So, assume diamγ(T ) ≥
diam(T ) > δ (the first inequality follows by an argument similar to the one in Remark
3.6). Fix any point y0 ∈ T , and let M0 := sup{dγ(z, y) : z ∈ T}. Note that

δ

2
< M0 ≤ diamγ(T ),

because otherwise diamγ(T ) ≤ 2M0 ≤ δ. Fix any point z0 ∈ T with dγ(y0, z0) ≥ M0 − δ
6 ,

and finally fix x ∈ γy0,z0 with dγ(y0, x) = M0 − δ
2 .

Next, consider the equivalence relation ∼ on T \ {x}:
v ∼ w ⇐⇒ x /∈ γv,w.

The equivalence class of v ∈ T \ {x} is denoted by [v]. Let

T x := {x} ∪ {v ∈ T \ {x} : v 6∼ y}.
Then T x is a tree. To see this, consider a pair of points v, w ∈ T x. Then γx,v \ {x} ⊂ [v]
and γx,w \ {x} ⊂ [w], because clearly every pair of points in γx,v \ {x} (resp. γx,w \ {w})
can be joined to v (resp. w) without passing through x. It follows that

γv,x ∪ {x} ∪ γx,w ⊂ [v] ∪ {x} ∪ [w] ⊂ T x,
which implies that T x is path connected, hence a tree (uniqueness is inherited from T ).

I claim that diam(T x) ≤ diamγ(T x) ≤ δ. To see this, note that if v ∈ T x, then v 6∼ y0,
which implies that x ∈ γv,y0 , and consequently

M0 ≥ dγ(v, y0) = dγ(y0, x) + dγ(x, v) = (M0 − δ
2) + dγ(x, v).

This gives dγ(x, v) ≤ δ
2 , and so diamγ(Tx) ≤ δ. Since obviously diamγ(Tx) ≤ H1(Tx), we

see that Tx is a tree satisfying (a). Furthermore,H1(T x) ≥ δ
3 . Indeed, since x ∈ γy0,z0 , one

has z0 6∼ y0, and consequently γx,z0 ⊂ T x. This implies that

H1(T x) ≥ dγ(x, z0) ≥ dγ(y0, z0)− dγ(y0, x) ≥ (M0 − δ
2)− (M0 − δ

6) =
δ

3
. (3.7)

Finally, observing that (T \T x)∪{x} = [y0]∪{x} is also a tree, one just needs to iterate the
construction, chopping off another tree from T \ Tx. Since the part removed always has
measure ≥ δ

3 by (3.7), the number of iterations is bounded by . H1(T )/δ + 1, as claimed
in (b). The proof is complete. �

Now, for the main result of the section:

Theorem 3.8 (Lower semicontinuity of length of continuums). Let {Γk}k∈N be a sequence
of compact continua in Rn, convergent in the Hausdorff metric to a compact space Γ. Then Γ is a
continuum, and

H1(Γ) ≤ lim inf
k→∞

H1(Γk). (3.9)
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Proof. If Γ were not connected, there would be open disjoint sets U1, U2 with Γ ⊂ U1∪U2.
Then, it follows from compactness, and the definition of Hausdorff convergence, that
Γk ⊂ U1 ∪ U2 for sufficiently large k, a contradiction.

To prove (3.9), one may assume that H1(Γk) ≤ C < ∞ for all k ∈ N, and also that the
full sequence of numbers H1(Γk) converges to the value on the right hand side of (3.9),
say L ≤ C (because the following considerations are valid for any subsequence). For
each k ∈ N, choose a finite subset Sk ⊂ Γk so that

dH(Sk,Γ)→ 0

as k →∞. Since Γk is arcwise connected, there exist trees Tk such that Sk ⊂ Tk ⊂ Γk. To
see this, declare any singleton {s0} ⊂ Sk as an initial tree T 0

k . Then, assume that T jk has
been constructed for some j, consisting of finitely many arcs, and assume that at least one
sj+1 ∈ Sk yet lies outside T jk . Connect sj+1 to any point of T jk by an arc γ = γ([0, 1]) ⊂ Γk,
with γ(0) = sj+1. Then there exists a smallest number t ∈ (0, 1] such that γ(t) ∈ T jk , and
now T j+1

k := T jk ∪ γ([0, t]) is a tree containing sj+1.
It is clear that

dH(Tk,Γ)→ 0

as k →∞. Fix δ > 0, and decompose every tree Tk as aH1-essentially disjoint union

Tk =

mk⋃
j=1

Tk,j ,

where diam(Tk,j) ≤ min{δ,H1(Tk,j)} and mk . C/δ + 1. Without loss of generality, one
may assume that mk = m for all k (there are only finitely many choices for mk, so this is
anyway true after passing to a subsequence).

By the Blaschke selection theorem, every sequence {Tk,j}k∈N, 1 ≤ j ≤ m, has a subse-
quence convergent in the Hausdorff metric to a non-empty compact continuum Γj ⊂ Γ;
by re-indexing appropriately, and possibly finding subsequences inside subsequences,
one may assume that the full sequences converge. It is clear that diam(Γj) ≤ δ and
Γ ⊂

⋃
Γj . It follows from the definition of H1

δ , and the H1 essential disjointness of the
trees Tk,j , 1 ≤ j ≤ m, that

H1
δ(Γ) ≤

m∑
j=1

diam(Γj) = lim sup
k→∞

m∑
j=1

diam(Tk,j) ≤ lim sup
k→∞

k∑
j=1

H1(Tk,j) ≤ lim
k→∞

H1(Γk) = L.

Letting δ → 0 proves the theorem. �

Remark 3.10. Note how the connectedness of the trees Tk,j was used int the second-to-last
inequality. This estimate would not work, if the sets Γj were chopped up into smaller
pieces with some dumber procedure.

The following corollary will be useful in the sequel:

Corollary 3.11 (Existence of a shortest covering continuum). Assume that K ⊂ Rn is a
compact set, and there exists a continuum Γ0 ⊃ K of finite length. Then, there exists a continuum
Γ ⊃ K of finite and minimal length.

Proof. Choose a sequence of continuums (Γk)k∈N with Γk ⊃ E, and such that

H1(Γk)→ inf{H1(Γ) : Γ is a continuum with Γ ⊃ K} =: mK <∞.
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One may clearly assume that all the continuums are contained in a sufficiently large ball
containing K, so the Blaschke selection theorem is applicable: there exists a subsequence
(kj)j∈N and a compact set Γ with dH(Γkj ,Γ)→ 0. It is now easy to check that K ⊂ Γ. By
Theorem 3.8, moreover, the set Γ is a continuum, and satisfies

mK ≤ H1(Γ) ≤ lim inf
k→∞

H1(Γk) = mK .

This proves the corollary. �

4. THE L∞ TRAVELING SALESMAN THEOREM OF P. JONES

This section contains the proof of Peter Jones’ original traveling salesman theorem for
the numbers β∞, but only in the plane. Recall the statement:

Theorem 4.1 (Jones). LetD be family of closed dyadic cubes in Rn, and letE ⊂ Rn be a compact
set satisfying

β2
∞(E) :=

∑
Q∈DE
Q⊂3E

β2
E,∞(2Q)`(Q) <∞,

where DE = {Q ∈ D : Q ∩ E 6= ∅}. Then, for any δ > 0, there exists a compact connected set
Γ ⊂ Rn such that E ⊂ Γ, and

H1(Γ) ≤ (1 + δ) diam(E) + Cδβ
2
∞(E). (4.2)

Exercise 4.3. Is it possible to eliminate the δ > 0 altogether?

Definition 4.4 (Convex hulls and extreme points). The convex hull of a bounded set K ⊂
R2, denoted by conv(K), is the minimal (relative to inclusion) convex set R ⊂ R2 with
K ⊂ R. Such a set exists, and in fact

conv(K) =
⋂
K⊂R

R convex

R.

It is useful to note that conv(K) can also be expressed as the set of all (finite) convex
combinations of points in K. That is,

conv(K) =

{
m∑
k=1

λkxk : m ∈ N, λj ∈ [0, 1], xj ∈ K and
m∑
k=1

λj = 1

}
. (4.5)

To see this, simply note that the set on the left hand side is convex and contains K, and
is clearly contained in any set with these properties.

A convex combination as on the right hand side of (4.5) is called non-trivial, if λj < 1
for all 1 ≤ j ≤ m. The set of extreme points of K ⊂ R2, denoted by Ex(K), are those
points in K, which cannot be expressed as non-trivial convex combinations of elements
in K. In other words x ∈ Ex(K), if and only if x ∈ K, and the following holds: if x has a
representation

x =

m∑
k=1

λkxk, xj ∈ K,

with 0 ≤ λj ≤ 1 and
∑
λk = 1, then λj = 0 for all but one index j = j0, and xj0 = x.

It is slightly, but not very, non-trivial but true that the convex hull of a compact set is a
compact set:
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Lemma 4.6. If K ⊂ R2 is compact, then conv(K) is compact.

Proof. The details are contained in [16, Theorem 3.25]. The main idea is the following: if
K ⊂ R2 is bounded, then conv(K) can be expressed as

conv(K) = f(S ×K ×K ×K), (4.7)

where S ⊂ R3 is the (compact) simplex S = {(λ1, λ2, λ3) : λi ∈ [0, 1] and
∑
λi = 1}, and

f(λ1, λ2, λ3, x1, x2, x3) = λ1x1 + λ2x2 + λ3x3.

Since f is continuous and K is assumed compact, the right hand side of (4.7) is clearly
compact, and it suffices to prove (4.7). This takes a bit of linear algebra: if x is any convex
combination of m points in K, then it is actually the convex combination of three points
inK. In Rn this the same is generally true with "three" replaced by "(n+1)" (so the lemma
remains valid in Rn). For the remaining details, see [16]. �

Lemma 4.8. Ex(conv(K)) ⊂ K for all bounded sets K ⊂ R2.

Proof. If x ∈ Ex(conv(K)), then x ∈ conv(K) by definition of "Ex", and hence x can be
represented as a convex combination of points inK ⊂ conv(K). If x /∈ K, then the combi-
nation is necessarily non-trivial, and hence x /∈ Ex(conv(K)) contrary to assumption. �

Now, we start the proof of Theorem 4.1. The argument is copied nearly verbatim from
the book of Bishop and Peres, see [2, Theorem 10.5.1]. For a closed convex set R ⊂ R2,
define the following variant of the β∞-number:

β(R) := max
L

sup
x∈R

dist(x, L)

diam(R)
,

where the "maxL" is taken over all chords of R of length H1(L) = diam(R). A chord is a
line segment with both endpoints on ∂R. A simple compactness argument shows that
the first max is well-defined, and attained for some chord LR, and LR will be called the
diameter of R. Note that dist(z, LR) ≤ β(R) diam(R) for all x ∈ R, whence R can be
covered by a rectangle of dimensions diam(R)× 2β(R) parallel to LR.

4.1. Construction and connectedness. The curve Γ, covering E, will be obtained as the
intersection of a nested sequence of compact connected sets Γn, each containingE. Every
set Γn has the form

Γn =
⋃

R∈Rn

R ∪
n⋃
k=0

⋃
B∈Bk

B,

where the family Rn consists of interior-disjoint closed convex sets Rn, and the families
Bk consist of closed line segments, called bridges. Note that bridges are never deleted:
Γn+1 contains all the bridges contained in Γn.

The following properties will be maintained throughout the construction, and they
will guarantee that each set Γn is connected:

Property 1 (Connectivity). For n ∈ N, let

Fn := Rn ∪
n⋃
k=0

Bk
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be the family of sets such that Γn = ∪{F : F ∈ Fn}. First, the extreme points Ex(R) of
every set R ∈ Fn lie in E. Second, if K1,K2 ∈ Fn, then then K1 and K2 can be joined by
an extreme point tour: there exist sets

K1 = E1, E2, . . . , Em−1, Em = K2 ∈ Fn
such that Ex(Ej) ∩ Ex(Ej+1) 6= ∅ for 1 ≤ j ≤ m− 1. In particular, Γn is connected.

Now, the construction begins. Set

R0 := {conv(E)} and B0 = ∅.
Then Property 1 is satisfied by Lemma 4.8. Assume that Rn,Bn have already been de-
fined for some n ≥ 0. Then, Rn+1 will be defined by replacing every set R ∈ Rn by
two further interior-disjoint closed convex sets, called the children of R. The children of
R may be connected by a line segment, which is added to Bn+1. In particular, no sets are
ever deleted "later" from Bn.

Fix R ∈ Rn. The construction now divides to two cases.

Smid

x

( (xL 1

L 2

LR

R1

R2

R

FIGURE 2. The case, where no bridge is added to Bn+1.

Case (NB). Here "NB" stands for "no bridge". Let Smid be the closed middle third of the
diameter chord LR, see Figure 2. Let π be the orthogonal projection to LR. In the case
(NB), assume that

E ∩R ∩ π−1(Smid) 6= ∅,
and pick any point x ∈ E∩R∩π−1(Smid). Then, divide LR into two closed sub-segments
L1 and L2, with a common endpoint at π(x). Define R1 and R2 to be the convex hulls of
the sets

E ∩R ∩ π−1(L1) and E ∩R ∩ π−1(L2),

respectively. It is easy to see that that π−1(π(x)) contains a point in Ex(R1) ∩ Ex(R2), so
in particular

Ex(R1) ∩ Ex(R2) 6= ∅.
In fact, the set R1 ∩ R2 is a (possibly degenerate) line segment, whose endpoints lie in
Ex(R1) ∩ Ex(R2).

To check that Property 1 remains valid, first note that Ex(R1),Ex(R2) ⊂ E: indeed,
R1, R2 are the convex hulls of certain compact subsets of E, and one can just apply
Lemma 4.8. So, it remains to check that the "extreme points tour" property remains valid.
To this end, first note that

Ex(R) ⊂ Ex(R1) ∪ Ex(R2). (4.9)
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This is because if x ∈ Ex(R), then x ∈ E by Property 1, and so evidently x ∈ R1 ∪ R1.
Assume, for instance, that x ∈ R1. Now, if x could be expressed as a non-trivial convex
combination of elements inR1, then it could certainly be expressed as such a combination
of elements in R, which would violate x ∈ Ex(R). It follows that x ∈ Ex(R1), which
proves (4.9).

Finally, let K1,K2 ∈ Fn+1 be sets as in Property 1. The task is to find an extreme point
tour in Fn+1, connecting K1 to K2. For j ∈ {1, 2}, write

K̂j :=

{
Kj , if Kj /∈ {R1, R2},
R, if Kj ∈ R1, R2.

Then K̂1, K̂2 ∈ Fn, and there exists an extreme point tour

K̂1 = E1, E2, . . . , Em−1, Em = K̂2 ∈ Fn
If Ej 6= R for all 1 ≤ j ≤ m, then E1, . . . , Em is also an extreme point tour in Fn+1,
connecting K̂1 to K̂2. Otherwise, if Ej = R for some 1 ≤ j ≤ m, the tour does not
lie in Fn+1, and one needs to modify it. Assume first that 1 < j < m, and Ej = R.
By definition of the tour, Ex(Ej−1) ∩ Ex(Ej) 6= ∅ and Ex(Ej) ∩ Ex(Ej+1) 6= ∅. Since
Ex(Ej) = Ex(R) ⊂ Ex(R1) ∪ Ex(R2) by (4.9), one has either

Ex(Ej−1) ∩ Ex(R1) 6= ∅ or Ex(Ej−1) ∩ Ex(R2) 6= ∅.
For instance, assume that Ex(Ej−1) ∩ Ex(R1) 6= ∅. Similarly, either

Ex(Ej+1) ∩ Ex(R1) 6= ∅ or Ex(Ej+1) ∩ Ex(R2) 6= ∅.
Assume for instance that Ex(Ej+1) ∩ Ex(R2) 6= ∅. Because also Ex(R1) ∩ Ex(R2) 6= ∅,
the set Ej = R can be replaced by E1

j = R1 and E2
j = R2, and E1, . . . , E

1
j , E

2
j , . . . , Em

remains an an extreme point tour connecting K̂1 to K̂2. Once all occurrences of Ej = R,
1 < j < m, have been replaced in this manner, then we have a tour connecting K̂1 to K̂2

in Fn+1, apart possibly from the endpoints. If one of the endpoints does not lie in Fn+1,
say K̂1 /∈ Fn+1, this means precisely that K̂1 = R, and K1 ∈ {R1, R2}. Then, repeating
the argument from above, E1 = K̂1 = R can be replaced by either, or both of, the sets
R1, R2, while maintaining the extreme point tour property. This gives a tour connecting
K1 to K2 in Fn+1, as desired.

LR

R
1

R
2

R

BR

L1

L2

x1

x2

FIGURE 3. The case, where a new bridge BR is added to Bn+1.
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Case (B). Here "B" stands for "bridge". Recall the notation from the previous case, and
this time assume that

E ∩R ∩ π−1(Smid) = ∅.
Thus, if LR = Sleft ∪ Smid ∪ Sright, then

E ∩R ⊂ π−1(Sleft) ∪ π−1(Sright).

It follows that there are two minimal intervals L1 ⊂ Sleft and L2 ⊂ Sright such that

E ∩R ⊂ π−1(L1) ∪ π−1(L2),

see Figure 3. As in the previous case, define R1 := conv[E ∩ R ∩ π−1(L1)] and R2 :=
conv[E ∩ R ∩ π−1(L2)]. Property 1 remains valid by similar considerations as in the
previous case.

Now, the construction of the sets Γn is complete, and Γ is defined by

Γ :=
⋂
n≥0

Γn.

It is clear that Γ ⊃ E. Also, Γ is connected: if Γ ⊂ U1 ∪ U2 with U1, U2 disjoint open
sets, then Γn ⊂ U1 ∪ U2 for sufficiently large n (otherwise (Γn \ [U1 ∪ U2])n∈N would
be a sequence of nested non-empty compact sets with empty intersection). But this is
impossible, since Γn is connected for all n.

4.2. Length estimates. It remains to prove the length bound (4.2). To this end, the fol-
lowing inequality will be first verified:∑
R∈Rn

diam(R) +
n∑
k=0

∑
B∈Bk

H1(B) ≤ (1 + δ) diam(E) +Cδ

n−1∑
k=0

∑
R∈Rn

β2(R) diam(R). (4.10)

where δ > 0, and Cδ ≥ 1 only depends on δ. For line segments, such as B ∈ Bn or LR, I
will abbreviateH1(·) =: | · | in the sequel.

Lemma 4.11. Assume that R ∈ Rn is replaced by R1, R2 ∈ Rn+1 and BR ∈ Bn+1. Then

diam(R1) + diam(R2) +
|BR|
1 + δ

≤ diam(R) + Cδβ
2(R) diam(R).

Proof. Consider Case (NB) first, and recall the two line segments L1, L2 ⊂ LR with com-
mon endpoint π(x). Note that

min{|L1|, |L2|} ≥
|LR|

3
=

diam(R)

3
. (4.12)

Since Rj is contained in a rectangle with dimensions |Lj |×2β(R) diam(R) parallel to LR,
one has, using (4.12), that5

diam(Rj) ≤
√
|Lj |2 + 4β2(R) diam(R)2 ≤ |Lj |+ 6β2(R) diam(R). (4.13)

This should be contrasted with the "trivial estimate"

diam(Rj) ≤
√
|Lj |2 + 4β2(R) diam(R)2 ≤ |Lj |+ 2β(R) diam(R), (4.14)

5You may first wish to check, abstractly, that a ≥ c/3 implies
√
a2 + 4bc2 ≤ a+ 6bc for a, b, c ≥ 0.
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which holds without any assumptions on |Lj |. Since |L1|+ |L2| ≤ diam(R), the claim of
the lemma then follows from (4.13) with Cδ = 12.

Next, consider Case (B). Let JR ⊂ LR be the segment JR = LR \ (L1 ∪ L2), where L1

and L2 are defined as in Case (B). Then

|BR| ≤
√
|JR|2 + 4β2(R) diam(R)2 ≤ |JR|+ 2β(R) diam(R). (4.15)

Now, there are two subcases. First, if β(R) ≥ θ := δ/100, then

diam(R1) + diam(R2) +
|BR|
1 + δ

≤ 3 diam(R) ≤ diam(R) +

(
2

θ2

)
β2(R) diam(R).

If β(R) < θ, then, combining (4.15) with the "trivial estimate" (4.13) gives

diam(R1) + diam(R2) +
|BR|
1 + δ

≤ |L1|+ |L2|+ 4θ diam(R) +
|JR|+ 2θ diam(R)

1 + δ

=
1 + 2δ/3 + 4θ(1 + δ) + 2θ

1 + δ
diam(R), (4.16)

noting that |L1|+|L2|+|JR| = diam(R), and |L1|+|L2| ≤ (2/3) diam(R). Since θ = δ/100,
the factor of diam(R) on line (4.16) is ≤ 1, and the lemma follows. �

Now the time is ripe to prove (4.10). For R ∈ Rn, write ch(R) := {R1, R2} ⊂ Rn+1 for
the children of R, and write BR ∈ Bn+1 for the bridge associated to R; in Case (NB), let
BR := ∅. Then, for any n ≥ 1, using Lemma 4.11,∑

R∈Rn

diam(R) +
1

1 + δ

n∑
k=0

∑
B∈Bk

|B|

=
∑

R∈Rn−1

 ∑
R′∈ch(R)

diam(R′) +
|BR|
1 + δ

+
1

1 + δ

n−1∑
k=0

∑
B∈Bk

|B|

L.4.11
≤

 ∑
R∈Rn−1

diam(R) +
1

1 + δ

n−1∑
k=0

∑
B∈Bk

|B|

+ Cδ
∑

R∈Rn−1

β2(R) diam(R).

The term in brackets on the last line is of the same form as the term on the first line, so
the estimate can be iterated, and n repetitions give

∑
R∈Rn

diam(R) +
1

1 + δ

n∑
k=0

∑
B∈Bk

|B| ≤ diam(R0) + Cδ

n−1∑
k=0

∑
R∈Rk

β2(R) diam(R).

Multiplying both sides by (1 + δ) gives (4.10), recalling that diam(R0) = diam(E).
The next task will be to prove

∞∑
k=0

∑
R∈Rk

β2(R) diam(R) . β2
∞(E). (4.17)

Let’s start with an easy observation: for any R ∈ Rn,

max{L2(R1),L2(R2)} ≤ τL2(R) (4.18)
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for some absolute constant τ < 1. To see this, let ∆ ⊂ R be the triangle spanned by the
endpoints of LR, and some point x ∈ ∂R with dist(x, LR) = β(R) diam(R). Then

L2(R) ∼ L2(∆) =
β(R) diam(R)2

2
(4.19)

and
L2(∆ ∩ π−1(Sleft)) ∼ L2(∆) ∼ L2(∆ ∩ π−1(Sright))

with absolute constants. It follows that

L2(R1) ≤ L2(R)− L2(∆ ∩ π−1(Sright)) ≤ τL2(R),

and a similar estimate holds for L2(R2). This proves (4.18). Next, a similar estimate is
desired for the diameters of the convex sets:

Lemma 4.20. There is an absolute constant N ∈ N with the following property. If R ∈ Rn and
R′ ∈ Rn+N with R′ ⊂ R, then

diam(R′) ≤ 3 diam(R)

4
.

Proof. If the number β(R) is small enough, say β(R) ≤ θ, then

max{diam(R1), diam(R2)} ≤ 3 diam(R)/4.

(Just have a look at the estimates for diam(R1) within Lemma 4.11, if you are unsure.) So,
if

R = R(0) ⊃ R(1) ⊃ . . . ⊃ R(N) = R′

is a sequence with R(j) ∈ Rn+j , and if β(R(N−1)) ≤ θ, then

diam(R′) ≤ 3 diam(R(N−1))/4 ≤ 3 diam(R)/4,

and the proof is complete. Otherwise β(R(N−1)) ≥ θ, and by (4.18)-(4.19),

θ diam(R′)2 ≤ θ diam(R(N−1))2 . L2(R(N−1)) ≤ τN−1L2(R) . τN−1 diam(R)2.

This proves that, in every case, diam(R′) ≤ 3 diam(R)/2, if N is large enough. �

Now, the table is set for (4.17). For a dyadic square Q, let

R(Q) :=
⋃
n≥0

{R ∈ Rn : R ∩Q 6= ∅ and `(Q)/2 < diam(R) ≤ `(Q)}.

I claim that the collectionR(Q) has bounded "interior overlap", that is,∑
R∈R(Q)

χintR . 1. (4.21)

To see this, note that two sets R1 ∈ Rm and R2 ∈ Rn, m,n ≥ 0, can have shared interior,
only if either R1 is a descendant of R2, or vice versa. So, if x ∈ intRi for Ri ∈ R(Q), 1 ≤
i ≤ M , then the sets R1, . . . , RM are nested. However, by Lemma 4.20, the diameters of
the convex sets decay rapidly in long nested sequences; since `(Q)/2 < diam(Ri) ≤ `(Q)
for all 1 ≤ i ≤M , this sets an upper bound for M and proves (4.21).

Another observation about R(Q) is the following: if R ∈ R(Q), then R ⊂ 2Q, because
R ∩ Q 6= ∅ and diam(R) ≤ `(Q). In particular, E ∩ R ⊂ E ∩ 2Q is contained in W ∩ 2Q,
where W is a strip of width 2βE,∞(2Q)`(2Q). Since W ∩ 2Q is convex, it follows that

R = conv(E ∩R) ⊂W ∩ 2Q, R ∈ R(Q). (4.22)
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Next, use (4.19), (4.21) and (4.22) to make the following estimate:∑
R∈R(Q)

β(R) diam(R)2 ∼
∑

R∈R(Q)

L2(intR)

=

∫
W∩2Q

∑
R∈R(Q)

χintR dL2

. L2(W ∩ 2Q) . βE,∞(2Q)`(Q)2.

Since diam(R) ∼ `(Q) for all R ∈ R(Q), one concludes that

∑
R∈R(Q)

β2(R) ≤

 ∑
R∈R(Q)

β(R)

2

. β2
E,∞(2Q).

Finally, observe that every convex set R ∈ Rn, for any n ≥ 0 is contained in at least one
of the sets R(Q), Q ∈ DE , with `(Q) ≤ 2 diam(E) (because E ∩ R 6= ∅, and any point
x ∈ E ∩ R is contained in a dyadic square Q ∈ DE with `(Q)/2 < diam(R) ≤ `(Q)).
Consequently,
n∑
k=0

∑
R∈Rk

β2(R) diam(R) .
∑
Q∈DE

`(Q)≤2 diam(E)

`(Q)
∑

R∈R(Q)

β2(R) .
∑
Q∈DE
Q⊂3E

β2
E,∞(2Q)`(Q) = β2

∞(E),

which proves (4.17).
Combining (4.10) and (4.17), it has now been established that∑

R∈Rn

diam(R) +

n∑
k=0

∑
B∈Bk

H1(B) ≤ (1 + δ) diam(E) + β2
∞(E)

uniformly for n ≥ 0. Since

Γ ⊂ Γn =
⋃

R∈Rn

R ∪
n⋃
k=0

⋃
B∈Bk

B, n ≥ 0,

the desired bound for H1(Γ) now follows from the very definition of H1 (and the fact
that the diameters of the sets inRn tend to zero uniformly, as n→∞).

5. THE L1-TRAVELING SALESMAN THEOREM

This section contains two proofs of the L1-traveling salesman theorem for doubling
measures, Theorem 2.11, which is reproduced as Theorem 5.2 below. The result first
appeared in a paper [1] of M. Badger and R. Schul from 2016; there it was obtained
via a new "geometric traveling salesman theorem", which is the main topic in Section 7.
However, an observation of X. Tolsa from [17, Section 7] allows one to reduce Theorem
5.2 to Jones’ L∞ traveling salesman theorem, if one assume that the doubling measure µ
is smooth in the following sense:

Definition 5.1 (Smooth measures). A Radon measure µ on Rn is smooth, if it is doubling,
and there is a constant θ > 0 such that

µ(B(x, θr)) ≤ µ(B(x, r))

2
, x ∈ spt µ, 0 < r ≤ diam(sptµ).
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The reduction to Jones’ theorem gives a (fairly) short proof of Theorem 5.2 in the plane,
assuming smoothness. These considerations constitute the first half of the section. The
second half contains the proof of Theorem 5.2 in full generality, following the argument
of Badger and Schul.

I now recall the result:

Theorem 5.2 (Badger-Schul). Let µ be a doubling measure on Rn with compact support E =
sptµ, and assume that the numbers βµ,1 satisfy

β2
1(µ) :=

∑
Q∈DE
Q⊂λE

β2
µ,1(2Q)`(Q) <∞,

where λ ≥ 1 is a sufficiently large constant depending only on n, and, as always, DE = {Q ∈
D : Q ∩ E 6= ∅}. Then sptµ can be covered by a continuum Γ ⊂ Rn with

H1(Γ) .Dµ,n diam(E) + β2
1(µ).

If the βµ,1-numbers satisfy a Carleson condition, then Γ can be taken to be 1-Ahlfors-
David regular, at least in the plane:

Theorem 5.3 (Badger-Schul, Carleson version). Same assumptions as in Theorem 5.2, except
that n = 2, and the finiteness of β2

1(µ) is replaced by the Carleson condition∑
Q∈DE
Q⊂R

β2
µ,1(2Q)`(Q) . `(R), R ∈ DE .

Then E = sptµ can be covered by an AD regular continuum.

Remark 5.4. Note that, in both theorems above, using the βµ,1-numbers gives the strongest
possible result (as contrasted to the numbers βµ,p for any 1 ≤ p ≤ ∞).

5.1. Tolsa’s observation. Here is the main result of this subsection: it allows us to trans-
fer assumptions on the βµ,1-numbers to those on βE,∞-numbers.

Theorem 5.5 (Tolsa). Let µ smooth measure with E = sptµ ⊂ R2. Then∑
Q∈DE
Q⊂R

β2
E,∞(2Q)`(Q) .

∑
Q∈DE
Q⊂2R

β2
µ,1(3Q)`(Q)

for any square R ∈ D with `(R) ≤ 10 diam(E).

Key to the proof is the following geometric lemma:

Lemma 5.6. Let µ be a smooth measure with E := sptµ, and let Q ∈ DE with `(Q) ≤
10 diam(E). Let `Q be a line with βµ,1(3Q, `Q) = βµ,1(3Q). Then, for any x ∈ E ∩ 2Q,

dist(x, `Q) .
∑
P∈DE
x∈P⊂2Q

βµ,1(3P )`(P ),

where the implicit constants only depend on the doubling constant of µ.

The proof of the lemma needs two further lemmas. The first is an observation of G.
Lerman, while the second is folklore.
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Lemma 5.7. Let n ≥ 2 and 1 ≤ p < ∞. Let µ be a Radon measure, and let B ⊂ Rn be a set
with 0 < diam(B) <∞ and 0 < µ(B) <∞. Let cB be the centre of mass of µ in B, namely

cB :=
1

µ(B)

∫
B
x dµx.

Then
dist(cB, `) ≤ βµ,p(B, `) diam(B)

for every straight line ` ⊂ Rn.

Proof. Fix a straight line ` ⊂ Rn and note that the function x 7→ dist(x, `)p is convex for
p ∈ [1,∞). So, by a vector-valued version of Jensen’s inequality, see lemma below,

dist(cB, `)
p := dist

(
1

µ(B)

∫
B
x dµx, `

)p
≤ 1

µ(B)

∫
B

dist(x, `)p dµx = diam(B)pβµ,p(B, `)
p.

�

Lemma 5.8 (Jensen’s inequality). Let (X1, . . . , Xn) be a random vector on some probability
space (Ω,P), and let ϕ : Rn → R be a convex function. Then,

ϕ(E[(X1, . . . , Xn)]) ≤ E[ϕ(X1, . . . , Xn)].

Proof. We cheat by assuming that ϕ is differentiable everywhere, because this suffices for
the application in Lemma 5.7 (at least for p > 1, and the case p = 1 can be obtained by
taking limits). A consequence of convexity is the following inequality:

ϕ(x)− ϕ(y) ≥ ∇ϕ(y) · (x− y), x, y ∈ Rn. (5.9)

Indeed, writing v := (x− y)/|x− y|, we have

∇ϕ(y) · (x− y) = [∇ϕ(y) · v] · |x− y| =
[

lim
h→0+

ϕ(y + hv)− ϕ(y)

h

]
· |x− y|

=

[
lim
h→0+

ϕ((h/|x− y|)x+ (1− h/|x− y|)y)− ϕ(y)

h

]
· |x− y|

≤
[
lim sup
h→0+

(h/|x− y|)ϕ(x) + (1− h/|x− y|)ϕ(y)− ϕ(y)

h

]
· |x− y|

= ϕ(x)− ϕ(y),

using convexity in the inequality.
In particular, setting x = X̄ := (X1, . . . , Xn) and y = E[X̄] in (5.9), and taking expecta-

tions on both sides,

E[ϕ(X̄)]− ϕ(E[X̄]) ≥ E[∇ϕ(E[X̄]) · (X̄ − E[X̄])] = 0.

This proves the lemma. �

Lemma 5.10. Let µ be a smooth measure, and let P,R be (non-dyadic) cubes with `(P ) ∼
`(R) . diam(sptµ), and let `P , `R be lines, which minimise βµ,1(P ) and βµ,1(R), respectively.
Assume that

τP ∩ τR
contains a point of sptµ for some τ < 1. Then, `P and `R are very close in the following sense:

dist(z, `R) .τ min{βµ,1(P )`(P ), βµ,1(R)`(R)}, z ∈ `P ∩ P.
By symmetry, the same holds for dist(z, `P ), for z ∈ `R ∩R.
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Proof. Start by finding two points x0, y0 ∈ P ∩ R with |x0 − y0| ∼τ `(P ) ∼ `(R) with the
property that

max{dist(x0, `P ), dist(y0, `P )} . βµ,1(P )`(P )

and
max{dist(x0, `R),dist(y0, `R)} . βµ,1(R)`(R).

Then, show that both `P and `R are close to the line spanned by the segment [x0, y0],
hence close to each other. The details are an exercise. �

The lemma above is the only place, where the smoothness of the measure µ is required.
Now, for the proof of Lemma 5.6:

Q=Q
0

Q
1

Q
2

3Q
1

3Q 3Q
2

2Q x

0

1

FIGURE 4. Possible cubes in the proof of Lemma 5.6

Proof of Lemma 5.6. Let Q = Q0, Q1, Q2, . . . be a sequence of dyadic cubes such that x ∈
Qm ⊂ 2Q and `(Qm) = 2−m`(Q) for all m ≥ 1 (Note that the requirement x ∈ Qm may
not be possible for m = 0, in case x ∈ 2Q \Q = 2Q0 \Q0.) One can now easily check, see
Figure 4, that the cubes Pm := 3Qm, m ≥ 0, are nested, and

E ∩ 9

10
Pm ∩

9

10
Pm+1 6= ∅, m ≥ 0. (5.11)

For each m ≥ 0, let `m be a line, which minimises βµ,1(Pm, `) (so that `0 = `Q). Fix
a constant θ > 0 (whose value will only depend on the doubling of µ). Let N ≥ 0 be
the smallest number such that βµ,1(PN ) ≥ θ. If no such number exists, just let N be any
(large) number. Let aN = cPN ∈ PN be the µ-centre of mass in PN (which evidently
has positive measure by (5.11)). For 0 ≤ m ≤ N − 1, define am recursively to be the
orthogonal projection of am+1 to the line `m, so that |am+1 − am| = dist(am+1, `m). Then

dist(x, `Q) ≤ |x− aN |+ dist(aN , `Q) (5.12)
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If N = 0, then βµ,1(P0) ≥ θ, and the claim of the lemma is clear. So, in the sequel, assume
that N ≥ 1. Then, the term on the right hand side can be further estimated as follows:

dist(aN , `Q) ≤ |aN − aN−1|+ dist(aN−1, `Q) (5.13)

= dist(aN , `N−1) + dist(aN−1, `Q) ≤ . . . ≤
N∑
m=1

dist(am, `m−1),

recalling that `0 = `Q. The next task is to prove

dist(am, `m−1) . βµ,1(Pm−1)`(Pm−1), 1 ≤ m ≤ N. (5.14)

For m = N , this is simple. Since aN = cPN , Lemma 5.7 with p = 1 and ` = `N−1 says that

|aN−1 − aN | = dist(aN , `N−1)

L.5.7

. βµ,1(PN , `N−1)`(PN ) (5.15)

. βµ,1(PN−1, `N−1)`(PN−1)

= βµ,1(PN−1)`(PN−1) ≤ θ`(PN−1).

using also the doubling of µ (and (5.11)) in the second inequality, the definition of `N−1

in the third, and the minimality assumption on N in the last. If θ > 0 was chosen small
enough, this implies that aN−1 is very close to aN , and in particular

aN−1 ∈ `N−1 ∩ PN−1.

Next, en route to (5.14), the plan is to verify by backward induction that

am ∈ `m ∩ Pm, 0 ≤ m ≤ N − 1, (5.16)

which was just seen to be true for m = N − 1. Suppose the claim is true for some
1 ≤ m ≤ N − 1. Then, by definition, am−1 is the projection of am ∈ `m ∩ Pm to the line
`m−1, which minimises βµ,1(Pm−1). Applying Lemma 5.10 with

P = Pm, R = Pm−1, and z = am ∈ `m ∩ Pm
(the lemma can be used because of (5.11)) gives

|am − am−1| = dist(am, `m−1) . βµ,1(Pm−1)`(Pm−1) ≤ θ`(Pm−1). (5.17)

Again, if θ > 0 is small enough, this implies that am−1 lies very close to am, and in
particular inside Pm−1.

Now that (5.16) has been verified for all 0 ≤ m ≤ N −1, the middle inequality in (5.17)
is at our disposal for all 0 ≤ m ≤ N − 1 (this may feel a bit complicated, but we really
need the information am ∈ Pm to invoke Lemma 5.10, so we had to check that first).
Combining this with (5.15) gives (5.14).

Combining (5.14) further with (5.13)-(5.15) yields

dist(x, `Q) ≤ |x− aN |+ C

N∑
m=1

βµ,1(Pm−1)`(Pm−1),

This is almost what we wanted. If β(PN ) ≥ θ, the term |x− aN | can be finally estimated
by

|x− aN | . `(PN ) .
β(PN )

θ
`(PN ),
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Otherwise, if β(Pm) < θ for all m ∈ N, one can just let N → ∞, and the term |x − aN |
vanishes. �

Armed with the lemma, the proof of Theorem 5.5 is quite short:

Proof of Theorem 5.5. FixQ ∈ DE withQ ⊂ R, so that in particular diam(Q) ≤ 10 diam(E).
Find a line `Q, which minimises β2

µ,1(3Q, `), and then a point x ∈ E ∩ 2Q, which max-
imises dist(x, `Q). Then

βE,∞(2Q)`(Q) ≤ dist(x, `Q) .
∑
P∈D

x∈P⊂2Q

βµ,1(3P )`(P )

by Lemma 5.6. Taking squares and using Cauchy-Schwarz leads to

β2
E,∞(2Q)`(Q)2 ≤

( ∑
P∈DE
x∈P⊂2Q

β2
µ,1(3P )`(P )3/2

)( ∑
P∈DE
x∈P⊂2Q

`(P )1/2
)

.
∑
P∈DE
x∈P⊂2Q

β2
µ,1(3P )`(P )3/2`(Q)1/2.

Then, dividing by `(Q) and simply dropping the condition x ∈ P gives

β2
E,∞(2Q)`(Q) .

∑
P∈DE
x∈P⊂2Q

β2
µ,1(3P )

`(P )3/2

`(Q)1/2
≤
∑
P∈DE
P⊂2Q

β2
µ,1(3P )

`(P )3/2

`(Q)1/2
.

Next, sum over Q ∈ DE with Q ⊂ R:∑
Q∈DE
Q⊂R

β2
E,∞(2Q)`(Q) .

∑
Q∈DE
Q⊂R

∑
P∈DE
P⊂2Q

β2
µ,1(3P )

`(P )3/2

`(Q)1/2

≤
∑
P∈DE
P⊂3R

β2
µ,1(3P )`(P )3/2

∑
Q∈D

2Q⊃P

1

`(Q)1/2

.
∑
P∈DE
P⊂3R

β2
µ,1(3P )`(P ).

This proves Theorem 5.5. �

5.2. Proof of the L1 traveling salesman theorem for smooth doubling measures. The
proofs of Theorems 5.2 and 5.3, for smooth measures, are now straightforward applica-
tions of Jones’ L∞ traveling salesman theorem, and the preceding machinery.

Proof of Theorem 5.2. Write E := spt µ, and let R ∈ D be the smallest dyadic cube such
that 2R contains 3E. Then 2R is the union of 9 dyadic squares R1, . . . , R9, and for every
j, it holds that 2Rj ⊂ 10E. Then∑

Q∈DE
Q⊂3E

β2
E,∞(2Q)`(Q) =

9∑
j=1

∑
Q∈DE
Q⊂Rj

β2
E,∞(2Q)`(Q) .

∑
P∈DE
P⊂10E

β2
µ,1(3P )`(P )
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The "3" is easy to replace by "2". By the doubling hypothesis on µ, if Q ∈ DE is the
smallest cube such that 3P ⊂ 2Q, then β2

µ,1(3P ) . β2
µ,1(2Q), and of course 2Q is still

contained in, say, 20E. So, the right hand side is finite by assumption, and now the
existence of Γ follows from Jones’ L∞ traveling salesman Theorem 4.1. �

To prove Theorem 5.3, we recall an earlier exercise:

Exercise 5.18. Let E ⊂ R2 a uniformly 1-rectifiable compact set: for every ball B, the
intersection B ∩ E can be covered by a continuum ΓB of length H1(ΓB) ≤ C diam(B).
Prove that there exists an AD regular continuum Γ ⊃ E with diam(Γ) ∼ diam(E), where
the implicit constant only depends on C.

Proof of Theorem 5.3. By the exercise, it suffices to prove that E = sptµ is uniformly recti-
fiable: for every discB ⊂ R2 there exists a continuum Γ ⊃ B∩E withH1(ΓB) . diam(B).
Here the implicit constants will only depend on the constant "C" in the assumed Carleson
condition ∑

Q∈DE
Q⊂R

β2
µ,1(2Q)`(Q) ≤ C`(R), R ∈ DE . (5.19)

The plan is to apply Jones’ traveling salesman theorem to the setEB := B∩E. Cover 3EB
by ∼ 1 dyadic squares Rj ∈ DE with `(Rj) ≤ diam(B). It follows easily from Theorem
5.5, (5.19), and the inequality βEB ,∞(2Q) ≤ βE,∞(2Q), that∑

Q∈DEB
Q⊂3EB

β2
EB ,∞(2Q)`(Q) .

∑
j

∑
Q∈DE
Q⊂10Rj

β2
µ,1(2Q)`(Q) . diam(B).

Hence, by Jones’ traveling salesman theorem, EB can be covered by a continuum ΓB
withH1(ΓB) . diam(B). �

5.3. Proof of theL1 traveling salesman theorem for general doubling measures. In this
section, I discuss the proof of Theorem 5.2, as given in the original paper [1], and without
the "smoothness" assumption. The main difference to the previous proof is that there is
no need for a reduction to Jones’ L∞ traveling salesman theorem: Badger and Schul use
the βµ,1-numbers directly. The argument below (taking into account Section 7) may seem
more complicated than the one above, but note that it works in all dimensions (and gives
a better result). A caveat of the Badger-Schul approach seems to be that the 1-Ahlfors-
David regularity of the curve is not so easy to prove (assuming the Carleson condition
for the βµ,1-numbers).

The main component in the proof of Badger and Schul is the following "geometric
traveling salesman theorem":

Theorem 5.20. Let n ≥ 2, A > 1, x0 ∈ Rn and r0 > 0. Let (Vk)k∈N be a sequence of non-empty
finite subsets of B(x0, Ar0) such that the following conditions are satisfied:

(Vsep) The distance between distinct points in Vk is at least 2−kr0.
(V ↓) For all v ∈ Vk, there exists v↓ ∈ Vk+1 with |v − v↓| < A2−(k+1)r0.
(V ↑) For all v ∈ Vk+1, there exists v↑ ∈ Vk with |v − v↑| < A2−kr0.
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Further, assume that for all k ≥ 1 and for all v ∈ Vk there is a line `v = `k,v ⊂ Rn and a number
αv = αk,v ≥ 0 such that

sup
x∈(Vk−1∪Vk)∩B(v,65A2−kr0)

dist(x, `v) ≤ αv2−kr0. (5.21)

Then the sets Vk converge in the Hausdorff metric to a compact set V ⊂ B(x0, Ar0), and there
exists a compact, connected set Γ ⊂ B(x0, Ar0) such that Γ ⊃ V , and

H1(Γ) .A,n r0 +
∑
k∈N

∑
v∈Vk

α2
v2
−kr0. (5.22)

The proof of Theorem 5.20 is given in Section 7.

Proof of Theorem 5.2, assuming Theorem 5.20. Without loss of generality, we may assume
that sptµ is contained in a single dyadic cube Q0 ∈ D with `(Q0) . diam(sptµ). In any
case, at most 2n cubes with this property are needed, and we can construct 2n separate
curves inside each of those; in the end, to get a single curve, the resulting 2n curves are
simply joined with line segments of length . diam(sptµ).

Let T := Dsptµ be the collection of dyadic cubes intersecting the support of µ, namely

T := {Q ⊂ Q0 : Q ∩ sptµ 6= ∅}.
Then certainly µ(2Q) > 0 for all Q ∈ T , and we may define c2Q as the centre of mass of µ
in 2Q:

c2Q :=
1

µ(2Q)

∫
2Q
x dµx ∈ 2Q

Write r0 := 2−k0 := `(Q0). For k ≥ 0, let Vk be a maximal 2−(k+k0)-separated set in

{c2Q : Q ∈ T ∩ Dk+k0}.
It is then clear that Vk satisfies the separation condition (Vsep) of Theorem 5.20. The
properties (V ↑) and (V↓) are also fairly clear. To check (V↓), for instance, fix v = c2Q ∈ Vk.
Then Q clearly has a child Q′ ∈ T ∩ Dk+1, so either v′ = c2Q′ ∈ Vk+1 ∩ 2Q′, or then there
is some other point v′′ ∈ Vk+1 at distance ≤ 2−(k+k0)+1 from v′. In both cases, v is at
distance . 2−(k+k0) some point in Vk+1, which can then be designated as v↓. The proof
of condition (V ↑) is similar, and left for the reader.

Now we would like to define the lines `v and the numbers αv for v ∈ Vk, k ≥ 1. So,
fix v = c2Q ∈ Vk, k ≥ 1. By the estimate (5.21), the line `v ought to be chosen so that
dist(x, `v) is nicely under control for all x ∈ Vk−1 ∩ Vk nearby v. To do this, we consider
a certain cube Q̂ ⊃ Q, which is so large that 2Q̂ contains not only 2Q, but also 2Q′ for all
Q′ ∈ T ∩ [Dk ∪ Dk−1] with

c2Q′ ∈ [Vk−1 ∪ Vk] ∩B(v, 65A2−(k+k0)).

Here A ≥ 1 is any (dimensional) constant so that (V ↓) and (V ↑) hold. While Q̂ needs to
be significantly larger than Q, it is clear that it can be chosen so that

`(Q̂) ≤ A′`(Q) = A′2−(k+k0) (5.23)

for some (dimensional) constant A′ ≥ 1. Now we can define `v. Let `v be any line ` such
that

βµ,p(2Q̂, `) ≤ 2βµ,p(2Q̂) =: αv. (5.24)
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Now, to estimate dist(x, `v) for x ∈ [Vk−1 ∪ Vk] ∩ B(v, 65A2−(k+k0)), we use the "centre
of mass lemma", Lemma 5.7, which also played a role in the proof of Lemma 5.6. Fix
x = c2Q′ ∈ [Vk−1 ∪ Vk] ∩B(v, 65A2−(k+k0)), so that 2Q′ ⊂ 2Q̂, and first observe that

dist(x, `v)
p

L. 5.7
≤ βµ,p(2Q

′, `v) diam(2Q′)

=
1

µ(2Q′)

∫
2Q′

dist(x, `v)
p dµx

≤ 1

µ(2Q′)

∫
2Q̂

dist(x, `v)
p dµx.

Next, since Q′ ∈ T contains a point of sptµ, we have

µ(2Q′) &Dµ,n µ(2Q̂),

where the implicit constants depend on the doubling of µ, and A′ from (5.23). It follows
that

dist(x, `v)
p .Dµ,n

1

µ(2Q̂)

∫
2Q̂

dist(x, `v)
p dµx = βµ,p(2Q̂, `v)

p diam(2Q̂)p.

Recalling (5.24),

dist(x, `v) . αv · diam(2Q̂)
(5.23)
.Dµ,n αv · 2−(k+k0).

Now, it remains to apply Theorem 5.20. Since sptµ was assumed compact, it is evident
that the sets Vk converge to sptµ in the Hausdorff metric. So, according to Theorem 5.20,
the support of µ can be covered by a single curve Γ of length

H1(Γ) . r0 +
∑
k∈N

∑
v∈Vk

α2
v2
−(k+k0) .Dµ,n diam(sptµ) +

∑
k∈N

∑
v∈Vk

β2
µ,p(2Q̂v)2

−(k+k0).

Here Q̂v is, of course, the cube Q̂ associated with Q, if v = c2Q. To complete the proof,
it suffices to note that (1) all the cubes Q̂v arising this way are contained in λ[sptµ] from
some dimensional constant λ ≥ 1, and (2) every cube Q̂v is only repeated a bounded
number of times in the sum above (where "bounded" depends only on n). Hence,

H1(Γ) .Dµ,n diam(sptµ) +
∑

Q⊂λ[sptµ]

β2
µ,p(2Q)`(Q),

and the proof of Theorem 2.11 is complete, except for the geometric part in Theorem 5.20
(where the main work lies, of course). �

6. RECTIFIABILITY OF SETS AND MEASURES, AND THE CAUCHY TRANSFORM

In this section, we discuss various connections between rectifiability, measures, and
the Cauchy transform.

6.1. The theorem of Mattila-Melnikov-Verdera. The first goal is to prove the theorem
of Mattila, Melnikov and Verdera [13] from 1996:

Theorem 6.1. Let E ⊂ C be a 1-AD regular set such that the Cauchy transform associated to
H1|E is bounded on L2(H1|E). Then, the set E is uniformly 1-rectifiable.
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Other items on the menu are a theorem of G. David in Section 6.2, and the "Denjoy
conjecture" (now a theorem) in Section 6.3.

To begin with, we briefly recall, what the "L2-boundedness of the Cauchy transform"
means. Let µ be a Radon measure on C For δ > 0, let Cµ,δ be the operator formally defined
by

Cµ,δf(z) :=

∫
|z−w|≥δ

f(w) dµw

z − w
.

In this section, we only need to define Cµ,δf for bounded compactly supported functions
f : C → C, and then the integral above converges for every z ∈ C. Now, the hypothesis
that the Cauchy transform associated to µ is bounded on L2(µ) means, by definition, that

‖Cµ,δf‖L2(µ) ≤ C‖f‖L2(µ)

for all bounded compactly supported functions f : C → C, where C is a constant inde-
pendent of δ > 0; if µ is non-atomic, this actually implies that µ must have linear growth
µ(B(x, r)) . r, see Proposition 6.9 below, and then the definition of Cµ,δf(z) makes sense
for all f ∈ L2(µ), z ∈ C, by one application of the Cauchy-Schwarz inequality. This
information will not be required in the current section, however.

A main idea behind the proof of Theorem 6.1 is the following striking equation, due
to M. Melnikov: if µ is compactly supported and satisfies µ(B(x, r)) . r, then

‖Cµ,δ(1)‖2L2(µ) = 1
6c

2
δ(µ) +O(µ(C)), (6.2)

where |O(µ(C))| ≤ Cµ(C), and C only depends on the constants in the linear growth
hypothesis µ(B(x, r)) . r. The function 1 should be interpreted as χsptµ, which is now
bounded and compactly supported by hypothesis. I will not prove this inequality in the
lecture notes, because it was discussed in the first half of the course by Henri; see Propo-
sition 3.3 in Tolsa’s book [17]. The quantity c2

δ(µ) is the (δ-truncated) Menger curvature

c2
δ(µ) :=

∫
|x−y|>δ

∫
|y−z|>δ

∫
|x−z|>δ

c(x, y, z)2 dµx dµy dµz,

where

c(x, y, z)2 :=
dist(z, Lx,y)

2

|z − x|2|z − y|2
, z /∈ {x, y},

and Lx,y is the line spanned by x and y for x 6= y. The numbers c2
δ(µ) above are positive

and increase as δ ↘ 0, so the limit c2(µ) ∈ [1,∞] exists (and has the obvious integral
representation). Now, applying equation (6.2) to the restricted measures µ|B , where B is
any bounded Borel set, yields

‖Cµ,δ(χB)‖2L2(µ|B) = ‖Cµ|B ,δ(1)‖2L2(µ|B) = 1
6c

2
δ(µ|B) +O(µ(B)).

In particular, under the L2-boundedness hypothesis of Theorem 6.1, we get

c2
δ(µ|B) . ‖Cµ,δ(χB)‖2L2(µ) + µ(B) . ‖χB‖2L2(µ) + µ(B) ∼ µ(B).

Since this holds for all δ > 0 uniformly, the conclusion is that∫∫∫
B×B×B

c(x, y, z)2 dµx dµy dµz . µ(B), B ⊂ C. (6.3)

This is all the information we will need to prove the uniform rectifiability of µ (Theorem
6.1), so the precise form of the Cauchy transform actually plays a very small role in these
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lecture notes. Since 1-AD regular measures are evidently smooth and doubling, the plan
is simply to deduce the Carleson condition∑

Q∈Dsptµ

Q⊂R

β2
µ,2(2Q)`(Q) . `(R), R ∈ D, (6.4)

from (6.3), and then use Corollary 2.12 to infer that µ is uniformly rectifiable. In fact,
the proof below will show that, for every smooth and doubling measure µ, the condition
(6.3) implies ∑

Q∈Dsptµ

Q⊂R

β2
µ,2(2Q)Θ(2Q)3`(Q) . µ(10R), R ∈ D, (6.5)

where Θ(2Q) is the density ratio Θ(Q) = µ(2Q)/`(2Q). For 1-AD regular measures
Θ(2Q) ∼ 1 for all Q ∈ Dsptµ and µ(10R) . `(R), so (6.5) immediately gives (6.4). I
do not know, if (6.5) alone would imply uniform rectifiability for doubling measures.

To prove (6.5), write sptµ =: E. For Q ∈ DE , and any distinct points x, y ∈ E ∩ 10Q,
note that

β2
µ,2(2Q)`(2Q) ≤ `(2Q)

µ(2Q)

∫
2Q

dist(z, Lx,y)
2

diam(2Q)2
dµz

.
`(2Q)3

µ(2Q)

∫
2Q

dist(z, Lx,y)
2

|z − x|2|z − y|2
dµz =

`(2Q)3

µ(2Q)

∫
2Q
c(x, y, z)2 dµz. (6.6)

Since µ is smooth, there is a constant c > 0 such that the annulus

Ax,Q := B(x, `(Q)) \B(x, c`(Q)) ⊂ 10Q (6.7)

has measure µ(Ax,Q) ∼ µ(2Q) for all x ∈ E ∩2Q. Consequently, averaging the inequality
(6.6) over all x ∈ E ∩ 2Q and y ∈ E ∩Ax,Q ⊂ E ∩ 10Q gives

β2
µ,2(2Q)`(2Q) . Θ(2Q)−3

∫
x∈2Q

∫
y∈Ax,Q

∫
z∈2Q

c(x, y, z)2 dµx dµy dµz.

It remains to sum this inequality over all the cubes Q ∈ DE with Q ⊂ R:∑
Q∈DE
Q⊂R

β2
µ,2(2Q)Θ(2Q)3`(2Q) .

∑
Q∈DE
Q⊂R

∫
x∈2Q

∫
y∈Ax,Q

∫
z∈2Q

c(x, y, z)2 dµx dµy dµz

≤
∫∫

2R×2R

[ ∑
Q⊂R

x∈E∩2Q

∫
y∈Ax,Q

c(x, y, z)2 dµy
]
dµxxµz.

Now, it suffices to note that for x ∈ 2R fixed, the annuli Ax,Q have bounded overlap as
Q ⊂ R varies in the collection of squares with 2Q 3 x:∑

Q⊂R
x∈E∩2Q

χAx,Q . χ10R. (6.8)

To see this, fix y ∈ C. Assume that y ∈ Ax,Q for some Q ⊂ R with x ∈ E ∩ 2Q. This forces
y ∈ 10Q ⊂ 10R by (6.7). Moreover, the requirement y ∈ Ax,Q forces `(Q) ∼ |x − y|, so
there are only . 1 side-lengths 2−k = `(Q) such that this can happen. And for any fixed
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side-length 2−k, there are only . 1 squares Q with `(Q) = 2−k and x ∈ 2Q. Combining
these facts, there are . 1 squares Q such that χAx,Q(y) = 1, and this gives (6.8).

All in all, we have now proven that∑
Q∈DE
Q⊂R

β2
µ,2(2Q)Θ(2Q)3`(Q) .

∫∫∫
10R×10R×10R

c(x, y, z)2 dµx dµy dµz
(6.3)
. µ(10R).

This is (6.5), so the proof of Theorem 6.1 is complete.

6.2. David’s theorem. This short section contains the following result of G. David [5]:

Proposition 6.9. Assume that µ is a non-atomic Radon measure, and Cµ is bounded on L2(µ).
Then µ(B(x, r)) ≤ C2r for all ballsB(x, r) ⊂ R2, where C2 only depend on the L2-boundedness
constant for Cµ.

Remark 6.10. Note that the non-atomicity is essential. For instance, if µ = δ0, then Cµ,δ is
trivially bounded on L2(µ) for all δ > 0, because in fact Cµ,δ equals the zero-operator on
L2(µ) for any δ > 0. Indeed,

Cµ,δf(0) =

∫
|w|>δ

f(w) dµ(w)

w
= 0

regardless of f ∈ L2(µ).

Proof of Proposition 6.9. Assume that ‖Cµ,δ‖L2(µ)→L2(µ) ≤ C1, δ > 0, but µ fails to satisfy
the uniform bound µ(B(x, r)) ≤ 10C2r, for some large C2. This is used to show that µ
has an atom, if C2 is large enough, depending only on C1.

Let Q0 ⊂ R2 be some initial square, not necessarily dyadic, with

Θ0 := Θ(Q0) :=
µ(Q0)

`(Q0)
≥ C2.

Now, the first step of the plan is to find a significantly smaller sub-square Q1 ⊂ Q0 with
nearly the same mass as Q0. More precisely, the claim is that for all N ∈ N, there exists
Q1 ⊂ Q0 with `(Q1) ≤ `(Q0)/2N , satisfying

µ(Q1) ≥
(

1− A

Θ2
0

)
µ(Q0), (6.11)

where A = A(C1, N) ≥ 1 is a suitable constant (the choice N = 2 will work for us in the
end). To simplify notation slightly, assume that Q0 = [0, 1]2, so `(Q0) = 1. One may also
assume that N is very large to begin with, because the claim is weaker for small N .

If (6.11) fails for all squares Q1 ⊂ Q0 with `(Q1) ≤ `(Q0)/2N , then in particular

µ(28NQ1 ∩Q0) <

(
1− A

Θ2
0

)
µ(Q0) (6.12)

for all squares Q1 ⊂ Q0 with `(Q1) = 1/210N (since `(28NQ1) ≤ 1/2N for such squares
Q1, noting that in general `(MQ) = (2M − 1)`(Q) for M > 1). Now, pick Q1 ∈ D10N =
{Q ∈ D : Q ⊂ Q0 and `(Q) = 2−10N} (using the pigeonhole principle) so that

µ(Q1) ≥ µ(Q0)

220N
. (6.13)
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Since (6.12) holds for Q1,

µ(Q0 \ 28NQ1) ≥
(
A

Θ2
0

)
µ(Q0),

which implies the existence of another square Q2 ∈ D10N with

Q2 ⊂ Q0 \ 28NQ1 and µ(Q2) ≥
(
A

Θ2
0

)
µ(Q0)

220N
. (6.14)

In particular,

dist(Q1, Q2) & `(28NQ1) ∼ 1

2N
. (6.15)

At this point, consider Cµ,δ(χQ2)(z) for 0 < δ < dist(Q1, Q2) and z ∈ Q1:

Cµ,δ(χQ2)(z) =

∫
|w−z|≥δ

χQ2(w)

z − w
dµw =

∫
Q2

dµw

z − w
.

For z ∈ Q1 and w ∈ Q2, the vectors z−w have essentially constant direction, because the
squares Q1, Q2 ∈ D10N are tiny compared to their separation by (6.15), if N is large. In
particular, N can be chosen so large (see computations below) that

|Cµ,δ(χQ2)(z)| ∼
∫
Q2

dµw

|z − w|
& µ(Q2), z ∈ Q1. (6.16)

To prove (6.16) rigorously, let z0 ∈ Q1 and w0 ∈ Q2 be any points. Then,∣∣∣∣∫
Q2

dµw

z − w

∣∣∣∣ ≥ ∣∣∣∣∫
Q2

dµw

z0 − w0

∣∣∣∣− ∫
Q2

∣∣∣∣ 1

z − w
− 1

z0 − w0

∣∣∣∣ dµw,
Since z0, w0 ∈ Q2 ⊂ Q0 = [0, 1]2, the first term on the right hand side is & µ(Q2), as
desired in (6.16). For the second term, note that∣∣∣∣ 1

z − w
− 1

z0 − w0

∣∣∣∣ ≤ |z − z0|
|z − w||z0 − w0|

+
|w − w0|

|z − w||z0 − w0|
. 22N · 2−10N =

1

28N

for z ∈ Q1 and w ∈ Q2, using (6.15). This gives (6.16) for large enough N .
It now follows from (6.16) that, and the L2-boundedness hypothesis on Cµ, that

C1µ(Q2)1/2 ≥ ‖Cµ,δ(χQ2)‖L2(µ) & µ(Q2)µ(Q1)1/2.

Combined with the measure estimates (6.13) and (6.14) (and recalling `(Q0) = 1, which
implies Θ0 = µ(Q0)), this gives

A1/2

220N
=

(
A

Θ2
0

)1/2 µ(Q0)

220N
≤ µ(Q1)1/2µ(Q2)1/2 . C1,

which is impossible for any choice of A � C2
1240N . The conclusion is that for some

A ∼ C2
1240N , there necessarily exists a square Q1 ⊂ Q0 with `(Q1) ≤ `(Q0)/2N , and

satisfying (6.11).
To complete the proof of Proposition 6.9, the observation is iterated to find a sequence

of (closed) squares Q0 ⊃ Q1 ⊃ . . ., where the µ-measure decays so slowly that the in-
tersection ∩Qj must be an atom for µ. More precisely, start with any (closed) square Q0

with density Θ0 ≥ C2, as before, and assume that Qj has been constructed for some j,
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with density Θj = µ(Qj)/`(Qj) ≥ C2. Apply the construction above with N = 2, say, to
find Qj+1 ⊂ Qj with `(Qj+1) ≤ `(Qj)/22 and

Θj+1 :=
µ(Qj+1)

`(Qj+1)
≥

(
1− A

Θ2
j

)
µ(Qj)

`(Qj+1)
≥ 22

(
1− A

Θ2
j

)
Θj .

Now, the key point is that if C2 is sufficiently large (depending only on A, which only
depends on C1), then the inequality above shows that Θj+1 ≥ 2Θj ≥ C2. So, the con-
struction can proceed, and one obtains Θj+1 ≥ 2Θj for all j ∈ N. Finally,

µ(Qj) ≥

(
1− A

Θ2
j−1

)
µ(Qj−1) ≥ . . . ≥

(
1− A

Θ2
j−1

)
· · ·
(

1− A

Θ2
0

)
µ(Q0) & µ(Q0)

for uniformly for all j ≥ 1, because the infinite product
∞∏
j=0

(
1− A

Θ2
j

)
converges to a positive number (because

∑
(A/Θ2

j ) .C1

∑
100−j <∞.) This proves that

µ

⋂
j≥0

Qj

 > 0,

as desired. �

6.3. The Denjoy conjecture (aka Calderón’s theorem). In this section, which very closely
follows (parts of) Section 4 in [17], we use the notation

Cδµ(z) := Cµ,δ1(z).

where µ is a finite measure. This allows us to view Cδ as an operator acting on the space
of complex measures M(C).

The historical motivation for studying the connection between geometry, and the bound-
edness of the Cauchy transform, was to better understand removable sets for bounded ana-
lytic functions.

Definition 6.17. A compact set E ⊂ C is called removable for bounded analytic functions, or
just removable if every bounded analytic function f : C \ E → C is constant.

In particular, every bounded analytic function f : C \ E → C can be extended to an
entire function f : C→ C; this is why E is called "removable".

Subsets of lines with positive length are not removable; this is probably a "folklore"
result, and I could not find a reference. As early as 1909, A. Denjoy attempted to prove
the same for subsets of rectifiable curves (as opposed to subsets of lines). His proof
contained a gap, and the statement became known as the Denjoy conjecture. It was
resolved by A. Calderón in 1977, who proved that the Cauchy transform is bounded on
Lipschitz graphs with sufficiently small constant. We have seen this result – even without
the "small constant" restriction – on the course, in Henri’s half. So, the main content of
this section is to show, why Calderón’s theorem implies the Denjoy conjecture.

Theorem 6.18 (Denjoy’s conjecture, or Calderón’s theorem). Let γ ⊂ C be a continuum of
finite length, and let E ⊂ γ be a compact subset of positive length. Then E is not removable.
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First of all, the property of being "non-removable" is clearly monotone: ifE1 ⊂ E2 ⊂ C
are compact, and E1 is not removable, then E2 is not removable either (just note that any
non-constant bounded analytic function f : C \ E1 → C is also non-constant on C \ E2,
by basic properties of analytic functions).

Lemma 6.19. Let γ be a continuum of finite length, and let E ⊂ γ be a compact subset with
H1(E) > 0. Then, there exists a Lipschitz graph Γ such thatH1(E ∩ Γ) > 0.

Proof. Exercise. �

By the monotonicity of non-removability, Denjoy’s conjecture follows, if we can prove
the next theorem:

Theorem 6.20. Let Γ ⊂ C be a Lipschitz graph, and letE ⊂ Γ be a compact set withH1(E) > 0.
Then E is not removable.

By the results on the first half of the course (or see [17, Theorem 2.18]), we know the
following:

Proposition 6.21. Let E ⊂ Γ is as in Theorem 6.20, and let µ := H1|E . Then the Cauchy
transform maps M(C) to L1,∞(µ) boundedly, which means, by definition, that

µ({x ∈ C : |Cδν(x)| > λ}) . ‖ν‖
λ
, (6.22)

for all complex Borel measures ν, with implicit constants independent of δ > 0.

The previous proposition is, by far, the hardest part in the proof of Theorem 6.20. Now,
Theorem 6.20 will follow, if we just manage to prove the following proposition:

Proposition 6.23. Assume that µ is a Radon measure with E := spt µ compact, satisfying
µ(B(x, r)) . r and the weak-(1, 1) bound (6.22). Then E is not removable. More precisely, there
exists a function h : E → [0, 1] with

∫
h dµ & µ(E), such that

Cµh(z) := C(h dµ)(z) :=

∫
h(w) dµ

z − w
, z ∈ C \ E,

defines a non-constant bounded analytic function on C \ E.

The proof of the proposition requires two facts from functional analysis. The first is a
corollary of the Hahn-Banach theorem:

Theorem 6.24. Let (V, ‖ · ‖) be a Banach space, and let B1, B2 ⊂ V be disjoint non-empty
convex subsets. Assuming that B2 is open, there exists a number r ∈ R and a continuous linear
map λ : V → C such that

Reλ(x1) > r ≥ Reλ(x2) for all x1 ∈ B1 and x2 ∈ B2.

Proof. See Rudin’s Functional Analysis [16], Theorem 3.4(a). �

The second fact identifies the space of complex Radon measures, namely M(C), as the
dual of a certain function space:

Theorem 6.25. Let C0(C) be the vector space of all continuous function C, which vanish at
infinity: ϕ ∈ C0(C), if and only if ϕ is continuous, and for every ε > 0, there exists Rε > 0 such
that |ϕ(x)| ≤ ε for |x| ≥ Rε. Equipped with the usual sup-norm, C0(C) is a Banach space. The
dual of C0(C) is the Banach space M(C), equipped with the total variation norm. More precisely,



TRAVELING SALESMAN THEOREMS AND THE CAUCHY TRANSFORM 33

if Λ: C0(C) → C is a continuous linear map, then there exists measure ν = νΛ ∈ M(C) such
that

Λ(ϕ) =

∫
ϕdν, ϕ ∈ C0(C).

Proof. This is a version of the Riesz representation theorem, see Rudin’s Real and Complex
Analysis, Theorem 6.19. �

Finally, we define a slightly non-standard notion of adjoint. Assume that T : M(C) →
C0(C) is a linear map. You should think that T = Cδ, although Cδ need not quite map
M(C) to C0(C) (we will turn to this issue a bit later). Then, assume that there is another
linear map T ∗ : M(C)→ C0(C), satisfying the following relation:∫

(Tν1) dν2 =

∫
(T ∗ν2) dν1 (6.26)

for all ν1, ν2 ∈ M(C). Then, we call T ∗ an adjoint of T . We are not claiming uniqueness,
continuity, or any other properties usually associated with the notion of "adjoint". For
T = Cδ, an adjoint is simply given by T ∗ = −Cδ, because∫

(Cδν1(z)) dν2z =

∫ ∫
|z−w|≥δ

dν1w

z − w
dν2z

=

∫ [
−
∫
|z−w|≥δ

dν2z

w − z

]
dν1w =

∫
(−Cδν2(w)) dν1w.

Note that if µ is a measure such that the operators T = Cδ satisfy (6.22), then clearly
T ∗ = −Cδ satisfies (6.22) with the same implicit constants.

With that in mind, we prove the following abstract variant of Proposition 6.23:

Proposition 6.27. Assume that T : M(C) → C0(C) is a linear operator, and let T ∗ : M(C) →
C0(C) be an adjoint satisfying (6.26). Assume that µ is a (positive) Radon measure with compact
support E := sptµ such that T ∗ maps M(C) to L1,∞(µ) in the familiar sense that

µ({x ∈ C : |T ∗ν(x)| > λ}) ≤ C ‖ν‖
λ
, ν ∈M(C). (6.28)

Then, there exists a Borel function h : E → [0, 1] such that ‖h dµ‖ ≥ ‖µ‖/2 and

‖T (h dµ)‖ < 3C.

Proof. Suppose that the claim fails: whenever h dµ lies in

G := {f dµ : f : E → [0, 1] is Borel, and ‖f dµ‖ ≥ ‖µ‖/2} ,

one has
T (h dµ) /∈ B2 := {g ∈ C0(C) : ‖g‖ < 3C}.

Equivalently, B1 := T (G) is disjoint from B2. Note that both B1, B2 are convex, and B2

is open. By Theorem 6.24, there exists a continuous linear map Λ: C0(C)→ C, which we
may immediately identify with a measure ν = νΛ ∈M(C) by Theorem 6.25, such that

Re

∫
ϕ1 dν > Re

∫
ϕ2 dν
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for all ϕ1 ∈ B1 and ϕ2 ∈ B2. Take an inf on the left hand side, and sup on the right hand
side: recalling that B1 = T (F ), this yields

inf
f dµ∈G

Re

∫
T (f dµ) dν ≥ sup

ϕ2∈B2

Re

∫
ϕ2 dν = 3C‖ν‖.

Now, let f := χA, where

A :=

{
x ∈ E : |T ∗ν(x)| ≤ 2C‖ν‖

‖µ‖

}
.

Then f is clearly a Borel function taking values in [0, 1]. Moreover, by the main assump-
tion (6.28),

‖f dµ‖ = µ(A) = ‖µ‖ − µ(Ac) ≥ ‖µ‖ − C‖ν‖
2C‖ν‖/‖µ‖

=
‖µ‖
2

so f dµ ∈ F . Hence

3C‖ν‖ ≤ Re

∫
T (f dµ) dν ≤

∫
|T ∗ν| · f dµ ≤ 2C‖ν‖

‖µ‖
· µ(A) ≤ 2C‖ν‖.

This is absurd, so the proof is complete. �

The only reason, why Proposition 6.27 does not imply Proposition 6.21 directly, is
because Cδ does not map M(C) into C0(C). To fix this little technicality, we need to
introduce a "smooth" version of Cδ. This is fairly standard.

6.3.1. The smooth operators C̃δ. Let ϕ : C → [0,∞) be some smooth, non-negative radial
function with

∫
ϕ = 1 and sptϕ ⊂ B(0, 1). Write ϕδ(z) := δ−2ϕ(x/δ), so that

∫
ϕδ = 1,

and sptϕδ ⊂ B(0, δ). Consider the kernel

K̃δ(z) :=
1

z
∗ ϕδ.

As the convolution of an L1
loc-function, and a compactly supported function, the kernel

K̃δ is continous, and moreover

|K̃δ(z)| ≤
∫
|ϕδ(w)|
|z − w|

dw ≤ ‖ϕδ‖∞
∫
{|w|≤δ}

dw

|z − w|
.

1

δ
, z ∈ C.

Next, we claim that K̃δ(z) = 1/z for |z| ≥ δ. To see this, write ϕδ(r) for the common value
of ϕδ on the circle S(0, r) := {|w − 0| = r} (which exists by radiality). Since w 7→ 1/w is
harmonic in C \ {0}, the average of 1/w over any circle S(z, r) not enclosing the origin
equals 1/z. This, combined with integration in polar coordinates gives

K̃δ(z) =

∫
ϕδ(w)

z − w
dw = c

∫ δ

0
r · ϕδ(r)

[∫
S(0,r)

dH1(w)

z − w

]
dr

= c

∫ δ

0
r · ϕδ(r)

[∫
S(z,r)

dH1(w)

w

]
dr =

c

z

∫ δ

0
r · ϕδ(r) · H1(S(0, r)) dr

=
1

z

∫
ϕδ(w) dw =

1

z
, for |z| ≥ δ.
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Let C̃δ be the "singular" integral operator associated with K̃δ:

C̃δν(z) =

∫
K̃δ(z − w) dνw.

The fact that K̃δ coincides with 1/z outside the ball B(0, δ) is very convenient for com-
paring the operators C̃δ and Cδ: if ν is a complex measure, then

|C̃δν(z)− Cδν(z)| =

∣∣∣∣∣
∫
K̃δ(z − w) dνw −

∫
|z−w|≥δ

dνw

z − w

∣∣∣∣∣
≤
∫
|z−w|≤δ

|K̃δ(z − w)| d|ν|w ≤ ‖K̃δ‖ · |ν|(B(z, δ))

.
|ν|(B(z, δ))

δ
≤M(|ν|)(z), z ∈ C, (6.29)

whereM(|ν|) is the "radial" maximal functionM(|ν|)(a) := supδ>0 δ
−1|ν|(B(z, δ)). Recall

(or see [17, Theorem 2.5]) that the operator M maps M(C) to L1,∞(µ) boundedly, when-
ever µ has linear growth (as in Proposition 6.23). So, if Cδ also maps M(C) to L1,∞(µ)
boundedly – as assumed in Proposition 6.23 – the conclusion is that the smooth operator
C̃δ does the same:

µ({x ∈ C : |C̃δν(x)| > λ}) . ‖ν‖
λ
. (6.30)

The implicit constants are independent of δ > 0. Note that an adjoint of C̃δ is again given
by (C̃δ)∗ = −C̃δ, repeating the computation from above Proposition 6.27. Now both C̃δ
and (C̃δ)∗ are linear operators mapping M(C) to C0(C), and satisfying (6.30).

As a final lemma, we need a comparison between C̃δ and C̃ε for 0 < ε ≤ δ. The proof is
so standard that we omit the details (see [17, Lemma 4.4]):

Lemma 6.31. Let µ be a measure satisfying µ(B(x, r)) . r, and let ν be any complex measure.
Then, for 0 < ε ≤ δ,

‖C̃δν‖ ≤ ‖C̃εν‖+ C‖M(|ν|)‖,
where C ≥ 1 is a constant depending only on the function ϕ.

We are finally in a position to prove Proposition 6.23.

Proof of Proposition 6.23. Let µ be a measure satisfying the hypotheses of the proposition,
with E = sptµ compact, so that (6.30) holds for (C̃δ)∗ = −C̃δ by the previous discussion.
For δ > 0, apply Proposition 6.27 to the operator C̃δ: the result is a function hδ : E → [0, 1]

such that ‖hδ dµ‖ ≥ ‖µ‖/2, and ‖C̃δ(hδ dµ)‖ . 1, implicit constants independent of δ > 0.
By Lemma 6.31, we moreover have

‖C̃δ(hε dµ)‖ ≤ ‖C̃ε(hε dµ)‖+ C‖M(hε dµ)‖ . 1 (6.32)

uniformly for 0 < ε ≤ δ.
Since L∞(µ) is the dual of L1(µ), the Banach-Alaoglu theorem states that the sequence

(hδ)δ>0 has a weak*-convergent subsequence (hj)j∈N := (hδj )j∈N with a limit h ∈ L∞(µ).
This simply means that ∫

hj · g dµ→
∫
h · g dµ, g ∈ L1(µ), (6.33)
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so in particular (applying the above with g = 1), one has ‖h dµ‖ ≥ ‖µ‖/2. Now, for δ > 0

and z ∈ C fixed, apply (6.33) to g(z) = K̃δ(z − w):

|C̃δ(h dµ)(z)| =
∣∣∣∣∫ K̃δ(z − w)h(w) dµw

∣∣∣∣
= lim

j→∞

∣∣∣∣∫ K̃δ(z − w)hj(w) dµw

∣∣∣∣ ≤ lim sup
j→∞

‖C̃δ(hj dµ)‖ . 1.

The last estimate follows from (6.32). Finally, we infer from (6.29) that

‖Cδ(h dµ)‖ . ‖C̃δ(h dµ)‖+ ‖M(h dµ)‖ . 1

uniformly in δ > 0. Consequently, if z ∈ C \ E, we have

|C(h dµ)(z)| =
∣∣∣∣∫
E

h(w) dµw

z − w

∣∣∣∣ = lim
δ→0

∣∣∣∣∣
∫
E∩{|z−w|>δ}

h(w) dµw

z − w

∣∣∣∣∣ . 1.

which means that z 7→ C(h dµ)(z) defines a bounded analytic function on C \ E. It is an
exercise to check that the function is non-constant, hence E is non-removable. The proof
of the proposition is complete. �

6.4. Removability of the four corners Cantor set. The purpose of the previous section
was to prove that rectifiable sets of positive length are non-removable; now we will see
that some purely unrectifiable sets of finite length – including the four corners Cantor set,
depicted in Figure 5 – are removable. In fact, all purely unrectifiable sets of finite length

1

1/4

FIGURE 5. The four corners Cantor set.

are removable; this is a theorem of G. David [6] from 1998. The fact that AD regular
purely unrectifiable sets are removable sets was already known a few years earlier. This
follows by combining the Mattila-Melnikov-Verdera theorem (Theorem 1.2) with the fol-
lowing result [3, 4] of M. Christ from 1990:

Theorem 6.34 (Christ). Let E ⊂ C be a compact AD regular set. If E is non-removable, then
there exists an AD regular set F ⊂ C such that H1(E ∩ F ) > 0 so that the Cauchy transform
associated with µ = H1|F is bounded on L2(µ). In particular (by the later theorem of Mattila-
Melnikov-Verdera), E ∩ F is uniformly rectifiable.
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Since AD regular purely unrectifiable sets certainly cannot contain uniformly rectifi-
able pieces E ∩ F of positive length, they must be removable.

Unfortunately, the proof of David’s, or even Christ’s, theorem is too long for this
course, so we need to take a hands-on approach, proving only the following rather spe-
cial case.

Definition 6.35. Let α > 0. A Radon measure ν on C is called α-non-flat at z, if spt ν ∩
B(z, r) is not contained in any cone centred at z, with opening angle α, for any r > 0. A
measure is simply called non-flat at z, if it is α-non-flat at z for some α > 0.

Theorem 6.36. LetE ⊂ C be compact and AD regular, and write µ := H1|E . Assume that for µ
almost every a ∈ C, every tangent measure ν ∈ Tan(µ, a) is non-flat at 0. Then E is removable.

This theorem, which is a slightly easier variant of Theorem 19.17 in Mattila’s book
[12] (our exposition follows his), quite clearly implies that the four corners Cantor set
is removable. It would be easy to relax the hypotheses somewhat: the AD regularity
could be replaced by positive lower 1-densityH1 almost everywhere on E, and the "non-
flatness" could be relaxed to "support not contained on a line".

The proof of Theorem 6.36 requires various preliminary results. The first states that a
bounded analytic function f : C \ E → C, which vanishes at infinity, is representable as
the Cauchy transform of a complex measure:

Lemma 6.37. Let E ⊂ C be a compact set withH1(E) <∞, and let f : C \E → C be analytic
with ‖f‖∞ ≤ 1 and

f(∞) := lim
z→∞

f(z) = 0.

Then, there exists a measure σ ∈ M(C) with sptσ ⊂ E such that |σ(B(x, r))| ≤ r for all discs
B(x, r), and

f(z) = C(σ)(z) =

∫
dσw

z − w
, z ∈ C \ E.

Moreover, σ = ϕ · H1|E for some function ϕ : E → C with ‖ϕ‖L∞(H1) ≤ 1.

Proof. Contained in Janne’s presentation. �

Now, in the proof of Theorem 6.36, we start with a counter assumption: E is not re-
movable. Then there is a non-constant bounded analytic function f : C \ E → ∞. The
limit f(∞) exists by elementary theory of analytic functions (note that z 7→ f(1/z) is de-
fined in a neighbourhood of the origin, and has a removable singularity at the origin),
and g = (f − f(∞))/‖f‖∞ is a a non-constant analytic function satisfying the assump-
tions of the previous lemma. Let

σ = ϕdµ = ϕ · H1|E
be the measure given by the lemma, associated with g; note that ϕ 6≡ 0, because g 6≡ 0.
Then also |σ| = |ϕ| dµ, from which is follows that

|σ|(B(x, r)) . r, x ∈ C, r > 0. (6.38)

Since µ is AD regular, every tangent measure ν ∈ Tan(µ, a), a ∈ E, has the form

ν = c · lim
i→∞

r−1
i Ta,ri]µ, (6.39)

where c > 0, and (ri)i∈N is a sequence of positive radii tending to zero as i → ∞. To
see this, fix a ∈ E, and let ν = limi→∞ ciTa,ri]µ ∈ Tan(µ, a). Then, because ν 6= 0 by
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assumption (trivial measures are excluded from the definition of tangent measures), we
find some some R > 0 such that

0 < ν(U(0, R)) ≤ lim inf
i→∞

ciµ(U(a,Rri)) . lim sup
i→∞

[ciRri]

. lim sup
i→∞

ciµ(B(a,Rri)) ≤ ν(B(0, R)) <∞.

This implies that the the numbers ciri lie, for large enough i ∈ N, on some compact
interval [a, b] ⊂ (0,∞), and hence there is a subsequence cijrij → c ∈ [a, b]. Then, it is
easy to check that ν = c · limj→∞ r

−1
ij
Ta,rij ]µ, as claimed in (6.39).

Now, if ν ∈ Tan(µ, a) as in (6.39), and ϕ (as in σ = ϕdµ) is non-vanishing and contin-
uous in a neighbourhood of a, it is easy to see (exercise) that

ν = c̃ · lim
i→∞

r−1
i Ta,ri]σ (6.40)

with c̃ = c/ϕ(a). In general, applying the Lebesgue differentiation theorem to ϕ, one
can prove that at |σ| almost every point a ∈ C, every tangent measure ν ∈ Tan(µ, a)
has the form (6.40); since σ is a non-trivial measure, "|σ|-almost every point" implies
"µ-positively many points".

Further, it follows from (6.39) every ν ∈ Tan(µ, a), a ∈ sptµ, is AD regular: if U(x, r)
any open ball (centred on sptµ or not), then

ν(U(x, r)) ≤ c lim inf
i→∞

r−1
i µ(U(a+ x, rri)) . c · lim inf

i→∞

rri
ri

= cr,

For the converse inequality, note that if x ∈ spt ν and r > 0, then ν(U(x, r/2)) > 0 for all
r > 0, and it follows from the estimate above that U(a + x, rri/2) ∩ E 6= ∅ for all large
enough indices i. By the AD regularity of µ, this implies µ(B(a+ x, rri)) & rri, and so

ν(B(x, r)) ≥ c lim sup
i→∞

r−1
i µ(B(a+ x, rri)) & cr.

It will also be useful to note that 0 ∈ spt ν for all ν ∈ Tan(µ, a), a ∈ E. To this end, fix ν
as above, and r > 0:

ν(B(0, r)) ≥ c lim sup
i→∞

r−1
i µ(B(a, rri)) & cr > 0.

In summary, if µ is AD regular, then for following hold for all a ∈ sptµ:
• Every ν ∈ Tan(µ, a) has the form ν = c lim r−1

i Ta,ri]µ, with c > 0 and ri → 0.
• Every ν ∈ Tan(µ, a) is AD regular. In particular spt ν 6= C.
• 0 ∈ spt ν for all ν ∈ Tan(µ, a).

Now, we will show that tangent measures interact well with the Cauchy transform: the
maximal Cauchy transform of any tangent of µ is bounded at 0:

Lemma 6.41. If a ∈ E is such that ν ∈ Tan(µ, a) is a tangent measure as in (6.40), then

sup
0<r<R<∞

∣∣∣∣∣
∫
B(0,R)\B(0,r)

dνw

w

∣∣∣∣∣ <∞.
Proof. The claim will follow, if we find a dense set of radii 0 < r < R <∞, and a constant
C ≥ 1, such that ∣∣∣∣∣

∫
B(0,R)\B(0,r)

dνw

w

∣∣∣∣∣ ≤ C,
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After this, for arbitrary radii 0 < r < R < ∞, we can find sequences (ri) and (Ri) from
the dense collection such that 0 < r < ri < Ri < R < ∞, and ri ↘ r and Ri ↗ R.
Then the sets B(0, Ri) \ B(0, ri) converge in a monotone way to U(0, R) \ B(0, r), and
consequently∣∣∣∣∣
∫
B(0,R)\B(0,r)

dνw

w

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
∂B(0,R)

dνw

w

∣∣∣∣∣+ lim
i→∞

∣∣∣∣∣
∫
B(0,Ri)\B(0,ri)

dνw

w

∣∣∣∣∣ ≤ ν(B(0, R))

R
+ C.

Since ν is (upper) AD regular, the right hand side has a uniform bound.
Now, fix a ∈ E as in the hypotheses, and let

ν = c · lim
j→∞

r−1
j Ta,rj]σ ∈ Tan(µ, a),

where c ∈ C \ {0} (note that c has the form "c̃ = c/ϕ(a)" from (6.40), so c can have an
imaginary part, if ϕ(a) does; this will not affect anything). Next, let 0 < r < R < ∞ be
radii such that ν(S(0, r)) = 0 = ν(S(0, R)); this holds but all but countably many pairs
0 < r < R <∞ and is used to infer that if∫

B(0,R)\B(0,r)
ψ dν = lim

j→∞

∫
B(0,R)\B(0,r)

ψ dνj , (6.42)

whenever ψ is a continuous function on B(0, R) \B(0, r) and νj → ν weakly.6

After this observation, we just compute as follows:∣∣∣∣∣
∫
B(0,R)\B(0,r)

dνw

w

∣∣∣∣∣ (6.42)∼c lim
j→∞

∣∣∣∣∣ 1

rj

∫
B(0,R)\B(0,r)

d(Ta,rj]σ)w

w

∣∣∣∣∣
= lim

j→∞

∣∣∣∣∣ 1

rj

∫
B(a,Rrj)\B(a,rrj)

dσw

(a− w)/rj

∣∣∣∣∣
= lim

j→∞

∣∣∣∣∣
∫
B(a,Rrj)\B(a,rrj)

dσw

a− w

∣∣∣∣∣ ≤ 2 · C∗(σ)(a).

Here C∗(σ) is the maximal Cauchy transform

C∗(σ)(a) = sup
δ>0
|Cδ(σ)(a)|.

(The numbers Cδ(σ)(a) are well-defined, since σ is compactly supported; the tangent
measures are typically not compactly supported, which explains the need for the double
truncation in the formulation of the lemma.) The proof of the lemma is now complete, as
soon as we verify that

C∗(σ)(a) . ‖C(σ)‖L∞(C\E) +M(|σ|)(a), (6.43)

where M(|σ|) is the "radial" maximal function M(|σ|)(a) = supr>0 |σ|(B(a, r))/r, which
is now uniformly bounded by (6.38). Also, recall that ‖Cσ‖L∞(C\E) = ‖g‖L∞(C\E) <∞ by
assumption.

6The general principle here is the following: if νi → ν weakly, and B is any Borel set with ν(∂B) = 0,
then νi(B)→ ν(B). This is an exercise.
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To prove (6.43), fix δ > 0. We first claim that there exists b ∈ B(a, δ/2) \ E such that∫
B(a,δ)

d|σ|w
|b− w|

.M(|σ|)(a). (6.44)

Assuming this for a moment, we can estimate as follows:

|Cδ(σ)(a)− C(σ)(b)| =

∣∣∣∣∣
∫
C\B(a,δ)

dσw

a− w
−
∫

dσw

b− w

∣∣∣∣∣
≤
∫
C\B(a,δ)

|a− b|
|a− w||b− w|

d|σ|w +

∫
B(a,δ)

d|σ|w
|b− w|

The second term is bounded by M(|σ|)(a) by (6.44), while in the first term the crucial
points to note are the following: |a− b| ≤ δ, and |a− w| ∼ |b− w| for all w ∈ C \B(a, δ),
because b ∈ B(a, δ/2). So, the first term is comparable to

δ ·
∫
C\B(a,δ)

d|σ|w
|a− w|2

. δ ·
∑
j≥0

1

22jδ2
· |σ|[B(a, 2j+1δ)) \B(a, 2jδ)] .M(|σ|)(a).

Since δ > 0 was arbitrary, and |C(σ)(b)| ≤ ‖C(σ)‖L∞(C\E), this completes the proof of
(6.43), modulo finding the point b ∈ B(a, δ/2) \ E satisfying (6.44). This is done by a
simple averaging trick:

1

δ2

∫
B(a,δ/2)

[∫
B(a,δ)

d|σ|w
|b− w|

]
dL2(b) =

1

δ2

∫
B(a,δ)

[∫
B(a,δ/2)

dL2(b)

|b− w|

]
d|σ|w . |σ|(B(a, δ))

δ
,

noting (in the inner integral) that B(a, δ/2) ⊂ B(w, 2δ), whenever w ∈ B(a, δ). The proof
of the lemma is complete. �

A very useful property of tangent measures is that "taking tangents twice" does not
add much information:

Lemma 6.45. Let µ be a Radon measure on Rn. Then, at µ almost every a ∈ Rn, every tangent
measure ν ∈ Tan(µ, a) has the following property: Tan(ν, x) ⊂ Tan(µ, a) for all x ∈ spt ν.

Taking this result for granted (it is Theorem 14.16 in [12]), we are prepared to prove
Theorem 6.36:

Proof of Theorem 6.36. The idea is to find a special tangent measure λ ∈ Tan(µ, a) with
sptλ contained in a half-plane, and then apply Lemma 6.41 to produce a contradiction
(against the counter assumption that E is not removable).

Start by choosing any tangent measure ν ∈ Tan(µ, a), with a ∈ E = sptµ such that the
conclusion of Lemma 6.45 is valid, and the hypotheses of Lemma 6.41 are valid. Since µ
is AD regular, ν is also AD regular by the discussion before Lemma 6.41. Typically spt ν
is not compact, but anyway the support of a 1-AD regular measure cannot be C. So, there
is a point z ∈ C \ spt ν, which then of course satisfies ρ := dist(z, spt ν) > 0. Note that

U(z, ρ) ∩ spt ν = ∅ and ∂B(z, ρ) ∩ spt ν 6= ∅, (6.46)

see Figure 6. Then, pick a point y ∈ ∂B(z, ρ) ∩ spt ν. Since ν is AD regular, there exists a
tangent measure

λ ∈ Tan(ν, y) ⊂ Tan(µ, a),
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z
y

spt

FIGURE 6. The choice of the points y and z.

using Lemma 6.45 in the second inclusion. In particular, 0 ∈ sptλ. Moreover, it follows
from the first equation in (6.46) that the support of λ is entirely contained in some closed
half-space H , with the 0 ∈ ∂H and ∂H ⊥ (z − y). For simplicity of notation, assume
that H is the lower half-plane {(x, y) : y ≤ 0} = {w : Im w ≤ 0}. Now, recall also
the main assumption of the theorem: λ is α-non-flat at 0 for some α > 0. In particular,
this implies that B(0, r) sptλ is not contained in Cα for any r > 0, where Cα is the cone
Cα := {w : |Im w| ≤ α|w|}, see Figure 7. Since sptλ ⊂ H , the conclusion is that for any
r > 0, there exists a point w ∈ B(0, r) ∩ sptλ with

w ∈ H \ Cα = {w : Im w < −α|w|} =: Gα.

Note that if w ∈ Gα, then B(w,α|w|/2) ⊂ Gα/2 = {w : Im w < −α|w|/2}.

z1

z2

z3

0

FIGURE 7. The half-space H and a few points zj ∈ sptλ.

With the observations above in mind, it is possible to find a sequence of points {wj}j∈N
in sptλ, converging to 0, such that the balls Bj := B(wj , α|wj |/2) are disjoint, and satisfy

Bj ⊂ Gα/2 ∩ [C \B(0, |wk+1|)], 1 ≤ j ≤ k. (6.47)

Since λ ∈ Tan(µ, a), and a was assumed to satisfy the hypotheses of Lemma 6.41, we
have

sup
ε>0

∣∣∣∣∣
∫
B(0,1)\B(0,ε)

dλw

w

∣∣∣∣∣ <∞. (6.48)
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On the other hand, noting that 1/w = w̄/|w|2, and using the fact that Im w ≤ 0 for all
w ∈ sptλ, plus the AD regularity of λ, we infer that∣∣∣∣∣

∫
B(1)\B(0,|wk+1|)

dλw

w

∣∣∣∣∣ ≥
∫
B(1)\B(0,|wk+1|)

Im w̄

|w|2
dλw ≥

k∑
j=1

∫
Bj

−Im w

|w|2
dλw

(6.47)
≥ α

2

k∑
j=1

∫
Bj

dλw

|w|
& α

k∑
j=1

λ(Bj)

|wj |
∼ αk.

This contradicts (6.48) for large enough k, and the proof of the theorem is complete. �

7. THE GEOMETRIC CONSTRUCTION OF M. BADGER AND R. SCHUL

This section contains the proof of the geometric construction, Theorem 5.20, which is
repeated below for convenience:

Theorem 7.1. Let n ≥ 2, A > 1, x0 ∈ Rn and r0 > 0. Let (Vk)k∈N be a sequence of non-empty
finite subsets of B(x0, Ar0) such that the following conditions are satisfied:
(Vsep) The distance between distinct points in Vk is at least 2−kr0.
(V ↓) For all v ∈ Vk, there exists v↓ ∈ Vk+1 with |v − v↓| < A2−(k+1)r0.
(V ↑) For all v ∈ Vk+1, there exists v↑ ∈ Vk with |v − v↑| < A2−kr0.

Further, assume that for all k ≥ 1 and for all v ∈ Vk there is a line `v = `k,v ⊂ Rn and a number
αv = αk,v ≥ 0 such that

sup
x∈(Vk−1∪Vk)∩B(v,65A2−kr0)

dist(x, `v) ≤ αv2−kr0. (7.2)

Then the sets Vk converge in the Hausdorff metric to a compact set V ⊂ B(x0, Ar0), and there
exists a compact, connected set Γ ⊂ B(x0, Ar0) such that Γ ⊃ V , and

H1(Γ) .A,n r0 +
∑
k∈N

∑
v∈Vk

α2
v2
−kr0. (7.3)

To achieve a slight simplification in the proof, I record the following:

Proposition 7.4. It suffices to prove Theorem 7.1 under the additional hypothesis that if either
• k ∈ N and v, v′ ∈ Vk and w,w′ ∈ Vk are distinct pairs of points, or
• j < k and v, v′ ∈ Vj and w,w′ ∈ Vk,

then the intersection [v, v′] ∩ [w,w′] has zero length.

Proof. It is clear that the extra hypothesis can be achieved by perturbing the points in the
various sets Vk by arbitrarily small amounts. Note that these perturbations must be made
so that no pair in Vj is also contained in Vk for any k > j. If every point of Vk is moved by
less than 2−kr0, then (Vsep)− (V ↑) continue to hold. In case some of the numbers αv = 0,
then any perturbation may cause (7.2) to fail, but the assumption αv > 0 can be made
without loss of generality (check!). Finally, if the perturbations are small enough, the sets
Ṽk have the same limit set as the Vk’s. Thus, it suffices to cover the limit set of the Ṽk’s by
a continuum Γ satisfying (7.3). �

The convergence of the sequence Vk is, in fact, rather simple and based on (VIII) alone:
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Proposition 7.5. Let V0, V1, . . . be subsets of some fixed ball B(x0, Ar0). If the sets Vk satisfy
(V ↑), then they converge to a compact set V ⊂ B(x0, Ar0) in the Hausdorff metric.

Proof. Exercise (or read the paper of Badger and Schul). �

The statement of Theorem 7.1 is clearly "scaling invariant", i.e. one may assume

r0 = 1.

Also, to avoid trivialities, I will assume that

cardVk ≥ 2, k ∈ N.

Among other things, the next lemma defines a useful "ordering" for the points in (Vk ∪
Vk−1) ∩ B(v, 65A2−k), assuming that the number αv,k is sufficiently small. The lemma
also gives some explanation for the "square" in α2

v.

Lemma 7.6. Let 0 ≤ α ≤ 1/16. Assume that V ⊂ Rn is a 1-separated set with cardV ≥ 2, and
there exist lines `1, `2 such that

dist(v, `i) ≤ α, v ∈ V, i ∈ {1, 2}.

Let πi be the orthogonal projection to `i. Then, one may identify both `1 `2 with R in such a way
that

π1(v) ≤ π1(v′) ⇐⇒ π2(v) ≤ π2(v′), v, v′ ∈ V.

Moreover, if v1, v2 are consecutive points relative to the order given by π1 (equivalently π2), then

H1([u1, u2]) < (1 + 3α2) · H1([π1(u1), π1(u2)]), [u1, u2] ⊂ [v1, v2].

Also,
H1([u1, u2]) < (1 + 12α2) · H1([π1(u1), π1(u2)]), [u1, u2] ⊂ `2.

7.1. Construction of the continuums. In this section, the points of Vk will be covered
by a (nearly) piecewise linear set Γk, whose connectedness and length will discussed in
later sections. Each set Γk will consist of a finite number of edges [v, v′] between vertices
v, v′ ∈ Vk, plus a finite number of more complicated connected sets called bridges, to be
defined presently.

For a vertex v ∈ Vk, define the extension E(v) = E(v, k) inductively as follows. Let
v0 = v ∈ E(v), and assume that vj has been defined for some j ≥ 0. Set vj+1 := v↓j (this
was the closest "next generation" vertex to vj). Then, define

E(v) :=
∞⋃
j=0

[vj , vj+1].

Now, the bridge between two generation k vertices v, v′ is

B(v, v′) = B(v, v′, k) := [v, v′] ∪ E(v) ∪ E(v′).

Remark 7.7. In the special (but already interesting) case Vk ⊂ Vk+1 ⊂ . . ., the extension
E(v) simplifies to {v} and B(v, v′) = [v, v′].
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7.1.1. The induction begins. In this tiny subsection, the initial curve Γ0 is defined (which
covers V0). Consider a pair v, v′ ∈ V0. If |v − v′| < 30A, then [v, v′] ⊂ Γ0. Otherwise, set
B(v, v′) ⊂ Γ0. In other words,

Γ0 :=
⋃

|v−v′|<30A

[v, v′] ∪
⋃

|v−v′|≥30A

B(v, v′).

7.1.2. The construction of Γk based on Γk−1. Here comes a key point: bridges stay, edges
don’t. Thus, if a bridge is contained in Γk−1, then it will also be contained in Γk. The
edges of Γk−1, however, will be thrown away and replaced by new material (edges and
bridges) in Γk. In symbols, Γk will look like this:

Γk :=
⋃
v∈Vk

Γk,v ∪
k−1⋃
j=0

⋃
B(v′,v′′)⊂Γj

B(v′, v′′). (7.8)

Here Γk,v is a "local part" of Γk constructed inside the "neighbourhood"

N (v) := B(v, 65A2−k).

Note that N is the ball appearing in (7.2).
The local parts will look very different depending on whether αv is "large" or "small".

Here "small" simply means
0 < αv < ε := 1/32,

and "large" means αv ≥ ε. The threshold ε = 1/32 has been chosen so that Lemma 7.6
can be applied to any number smaller than 2ε.

Case (L). Assume that v ∈ Vk and αv ≥ ε. Let v′, v′′ ∈ Vk ∩ N (v). If |v′ − v′′| < 30A2−k,
add the edge [v′, v′′] to Γv,k. In the opposite case |v′ − v′′| ≥ 30A2−k, add the bridge
B(v′, v′′) to Γk,v. The case (L) is complete.

Here (L) obviously stands for "large". The "small" case (S) is more complicated and
divides further into various sub-cases. However, before starting, a crucial point is worth
emphasising:

Principle. At any stage of the construction, two points v, v′ ∈ Vk will be joined by and a
finite sequence of edges in Γk if and only if |v− v′| < 30A2−k. Check that this is the true
for the cases above, and keep this in mind in the future!

Case (S). Assume that αv < ε and note that the "ordering" Lemma 7.6 now applies to all
points in (Vk−1∪Vk)∩N (v) and the line `v (once the picture is scaled by 2k). In particular,
once an orientation for `v has been fixed, it makes sense to write things like "v′ is to the
left from v′′". I will also write v′ < v′′, if v′ is to the left from v′′.

With this ordering in mind, enumerate the points in Vk ∩ N (v) from left to right as
v−l < . . . < v−1 < v0 < v1 < . . . < vm, where v0 = v. It may happen that v0 is the only
element on this list! I will begin by describing how the "right half" ΓRv of Γv looks like.
This is the part of Γv, whose construction involves the points vi with i > 0 (should any
exist, which is neither clear nor assumed at this point). The "left half" will eventually be
treated symmetrically.

Start from v and start moving right along the sequence v1, v2, . . . Include the edge
[vi, vi+1] to ΓRv as long as

|vi+1 − vi| < 30A2−k and vi+1 ∈ B(v, 30A2−k). (7.9)
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(These conditions could easily hold for all the points v1, . . . , vm). If one of the condi-
tions eventually fails, stop right there! The construction will now divide into sub-cases
depending on what happened.

Subcase (S-NT). Here "NT" stands for "non-terminal", because this is the sub-case, where
the algorithm above produced at least one edge. In other words |v1 − v| < 30A2−k, and
the edge [v, v1] (and possibly much more) was added to ΓRv . The construction of ΓRv is
complete in this simple sub-case.

Subcase (S-T). Here "T" stands for "terminal", because this is the sub-case, where the
algorithm above left us empty-handed: either v1 does not exist at all, or |v1−v| ≥ 30A2−k,
and no edges were added. In this case the vertex v will be called terminal to the right
(terminal to the left will be defined similarly while constructing ΓLv ). Now, the construction
of ΓRv will depend on how the previous generation points Vk−1 ∩ N (v) are positioned.
Again, since αv is very small, and the points in Vk−1 ∩N (v) lie at distance αv2−k from `v,
they can be arranged from "left to right" as

w−r < . . . w−1 < w0 < w1 < . . . < ws,

where w0 = v↑ ∈ B(v,A2−k) is the closest point of Vk−1 to v. It goes without saying that
"left to right" means the same order as with the points vi above. Let wr be the right-most
vertex on the list above, which still lies in B(v, 2A2−k).7 Consider the following two
sub-sub-cases:
(S-TT) This stands for "terminal terminal", because the definition of ΓRv will simply be

{v}. And what is this case? It occurs, if either r = s (so everything in Vk−1 ∩
N (v) to the right from w0 is contained in B(v, 2A2−k)), or then |wr − wr+1| ≥
30A2−(k−1), so there is no Γk−1-edge joining wr and wr+1 (recall the Principle!).

(S-TB) This stands for "terminal bridge", because now – and only now – a bridge will be
added. Since (S-TT) does not occur, the point wr+1 exists and satisfies

|wr − wr+1| ≤ 30A2−(k−1) = 60A2−k.

By the assumption (V ↓), one moreover has |wr+1 − w↓r+1| < A2−k, which implies
that

|w↓r+1− v| ≤ |v−wr|+ |wr−wr+1|+ |wr+1−w↓r+1| < 2A2−k + 60A2−k +A2−k = 63A2−k.

The upshot is that w↓r+1 ∈ Vk ∩ N (v) \ {v} (w↓r+1 6= v, because it’s quite far away;
check!), and hence v1 exists. But since we ended up in the "T-cases", we know that
|v− v1| ≥ 30A2−k. Now, a bridge B(v, v1) is added to ΓRv , and the construction of
ΓRv is complete.

The construction of the "left part" ΓLv is symmetric. I make one last remark about Case
(S-TB). Let v1 and wr+1 be as above. It is useful to observe that while nothing necessitates
that v1 = w↓r+1, we still have

|v1 − wr+1| < 2A2−k. (7.10)

Indeed, note that v↑1 ∈ Vk−1 ∩N (v), hence v↑1 must lie "to the right" from wr+1, since wr+1

is the first vertex "to the right" from wr. Now, if (7.10) failed, the situation would be as in
Figure 8 below.

7This is no typo: the "2" should not be "30".
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FIGURE 8. The position of the points v1, v
↑
1, wr+1, w

↓
r+1 in the absurd sit-

uation that (7.10) failed. Note how w↓r+1 must lie to the left of v1, which
contradicts the definition of v1 as the first vertex in Vk to the right from v.

But since w↓r+1 ∈ Vk ∩N (v), it should lie "to the right" from v1, which is now evidently
impossible, using |w↓r+1 − wr| < A2−k, the counterassumption |v1 − wr+1| ≥ 2A2−k, and
the fact that αv < ε (think of how the proof would go precisely, if all the points actually
lay on `v!). This proves (7.10).

The construction of Γv is complete, and the set Γk is obtained by performing the same
algorithm for every point v ∈ Vk (and keeping the old bridges, as indicated in (7.8)).

8. THE CONNECTEDNESS OF Γk

So far, all we (are supposed to) know is that Vk ⊂ Γk, and each pair v, v′ ∈ Vk with
|v−v′| ≤ 30A2−k is connected by a sequence of edges in Γk. In this section, we will verify
that Γk is, indeed, a connected set containing Vk. Equivalently, an arbitrary pair of points
v, v′ ∈ Vk can be connected by a tour inside Γk.8

The proof runs by induction on k. First, it is clear that Γ0 is connected, and indeed
every pair v, v′ ∈ V0 is connected in Γ0 by either an edge or a bridge. Now, suppose
(inductively) that every pair of points in Vk−1 can be connected by a tour inside Γk−1.
Then, fix v1, vp ∈ Γk (the index parameter p ∈ N will be explained soon), and let w1 := v↑1
and wp := v↑p . By the inductive hypothesis, the points w1 and wp can be joined by a tour
in Γk−1, namely

w1, w2, . . . , wp

where wi is connected to wi+1 by either an edge or a bridge contained in Γk−1. Note that

|v1 − w1| < A2−k and |vp − wp| < A2−k

by condition (V ↑). Now, suppose inductively that 1 ≤ t ≤ p− 1, and there exists a vertex
vt ∈ Vk such that |vt−wt| < A2−k, and v1 is connected to vt by a tour in Γk. This is clearly
true for t = 1, and the whole proof is about showing the same for t = p. If t = p− 1, then
vt+1 = vp, and it satisfies |vt+1 − wt+1| < A2−k; if t ≤ p − 2, simply let vt+1 ∈ Vk be any
point satisfying |vt+1−wt+1| < A2−(k−1) (which exists by (V ↓)). In both cases, it remains
to demonstrate that vt and vt+1 can be connected by a tour contained in Γk.

The proof divides into two cases, depending on whether wt is connected to wt+1 by a
bridge or an edge contained in Γk−1.

8By definition, a tour is a finite sequence of vertices x1, . . . , xp ∈ Vk, where xi is connected to xi+1 by
either an edge or a bridge in Γk. Note that the bridge need not necessarily be of the form B(xi, xi+1): the
requirement is simply that B(x, y) ⊂ Γk and xi, xi+1 ∈ B(x, y).
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Case (Bridge). Assume that wt is connected to wt+1 by a bridge contained in Γk−1. This
means that there are vertices x, y ∈ Vj for some 0 ≤ j ≤ k−1 such thatwt, wt+1 ∈ B(x, y).
Let v′t := w↓t ∈ B(x, y) and v′t+1 := w↓t+1 ∈ B(x, y). It is not automatically clear that
v′t = vt and v′t+1, but it turns out that |vt − v′t| and |vt+1 − v′t+1| are so small that there are
connecting edges. For example,

|vt − v′t| ≤ |vt − wt|+ |wt + v′t| ≤ 2A2−(k−1) < 30A2−k,

which by the Principle implies that vt is connected to v′t by an edge in Γk. The same is
true for the pair vt+1, v

′
t+1. Since v′t and v′t+1 are connected by the bridge B(x, y) ⊂ Γk, it

follows that vt and vt+1 are connected by a tour in Γk.

Case (Edge). Assume that wt is connected to wt+1 by an edge in Γk−1. In particular,
|wt − wt+1| < 30C2−(k−1) = 60C2−k by the Principle, and consequently

|vt − vt+1| ≤ |vt −wt + |wt −wt+1|+ |wt+1 − vt+1| < 2C2−k + 60C2−k + 2C−k = 64C2−k.

This means that vt+1 ∈ Γk ∩ N (vt) and vice versa. Consequently, if αvt ≥ ε, then either
[vt, vt+1] ⊂ Γvt ⊂ Γk or B(vt, vt+1) ⊂ Γvt ⊂ Γk by Case (L), and we are done.

Now, assume that αvt < ε, so Γvt ⊂ Γk is constructed by one of sub-cases in Case (S).
As before, the assumption αvt < ε means that the points in Vk ∩ N (vt) can be ordered
"along" the line `vt , and the notions of "left" and "right" make sense. Assume that vt+1 is
"to the right" of vt, and the points of Vk ∩N (vt) lying between vt and vt+1 are indexed as

vt = z1 < z2 < . . . < zq = vt+1.

Using the fact that |vt − vt+1| < 64C2−k, and that αvt is very small, it is easy to convince
oneself that

vt, vt+1 ∈ B(zi, 65A2−k) = N (zi), 1 ≤ i ≤ q.
(I omit the proof, because it is so clear that this holds for some suitable choice of ε, even
if it this were not exactly ε = 1/32). Consequently, if it happens that αzi ≥ ε for even one
index 1 ≤ i ≤ q, then either [vt, vt+1] ⊂ Γzi ⊂ Γk or B(vt, vt+1) ⊂ Γzi ⊂ Γk by Case (L),
and we are happy.

So, the remaining case is where αzi < ε for all 1 ≤ i ≤ q. The plan is to show that
zi is connected to zi+1, for 1 ≤ i ≤ q − 1, by either an edge or a bridge contained in
Γzi ⊂ Γk; it will then follow that vt is connected to vt+1 by a tour in Γk, as claimed. If
|zi − zi+1| < 30A2−k, then we are in Case (S-NT) and [zi, zi+1] ⊂ Γzi ⊂ Γk.

z
i

z
i+1

FIGURE 9. The final case in the proof of connectedness.
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Otherwise, |zi − zi+1| ≥ 30A2−k, and we are in either Case (S-TT) or (S-TB). In Case
(S-TB), the bridge B(zi, zi+1) is contained in Γk, and we are happy. So, it suffices to rule
out Case (S-TT), where potentially ΓRzi = {zi}. This uses the fact that [wt, wt+1] is an edge
in Γk−1, so in particular |wt − wt+1| < 30A2−(k−1). Recall the point wzir ∈ B(zi, 2A2−k)
from the Case (S-TT) associated with zi: now this case could only occur, if the "next point
of Vk−1 to the right" from wzir " was very far away (at distance ≥ 30A2−(k−1)) or did not
exist at all. But since zi satisfies vt < zi < vt+1, and

|zi − vt+1| ≥ |zi − zi+1| ≥ 30A2−k,

we can infer that wt+1 ∈ Vk−1 ∩ N (zi) lies (strictly) to the right from wzir , and satisfies
|wzir − wt+1| ≤ |wt − wt+1| < 30A2−(k−1). Hence also the "next point of Vk−1 to the right
from wzir " is at distance < 30A2−(k−1), and Case (S-TT) cannot occur at zi. The proof of
connectedness is complete.

9. LENGTH ESTIMATES

Now we really arrive at the core of the proof. The aim will be to prove that

H1(Γk) . 1 +
∑
j≤k

∑
v∈Vj

α2
v2
−j . (9.1)

(Had we not normalised r0 = 1, then r0 would appear above in place of 1). The obvious
first attempt would be to estimate

H1(Γk) ≤ H1(Γk−1) + C
∑
v∈Vk

α2
v2
−k,

since this estimate could be iterated k times to produce (9.1). Before getting down on the
actual details, I briefly discuss why this should work, and why it actually does not quite
work. Let v ∈ Vk. The basic (and slightly naive) idea is estimate

H1(Γv) ≤ H1(Γk−1 ∩N (v)) + Cα2
v2
−k. (9.2)

If αv ≥ ε, this is trivially true (with implicit constants depending on ε of course), since
it is easy to check that H1(Γv) . 2−k. If αv < ε, the situation might look like the one
in Figure 10. In particular, the vertices of Γk are ordered linearly relative to `v. Now, if
cheating and over-optimism are allowed for a moment, the length of all Γk inside N (v)
can be estimated as follows. First, for every edge [v′, v′′] ⊂ Γk with v′, v′′ ∈ Vk ∩ N (v),
use Lemma 7.6 to infer that

H1([v′, v′′]) ≤ H1([π`v(v
′), π`v(v

′′)]) + Cα2
v2
−k.

Let’s assume for simplicity that Γk ∩ N (v) consists of edges only. Then, summing over
the edges, and observing that the projection π`v is injective on Γk, one arrives (roughly)
at

H1(Γv) ≤ H1(`v ∩N (v)) + Cα2
v2
−k.

There are several cheats here, so do not take the estimate above seriously! Finally, if Γk−1

"spans through the entire ball N (v)", meaning that every point t ∈ `v ∩ N (v) can be
obtained as a projection π`v(x) for some x ∈ Γk−1 ∩N (v), then

H1(Γv) ≤ H1(`v ∩N (v)) + Cα2
v2
−k ≤ H1(Γk−1 ∩N (v)) + Cα2

v2
−k,
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FIGURE 10. The set Γk is drawn in black, and the part of Γk−1 insideN (v)
is drawn in green. The line `v, which now coincidentally happens to pass
through v, is drawn in blue.

simply because π`v is a 1-Lipschitz mapping and does not increase length. This is pre-
cisely the estimate we were after. Of course, in real life there may be bridges contained
in Γv, and there will be problems near the boundary of N (v) (where edges are no longer
spanned by two vertices in Vk ∩ N (v)). These problems are reason for serious headache,
but they are little compared to the following big issue: even if Γv has non-trivial length,
the set Γk−1 ∩ N (v) can be absolutely tiny, in fact a point! This can happen, for instance,
if v is a vertex on a bridge and has many neighbours in Vk ∩ N (v), but w = v↑ has no
neighbours in Vk−1 ∩N (v), see Figure 11.

FIGURE 11. The vertex v belongs to the same bridge as w = v↑ ∈ Vk−1

and w↑ ∈ Vk−2. The vertex w is the only vertex of Vk−1 inside N (v); in
particular, w = (v′)↑ for all the vertices v′ ∈ Vk ∩N (v), which forces these
vertices to lie quite close to w – and each other. Thus, these vertices are
inter-connected by edges in Γk.
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Clearly, there is no chance for anything like (9.2) to work in this scenario. This is the
main problem in the proof, and it is resolved with a very clever "pre-payment" scheme.
This is formalised through the notion of virtual credit, which we now start to discuss.

9.1. Virtual credit. The virtual credit associated with v ∈ Vk is the number

$v = $v,k = $k := 3A2−k.

The virtual credit of a bridge B(v, v′), v, v′ ∈ Vk is

$v,v′ :=
∑

w∈B(v,v′)

$w = 2 · 3A
∑
j≥k

2−k = 12−k.

Virtual credit is an allegory of life itself: it comes and goes, not everyone has it all the
time, and everyone loses it in the end. For every k ≥ 0, we will inductively define a set

Rk ⊂
⋃
l≥k

Vl,

whose elements are "rich", and have credit at time k. Other elements are poor and have
nothing. The total virtual credit at time k equals

$(Rk) :=
∑
v∈Rk

pv.

The initial set R0 of rich vertices consists of all the elements of
⋃
k≥0 Vk, which make an

appearance in the definition of Γ0. In other words, every v ∈ V0 lies in R0, and also
B(v, v′) ⊂ R0 for all v, v′ ∈ V0. To get the induction rolling, I state two key properties,
which will always be required from Rk:

(BP) The "bridge property" states that whenever B(v, v′) ⊂ Γk with v, v′ ∈ Vj and
0 ≤ j ≤ k, then Rk contains all vertices in B(v, v′) ∩

⋃
l≥k+1 Vl.

(TVP) The "terminal vertex property" is a bit more complicated, but it essentially states
that "those without neighbours are rich". To be precise, fix v ∈ Vk, and let ` be any
line such that

dist(y, `) < ε · 2−k, y ∈ Vk ∩B(v, 30A2−k).

Then the points in Vk∩BN(v, 30A2−k) are arranged so that "left" and "right" make
sense. In case there is no vertex of Vk either to the left or to the right of v inside
B(v, 30A2−k), then v ∈ Rk.

These properties are trivially satisfies by R0. So, next we assume that Rk−1 has already
been defined for some k ≥ 1, satisfying the properties (BP) and (TVP). Let us see, how to
define Rk. First, initialise Rk by setting

Rk := Rk−1 \ [Vk−1 ∪ Vk].
Next, we consider each element v ∈ Vk and add vertices to Rk according to the familiar
cases (L), (S) etc.

(L) If αv ≥ ε, then all vertices v′ ∈ Vk∩N (v) are added toRk. Also, ifB(v′, v′′) ⊂ Γk,v,
then B(v′, v′′) ⊂ Rk.

(S-NT) If αv < ε, and both ΓRv and ΓLv were defined via Case (S-NT), then no vertices are
added to Rk. Thus, v is terminal to neither left nor right.

(S-TT) If αv < ε and either ΓRv or ΓLv was defined via Case (S-TT), then v is added to Rk.
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(S-TB) If αv < ε and ΓRv was defined via Case (S-TB), add B(v, v1) to Rk. Similarly, if ΓLv
was defined via Case (S-TB), then add B(v−1, v) to Rk.

This completes the definition of Rk, and it is clear that Rk satisfies the bridge property
(BP) (note that if v ∈ Rk−1 ∩ Vk+1, then also v ∈ Rk ∩ Vk+1). It is also clear (by induction)
that Rk ⊂

⋃
l≥k Vl. It remains to verify that Rk satisfies the terminal vertex property

(TVP). So, fix v ∈ Vk and let ` be any such line that

dist(y, `) < ε · 2−k, y ∈ Vk ∩B(v, 30A2−k). (9.3)

Assume there is no vertex either to the "left" or "right" of v in the ordering of Vk ∩
B(v, 30A2−k) with respect to `. Since ` is a completely arbitrary line, the estimate (9.3)
tells us nothing about `v or αv: in particular, it could happen that αv ≥ ε. But in this
case v ∈ Rk by item (L) above, so we are happy. So, assume αv < ε. Then the set
Vk ∩ B(v, 30A2−k) is also ordered relative to `v, and, by choosing orientations correctly,
these orderings agree by Lemma 7.6. Thus, the fact that there is no vertex to the "left"
or "right" from v means that v is either terminal to the left or right, and hence one of the
items (S-TT) or (S-TB) occur. In both cases v ∈ Rk, and the induction is complete.

9.2. Proof of the length estimate (9.1). Now we are finally set to prove the estimate (9.1),
which is repeated below:

H1(Γk) . 1 +
∑
j≤k

∑
v∈Vj

α2
v2
−j . (9.4)

The key auxiliary estimate is the following. Let Edges(k) be the edges [v, v′] ⊂ Γk, and
let Bridges(k) be the bridgesB(v, v′) ⊂ Γk with v, v′ ∈ Vk (note that Γk may contain other
bridges than those included in the "generation k bridges" Bridges(k)). Then∑

[v,v′]∈Edges(k)

H1([v, v′]) +
∑

B(v,v′)∈Bridges(k)

H1(B(v, v′)) + $(Rk)

≤
∑

[w,w′]∈Edges(k−1)

H1([w,w′]) +
13

15

∑
B(v,v′)∈Bridges(k)

H1([v, v′]) (9.5)

+ $(Rk−1) + C
∑
v∈Vk

α2
v2
−k.

The reader might first think that there are typos on line (9.5), but there are none: the sum
should not run over the bridges of generation k − 1, and we really want to sum over
H1([v, v′]) instead ofH1(B(v, v′)).

9.2.1. Proof of (9.4) based on (9.5). By definition of Γk,

H1(Γk) ≤
∑

[v,v′]∈Edges(k)

+
∑
j≤k

∑
B(w,w′)∈Bridges(j)

H1(B(w,w′)),
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and hence (9.5) leads to

H1(Γk) + $(Rk)

≤
∑

[w,w′]∈Edges(k−1)

H1([w,w′]) +
∑
j≤k−1

∑
B(w,w′)∈Bridges(j)

H1(B(w,w′)) + $(Rk−1)

+
13

15

∑
B(v,v′)∈Bridges(k)

H1([v, v′]) + C
∑
v∈Vk

α2
v2
−k

= H1(Γk−1) + $(Rk−1) +
13

15

∑
B(v,v′)∈Bridges(k)

H1([v, v′]) + C
∑
v∈Vk

α2
v2
−k.

Now, performing the same estimate onH1(Γk−1) + $(Rk−1), and continuing in the same
manner k times, leads to

H1(Γk) ≤ H1(Γ0) + $(R0) +
13

15

∑
j≤k

∑
B(v,v′)∈Bridges(j)

H1([v, v′]) + C
∑
j≤k

∑
v∈Vj

α2
v2
−j . (9.6)

To conclude (9.4) from here, note that [v, v′] ⊂ B(v, v′) ⊂ Γk for all B(v, v′) ∈ Bridges(j)
and for all j ≤ k. Moreover, the sets [v, v′] arising this way are essentially disjoint, mean-
ing that

H1([v, v′] ∩ [w′, v′′]) = 0.

for distinct pairs v, v′ and w,w′. This follows immediately from the initial reduction we
made in Proposition 7.4. Consequently,

13

15

∑
j≤k

∑
B(v,v′)∈Bridges(j)

H1([v, v′]) ≤ 13

15
H1(Γk).

Now (9.4) follows from (9.6), combined with the nearly trivial estimate

H1(Γ0) + $(R0) . 1.

9.3. Proof of the estimate (9.5). I repeat the estimate below:∑
[v,v′]∈Edges(k)

H1([v, v′]) +
∑

B(v,v′)∈Bridges(k)

H1(B(v, v′)) + $(Rk)

≤
∑

[w,w′]∈Edges(k−1)

H1([w,w′]) +
13

15

∑
B(v,v′)∈Bridges(k)

H1([v, v′]) (9.7)

+ $(Rk−1) + C
∑
v∈Vk

α2
v2
−k.

Staring at the left hand side for a moment reveals that it can be split into "local" terms of
the form

σ(v) :=
∑

[v′v′′]∈Edges(k,v)

H1([v′, v′′]) +
∑

B(v′,v′′)∈Bridges(k,v)

H1(B(v′, v′′)) + $(Rk(v)), v ∈ Vk,

where Edges(k, v) and Bridges(k, v) stand for the bridges and edges added to Γv, and
Rk(v) is the part of Rk constructed with v ∈ Vk fixed (recall the definition of Rk). How-
ever, simply estimating the left hand side of (9.7) by a sum of the local terms σ(v) over
v ∈ Vk is wasteful: for instance, each edge [v′, v′′] ⊂ Γk only needs to be counted once,
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even if it may (and most often will) be included in Γv for several distinct vertices v. Of
course, even a wasteful estimate can sometimes work, but here it is too rough. Namely,
every term on the right hand side of (9.7) can also be used only once to "pay" for some-
thing on the left hand side, and this is essentially why terms on the left hand side should
also be accounted for precisely once.

At a high level, proving the estimate (9.7) thus has two challenges: first, to estimate
each term σ(v) separately by something appearing on the right hand side of (9.7), and,
second, to make sure that nothing on the right hand side gets used twice in such esti-
mates, when v ∈ Vk varies. Thus, the proof will (formally speaking) contain the con-
struction of an injective mapping Ψ from all the terms on the left hand side to those on
the right hand side. I will never attempt to write the complete expression of Ψ down, but
this philosophy is good to keep in mind.

The proof now begins. The local terms σ(v) with αv ≥ ε allow for a very care-free
estimate:

9.3.1. Edges, bridges and virtual credit nearby a case (L) vertex. Assume that αv ≥ ε. Then

σ(v) . 2−k . α2
v2
−k,

which is certainly good enough for us. The other cases will be more involved, but we can
already benefit from the fact that Case (L) has been settled: in case an edge, or bridge,
or virtual credit appearing below also happens to appear in some local term σ(v) with
αv ≥ ε, then we know that this edge/bridge/virtual credit has already been accounted
for, and can be ignored.

9.3.2. Virtual credit and parts of edges very close to Case (S-TT) vertices. Assume that αv < ε,
so that both Vk ∩ N (v) and Vk−1 ∩ N (v) are ordered along the line ` = `v, and "left" and
"right" make sense. In this subsection, we will not handle the full sum σ(v) for a Case
(S-TT) vertex v ∈ Vk, but only a part of it. The rest will come later. For the moment, we
are indeed just interested in bounding the quantity

$v +
∑

[v′,v′′]∈Edges(k,v)

H1([v′, v′′] ∩B(v, 2A2−k)) (9.8)

for a fixed vertex v ∈ Vk, for which either ΓLv or ΓRv was defined through Case (S-TT).
Note that in this case v ∈ Rk, so $v is indeed a part of $(Rk) and appears on the left hand
side of (9.7). The quantity in (9.8) will be bounded by either $w or $w + $w↓ for certain
w,w↓ ∈ Rk−1 (which are, in turn, terms appearing on the right hand side of (9.7)).

There are a few cases to consider. You probably need to recall what Case (S-TT) means:
in particular, recall the definition of the left-most and right-most vertices

wl ∈ Vk−1 ∩B(v, 2A2−k) and wr ∈ Vk−1 ∩B(v, 2A2−k).

Observe that certainly

dist(y, `) < ε · 2−(k−1), y ∈ Vk−1 ∩B(w, 30A2−(k−1)), w ∈ {wl, ww}, (9.9)

because B(w, 30A2−(k−1)) ⊂ B(v, 65A2−k), and using the definition of αv < ε. Now,
assume that ΓRv , for instance, was defined through Case (S-TT). By definition, this means
that there is no vertex of Vk−1 "to the right" from wr within B(w, 30A2−(k−1)), and by the
terminal vertex property (TVP), we conclude that wr ∈ Rk−1. Now, once more using the
fact that αv < ε, recalling the length estimate in Lemma 7.6, and observing that there are
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no edges passing in the "right half" ofB(v, 2A2−k) (this is precisely because ΓRv is defined
via Case (S-TT), see Figure 12), one obtains

$v+
∑

[v′,v′′]∈Edges(k,v)

H1([v′, v′′]∩B(v, 2A2−k)) = 3A2−k+(1+3ε2)2A2−k < 3A2−(k−1) = $wr ,

Of course, the estimate above would hold even with wr /∈ Rk−1, but the point is that
now $wr is something appearing on the right hand side of (9.7). In case ΓLv was defined
via Case (S-TT), the estimate is the same, with wr replaced by wl, and "left" and "right"
interchanged.

v

w
r

v

B(v,2A2  
-k
)

FIGURE 12. The task is to estimate the length of the red curve.

Are we done? No! It might occur that a single vertex w ∈ Rk−1 is needed in the treat-
ment of many distinct Case (S-TT) vertices v as above (so the injectivity of the mapping
Ψ is in jeopardy). More precisely, there could be several vertices v such that either

• w = wvr , where ΓRv was defined via Case (S-TT), or
• w = wvl , where ΓLv was defined via Case (S-TT).

I emphasise again that this is a real problem, because $w may only be counted once in
$(Rk−1) on the right hand side of (9.7). It turns out that several can be exactly twice
(as we will shortly see), but even so $w is not large enough alone. To start tackling this
problem, first note that whenever w arises as wvr or wvl for some such vertex v, then
w ∈ B(v, 2A2−k), so v ∈ B(w, 2A2−k).

Now, assume that there are at least two Case (S-TT) vertices v1, v2 ∈ Vk ∩B(w, 2A2−k),
which give rise to the same w in the argument above. Then, inside the ball B(w, 40A2−k)
(this is just some ball large enough to contain all the interesting action) the vertices of Vk
are ordered with respect to ` = `v1 , say, and "left" and "right" make sense. Assume that
v1 is "left" from v2: then v1 is terminal to the left, and v2 is terminal to the right. Since
both are Case (S-TT) vertices, the conclusion is that ΓLv1 must have been defined via Case
(S-TT), and ΓRv2 must have been defined via Case (S-TT). Now, we are in trouble, if

w = wv1l and w = wv2r .

If this is really the case, then the fact that ΓLv1 was defined via Case (S-TT) implies that
there are no vertices of Vk−1 within distance 30A2−(k−1) to the left from wv1l = w. Simi-
larly, there are no vertices of Vk−1 within distance 30A2−(k−1) to the right from w. So, w
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is in fact the only vertex in Vk−1 ∩B(w, 30A2−(k−1)), which forces

v↑1 = w = v↑2,

This gives the slightly improved estimate

|v1 − v2| ≤ |v1 − w|+ |w − v2| ≤ 2A2−k.

In particular,

L :=
∑

[v′,v′′]∈Edges(k)

H1([v′, v′′] ∩ (B(v1, 2A2−k) ∪B(v2, 2A2−k))

≤ (1 + 3ε2)2A2−k < 3A2−k =
$w
2
,

using Lemma 7.6 again, and noting that all the possible edges in the summation must
lie between v1 and v2 (in the ordering with respect to `). Moreover, possible vertices v
(strictly) between v1 and v2 cannot give rise to w in the sense that v1 and v2 do, because
they are, evidently, not terminal in either direction. This is why at most the two named
vertices v1, v2 can give rise to w.

The final observation is that since w is not connected by an edge to any other vertices
in Vk−1 (all such vertices are too far away, at distance 30A2−(k−1) at least), but since w
is still in some manner connected to other vertices in Γk−1, it must be the case that w
belongs to a bridge B(x, y) for some x, y ∈ Vj , j < k − 1. Thus also w↓ ∈ B(x, y) ∩ Vk,
and hence w↓ ∈ Rk−1 by the bridge property (BP) of virtual credit. Since

$v1 + $v2 = $w↓ +
$w
2
,

we now arrive at the estimate

L+ $v1 + $v2 ≤ $w + $w↓ .

This means that even in the worst case, when w is needed twice, every element of Rk−1

is only needed once in (this part of) the estimate (9.7)!

9.3.3. Virtual credit, edges and bridges near Case (S-TB) vertices. Suppose that v ∈ Vk has
αv < ε, so that both Vk∩N (v) and Vk−1∩N (v) are ordered along the line ` = `v, and "left"
and "right" make sense. In this subsection, we assume that at least one of ΓRv and ΓLv was
defined via Case (S-TB). For instance, assume that ΓRv was defined via Case (S-TB), so that
v1, the "next vertex to the right" from v inside N (v) exists, and lies at distance ≥ 30A2−k

from v, see Figure 13. This time we will handle the following part of σ(v) + σ(v1):

$v,v1 +
∑

[v′,v′′]∈Edges(k)

H1([v′, v′′] ∩B({v, v1}, 2A2−k)) +H1(B(v, v1)). (9.10)

Here B({v, v1}, 2A2−k) := B(v, 2A2−k) ∪B(v1, 2A2−k). We will bound (9.10) by

H1([wr, wr+1]) +
13

15
H1([v, v1]).

Note that both these terms above appear on the right hand side of (9.7), and we have not
used them in the previous cases, so we are free to waste them here. Start by observing
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wr+1wr

v

v
1

v

B(v,30A2
-k

)

FIGURE 13. The possible location of the edges in Γk ∩ B({v, v1}, 2A2−k)
are marked in red, a part of the bridge in Γk is marked in blue, and
the edge [wr, wr+1] ⊂ Γk−1 is marked in green. The fact that wr+1 ∈
B(v1, 2A2−k) uses (7.10).

that

H1(B(v, v1)) ≤ H1([v, v1]) + 2

∞∑
j=0

A2−j = H1([v, v1]) + 4A2−k,

by repeated application of the hypothesis (V ↓). Also, recall that $v,v1 = 12A2−k. The
lengths of the edges inside B(v, 2A2−k) can be estimated by∑

[v′,v′′]⊂Edges(k)

H1([v′, v′] ∩B(v, 2A2−k)) ≤ (1 + 3ε2)2A2−k < 3A2−k

by Lemma 7.6, and the same holds for the edges inside B(v1, 2A2−k). All in all, (9.10)
turns out to be at most

(4 + 12 + 6)A2−k +H1([v, v1]) = 22A2−k +H1([v, v1]).

Next, note that
H1([wr, wr+1]) ≥ H1([v, v1])− 4A2−k,

because wr ∈ B(v, 2A2−k) and v1 ∈ B(wr+1, 2A2−k) by (7.10). This proves that

(9.10) ≤ H1([wr, wr+1]) + 26A2−k ≤ H1([wr, wr+1]) +
13

15
H1([v, v1]),

using the assumption |v − v1| ≥ 30A2−k.
Again, it is a legitimate concern, whether this case is now really complete: could it,

again, happen that a term of the form H1([wr, wr+1]) or 13
15H

1([v, v1]) comes up several
times, as one varies the point v? This does happen, indeed, but only twice: for v itself,
and then v1, and this is precisely why these two terms received a symmetrical treatment
above. You should now think, how the sum (9.10) had looked like, had we started off
with v1 instead of v. If αv1 < ε, then you will find that ΓLv1 is defined via Case (S-TB), and
v is the first vertex to the left from v1. Consequently, (9.10) looks the same for v and v1.
But since these terms of (9.10) only need to be counted once in the sum (9.7), this is ok.

Now, we prove that the terms H1([wr, wr+1]) or 13
15H

1([v, v1]) can only arise from this
case for v or v1. So, assume that v′ 6= v is another vertex with this property, and let us
prove that v′ = v1. Since v′ is relevant for this case, v′ must have either a left or a right
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neighbour v′−1 or v′1 such that B(v′−1, v
′) ⊂ Γk or B(v′, v′1) ⊂ Γk. Assume, say, that v′ has

such a left neighbour v′−1.
Now, the proof above applied to the pair v′, v′−1 gives rise to the terms

13
15H

1([v′−1, v
′]) and H1([w′l−1, w

′
l]),

which are needed in estimating the analogue of (9.10). We potentially run into trouble,
if either [v′−1, v

′] = [v, v1] or [w′l−1, w
′
r] = [wr, wr+1], because the terms H1([v, v1]) and

H1([wr, wr+1]) are needed (also) in connection with v. In case [v′−1, v
′] = [v, v1], then

v′ = v1, as claimed.
What if [w′l−1, w

′
r] = [wr, wr+1], so that w′l−1 = wr =: w1 and w′r = wr+1 =: w2? Then

v, v′−1 ∈ B(w1, 2A2−k) and v1, v
′ ∈ B(w2, 2A2−k),

But now all the points v, v′, v′−1, v1 are linearly ordered with respect to `v, say, and this
easily implies v1 = v′. Otherwise v1 would either be strictly to the left or right from v′.
If left, then v′−1 certainly would not be the nearest point left from v′. If right, then v1

certainly would not be the nearest point right from v. This proves that v1 = v′.
We soon move to the last case: it will be crucial to keep in mind that certain edges

[w,w′] ∈ Edges(k − 1) have already been used in the current case. So, the reader needs
to make sure that those edges do not get used again!

9.3.4. Whatever remains. What actually remains? It is probably a good idea to have a look
at (9.7) once more:∑

[v,v′]∈Edges(k)

H1([v, v′]) +
∑

B(v,v′)∈Bridges(k)

H1(B(v, v′)) + $(Rk)

≤
∑

[w,w′]∈Edges(k−1)

H1([w,w′]) +
13

15

∑
B(v,v′)∈Bridges(k)

H1([v, v′]) (9.11)

+ $(Rk−1) + C
∑
v∈Vk

α2
v2
−k.

It is clear that H1(B(v, v′)) has been dealt with for every bridge B(v, v′) ∈ Bridges(k) by
the previous case. It is not true that every element of Rk has been taken care of: we have
only accounted for the new additions to Rk at step k (let us denote them by Nk), and a
quick look at Section 9.3.2 reveals that we have done so by using exclusively the virtual
credit in Rk−1 ∩ [Vk−1 ∪ Vk]. But

Rk \Nk ⊂ Rk−1 \ [Vk−1 ∪ Vk],

because Rk was initialised by deleting everything from Rk−1 ∩ [Vk−1 ∪ Vk], so

$(Rk \Nk) ≤ $(Rk−1 \ [Vk−1 ∪ Vk]).

This implies that $(Rk) is now completely accounted for. Consequently, all that re-
mains "to be paid for" on the left hand side of (9.11) are certain edges, and parts thereof.
More precisely, in Sections 9.3.1–9.3.3, we have already taken care of edges, and parts
thereof, which are contained in either N (v) for some v ∈ Vk with αv ≥ ε, or alternately
B(v, 2A2−k) for some vertex v ∈ Vk, which is terminal to either left or right.
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v=u

v'u'
=u'ru

v
2A2

-k

w'r
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u'u( , (

t

x(t)

FIGURE 14. The position of the vertices v, v′, u, v′, ul, u′r, wl and w′r. In this
scenario v′ happens to be a terminal vertex, whereas v is a non-terminal
vertex. The set Γk is drawn in red, and the set Γk−1 is drawn in green. The
set E(u, u′) is the part of Γk−1 between the dotted blue lines.

Now, fix an edge [v, v′] ⊂ Γk with v, v′ ∈ Vk, and such that max{αv, αv′} < ε. Let
[u, u′] ⊂ [v, v′] be (any) maximal sub-segment, which stays at distance ≥ 2A2−k from all
terminal vertices. Let π be the orthogonal projection to the line `v. By Lemma 7.6,

H1([u, u′]) ≤ (1 + 3α2
v)H1([π(u), π(u′)]) ≤ H1([π(u), π(u′)]) + 90Aα2

v2
−k,

since π is 1-Lipschitz and |u− u′| ≤ 30A2−k by the Principle. Assume, say, that u lies to
the left form u′ in the order relative to `v (this makes sense, as αv < ε). Then, let ul ∈ Vk
(resp. u′r ∈ Vk) be the closest vertex to the left from u (resp. right from u′) with

π(ul) < π(u)−A2−k and π(u′r) > π(u) +A2−k.

Why do they exist? If, for instance, all vertices to the left from u withinN (v) satisfied the
opposite inequality, then all of them would certainly lie in B(u, 2A2−k), and the leftmost
of them would be terminal to the left, contrary to the definition of u. The situation is
depicted in Figure 14. Finally, use hypothesis (V ↑) to find verticeswl = u↑l andw′r = (u′r)

↑

with |wl − ul| < A2−k and |w′r − u′r| < A2−k. It follows that

π(wl) < π(u) < π(u′) < π(w′r). (9.12)

Moreover, the vertices wl and wr can be connected by a finite sequence of edges inside
Γk−1 ∩ N (v), which essentially follows from the Principle: wl is fairly close to v (at dis-
tance ≤ 32A2−k � 30A2−(k−1)), so wl and v↑ can first be connected by edges in Γk−1

inside N (v). Then, v↑ can be connected to w′r, since w′r is not much further from v↑ than
|v − v′| ≤ 30A2−k � 30A2−(k−1).

Now, it follows from (9.12) and the discussion above that for every point t ∈ [π(u), π(u′)],
there is a point x(t) ∈ Γk−1, belonging to one of the edges connecting wl to w′r, such that
π(x(t)) = t (see Figure 14). Moreover, this point x can be chosen so that

|x(t)− t| ≤ αv2−k. (9.13)

(Indeed, since the end-points of all edges [w,w′] fully contained Γk−1 ∩ N (v) satisfy
dist(w, `v) < αv2

−k, the same distance bound remains true for any points on [w,w′].)
Consequently, using again the fact that π is 1-Lipschitz,

H1([π(u), π(u′)]) ≤ H1(E(u, u′)),

where E(u, u′) := {(x(t) ∈ Γk−1 : t ∈ [u, u′]}. All in all,

H1([u, u′]) ≤ H1(E(u, u′)) + 90α2
v2
−k, (9.14)
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whereH1(E(u, u′)) is certainly a part of the sum∑
[w,w′]∈Edges(k−1)

H1([w,w′]).

It is also easy to see that those edges [w,w′] do appear in this manner, which arose (and
whose length was already used) in the previous section. Any such edge [w,w′] had the
property that both w and w′ lay at distance ≤ 2A2−k from Case (S-TB) vertices in Vk, and
there are none of those close enough.

So, the only remaining problem is that the sets E(u, u′) can have some overlap as u, u′

vary. Assume that two sets of the form E1 := E(u1, u
′
1) and E2 := E(u2, u

′
2) meet at a

point ξ ∈ Γk−1, where [u1, u
′
1] and [u2, u

′
2] are distinct segments. The first task is to show

that "all the action happens in a single local picture N (v)". Here are some basic facts:
[u1, u

′
1] ⊂ [v1, v

′
1] and [u2, u

′
2] ⊂ [v2, v

′
2] for certain vertices v1, v2, v

′
1, v
′
2 with α-numbers at

most ε, satisfying

|v1 − v′1| < 30A2−k and |v2 − v′2| < 30A2−k.

Moreover, it is easy to check that E(u1, u
′
1) ⊂ B(v1, 32A2−k)∩B(v′1, 32A2−k) and similarly

E(u2, u
′
2) ⊂ B(v2, 32A2−k)∩B(v′2, 32A2−k). In particular, the point ξ lies in all of the balls

above. Now, it does not make a big difference, which vertex vi or v′i we declare as our
"centre" v: say v := v1. Then αv < ε, and all the sets above lie well insideN (v) (check this;
or if you are lazy, just assume that the constant "65" in the definition of N (v) is replaced
by 1010 – it’s precise value is totally irrelevant in future applications).

The points vi and v′i, i ∈ {1, 2} are now linearly ordered relative to ` = `v. It cannot
happen that v1 = v′1 and v2 = v′2, because the sets E(u, u′) arising from a single edge
[v1, v

′
1] are clearly disjoint (all those sets are defined the fixed projection π = πv1 , so the

points x(t) ∈ Γk−1 are distinct for disjoint intervals [u1, u
′
1], [u2, u

′
2] ⊂ [v1, v

′
1]).

Now there are essentially two different possibilities: either all the points vi, v′i are dis-
tinct, or then, say v′1 = v2 and the three points v1, v2, v

′
2 are consecutive in the linear order

relative to `. The first situation actually cannot occur, if ξ exists: this follows from the
separation |v′1 − v2| ≥ 2−k, and the fact that ε is so small, which implies that the projec-
tions πv1 and πv2 are nearly the same (as will be discussed carefully below). Checking
the details is a bit tedious, but the situation is shown in Figure 15.

v
1

v
2

v
2'

v
1'v

1

v
2

FIGURE 15. This is the case, where v1 < v′1 < v2 < v′2. The edges in Γk
are drawn in red, and the edges in Γk−1 are shown in green. The parts
of Γk−1 required to pay for [vi, v

′
i] (or anything in between) are separated

by the dotted lines. As you can see, these parts are distinct, because the
separation between |v′1 − v2| ≥ 2−k is large compared to αv12−k.
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Now, we are left with the case v′1 = v2. I rename the three vertices v1, v
′
1 = v2 and v′2

as v1, v2, v3, and the assumption is that v1 < v2 < v3 are consecutive vertices in the linear
order relative to `v1 (or any other `vi , because these orders are compatible due to small
α-numbers). This situation is depicted in Figure 16. This might be clear to the reader,

v
1

v
2

v
3

v
1

v
2

Overlap

FIGURE 16. This is the case, where v1 < v2 < v3, and moreover [u1, u
′
1] =

[v1, v2] and [u2, u
′
2] = [v2, v3]. The edges in Γk are drawn in deep red, and

the edges in Γk−1 are shown in green. The overlap E(v1, v2)∩E(v2, v3) is
show in bright red.

but let us briefly repeat: what causes the overlap? The segments [u1, u
′
1] and [u2, u

′
2] are

contained in the two distinct, consecutive segments [v1, v2] and [v2, v3]. Now, recall the
definition of E(ui, u

′
i) from right above (9.14). For the segment [ui, u

′
i], i ∈ {1, 2}, it gives

E(ui, u
′
i) = {xvi(t) : t ∈ [ui, u

′
i]},

where xvi(t) is a point on Γk−1, close to t, such that πvi(x(t)) = t. Thus, the amount of
overlap E(u1, u

′
1)∩ E(u2, u

′
2) depends on how much the angles of the projections πv1 and

πv2 differ from one another. If, for instance, αvi = 0 for i ∈ {1, 2}, then all the points
v1, v2, v3 lie on both the lines `vi , i ∈ {1, 2}, which forces the lines to coincide. In this case
πv1 = πv2 , and there is, in fact, no overlap.

This suggests (rather optimistically) that the following estimate could hold:

H1(E(u1, u
′
1) ∩ E(u2, u

′
2)) . α2 · 2−k, α := max{αv1 , αv2}. (9.15)

It turns out that (9.15) is true, as we will next verify. Note that this will complete the
whole proof by (9.14).

To prove (9.15), let θ be the angle between the lines `v1 and `v2 . The overlap E(u1, u
′
1)∩

E(u2, u
′
2) is then contained in a cone with opening angle θ and, by (9.13) at distance

≤ α · 2−k from both of the segments

[πv1(v1), πv1(v2)] ⊂ `v1 and [πv2(v2), πv2(v3)] ⊂ `v2 .
It now suffices to show that θ . α, because then elementary geometry gives the estimate
(9.14) (see Figure 17).

The estimate θ . α is simple trigonometry. Consider the right-angled triangle (also
shown in Figure 17) formed by the three points ∆1 := `v1 ∩ `v2 , ∆2 = πv1(v3) and ∆3 =
πv2(πv1(v3)). Then the angle at ∆1 is obviously θ, and so the sine of θ is

sin θ =
|∆2 −∆3|
|∆2 −∆1|

.
α · 2−k

2−k
= α.

Hence θ . α, and the proof of Theorem 7.1 is complete.
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FIGURE 17. The overlap E(v1, v2)∩E(v2, v3) is shown in bright red. It’s
total length is clearly bounded by . θ · α2−k. The triangle, from which
θ can be solved, is marked by the three blue discs: the intersection of `v1
and `v1 , the projection πv1(v3), and the projection πv2(πv1(v3)).
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