GEOMETRIC MEASURE THEORY AND SINGULAR INTEGRALS: EXERCISE SET 1

In these exercises we work in \mathbb{R}^d and $n \in (0, d]$.

(1) Suppose μ is a measure which is either finite or of order n (i.e. $\mu(B(x,r)) \leq Cr^n$). Let K be a standard n-dimensional kernel. Show that for $\epsilon > 0$, $f \in \bigcup_{p \in [1,\infty)} L^p(\mu)$ and $x \in \mathbb{R}^d$ the integral

$$\int_{|x-y|>\epsilon} K(x,y)f(y)\,d\mu(y)$$

is absolutely convergent.

(2) Suppose μ is a measure of order n and K is a standard n-dimensional kernel. Suppose φ is a smooth function satisfying that $0 \le \varphi \le 1$, $\varphi = 0$ on B(0, 1/2) and $\varphi = 1$ on $\mathbb{R}^d \setminus B(0, 1)$. Define the smoothly truncated singular integrals

$$T^{\varphi}_{\epsilon}f(x) = \int K(x,y)\varphi\Big(\frac{|x-y|}{\epsilon}\Big)f(y)\,d\mu(y), \qquad \epsilon > 0.$$

Show that T_{ϵ}^{φ} , $\epsilon > 0$, are operators with standard *n*-dimensional kernels (with the kernel bounds being independent of ϵ).

- (3) We continue with the setting of the previous exercise. Show by demonstrating a suitable pointwise bound that (*T_ϵ*)_{ϵ>0} are uniformly bounded in *L²(μ)* if and only if (*T_ϵ^φ*)_{ϵ>0} are uniformly bounded in *L²(μ)*.
- (4) Suppose μ is a locally finite measure on \mathbb{R}^d and S is an operator acting on two complex measures $\nu_1, \nu_2 \in M(\mathbb{R}^d)$ that satisfies

$$\mu(\{x \in \mathbb{R}^d : |S(\nu_1, \nu_2)(x)| > \lambda\}) \lesssim \left(\frac{\|\nu_1\| \|\nu_2\|}{\lambda}\right)^{1/2}, \qquad \lambda > 0, \, \nu_1, \nu_2 \in M(\mathbb{R}^d).$$

Suppose *H* is a set with $\mu(H) \in (0, \infty)$. Show (by using Kolmogorov type arguments as in the proof of Cotlar's inequality) that

$$\left(\frac{1}{\mu(H)}\int_{H}|S(\nu_{1},\nu_{2})|^{1/4}\,d\mu\right)^{4} \lesssim \frac{\|\nu_{1}\|}{\mu(H)}\frac{\|\nu_{2}\|}{\mu(H)}$$

(5) Suppose *n* is an integer and μ is a measure satisfying $cr^n \le \mu(B(x,r)) \le Cr^n$ for all $x \in \operatorname{spt} \mu$ and $0 < r \le \operatorname{diam}(\operatorname{spt} \mu)$. For $x \in \operatorname{spt} \mu$ and $0 < t \le \operatorname{diam}(\operatorname{spt} \mu)$ define

$$\beta_1(x,t) = \inf_L \frac{1}{t^n} \int_{B(x,t)} \frac{\operatorname{dist}(y,L)}{t} \, d\mu(y)$$

and

$$\beta_{\infty}(x,t) = \inf_{L} \sup_{y \in \operatorname{spt} \mu \cap B(x,t)} \frac{\operatorname{dist}(y,L)}{t},$$

where the infimum is taken over all the *n*-planes $L \subset \mathbb{R}^d$. Show that

$$\beta_{\infty}(x,t) \le C\beta_1(x,2t)^{1/(n+1)}.$$

(These are natural quantities which measure how "flat" the measure μ is on B(x, t).)