HOMEWORK 4

(1) (10pts) Prove that $x^{5}+48 x+24$ is irreducible in $\mathbb{Q}[x]$.
(2) (20pts) Let $A=\mathbb{Z}[i]$.
(a) The principle ideal (2) of A generated by 2 is not a prime ideal. Hint: Find $x, y \notin(2)$, but $x y \in(2)$.
(b) The principle ideal (3) of A is a prime ideal. Hint: If $x y \in(3)$, consider the norm of $x y$, use divisibility of 3 to conclude that one of x, y has to be in (3). You need to consider what happens when you have 3 divides $a^{2}+b^{2}$ with $a, b \in \mathbb{Z}$.
(c) The principle ideal (5) of A is not a prime ideal.
(d) The principle ideal (7) of A is a prime ideal.
(3) (10pts) Let α and β be distinct prime ideals of a Dedekind domain A. Show that $\alpha \beta=\alpha \cap \beta$. Hint: use Lemma 1 on Page 18 of the Book.
(4) (10pts) A : a ring. α : an ideal.
(a) If β_{1}, β_{2} are two ideals such that $\alpha \subset \beta_{1} \cup \beta_{2}$, then $\alpha \subset \beta_{1}$ or $\alpha \subset \beta_{2}$.
(b) Suppose $\gamma_{1}, \ldots, \gamma_{n}(n \geq 2)$ are prime ideals, such that $\alpha \subset$ $\gamma_{1} \cup \gamma_{2} \cup \cdots \cup \gamma_{n}$, then $\alpha \subset \gamma_{i}$ for one of the i. HINT: use induction on n. Think carefully about the case $n=3$.

Addendum (NOT HW).

- You may wonder when is (p) a prime ideal in $\mathbb{Z}[i]$, and when it is not. If you try some more computations with $p=11,13,17$ etc, you will quickly find some pattern. There is indeed a general criterion, using something called Legendre symbol.

