HOMEWORK 5

(1) $(10 \mathrm{pts}) A$: Dedekind domain. α, β : ideals of A. Show that the following are equivalent:
(a) $\alpha+\beta=A$
(b) Write $\alpha=\prod p_{i}^{\alpha_{i}}$ and $\beta=\prod q_{j}^{\beta_{j}}$ with $\alpha_{i}>0, \beta_{j}>0$ the decomposition into product of prime ideals, then $p_{i} \neq q_{j}, \forall i, j$.
(2) (10pts) A : Dedekind domain. $\alpha \subset A$ an ideal. Suppose $\alpha=$ $\prod_{i=1}^{n} p_{i}^{\alpha_{i}}$ where $\alpha_{i}>0$ and $p_{i} \neq p_{j}, \forall i \neq j$. Show that there exists an isomorphism

$$
A / \alpha \simeq \prod_{i=1}^{n} A / p_{i}^{\alpha_{i}}
$$

(3) (10pts) A : Dedekind domain. $\alpha, \beta, \gamma \subset A$ ideals. Suppose $p_{1}, p_{2}, p_{3} \subset$ A are prime ideals. Suppose

$$
\alpha=p_{1} p_{3}^{2}, \beta=p_{1}^{2} p_{2}^{2} p_{3}^{2}, \gamma=p_{1}^{5} p_{3}
$$

the decomposition of ideals. What is the decomposition for $\alpha+\beta+$ γ ?
(4) (10pts) Let $A=\mathbb{Z}[\sqrt{-5}]$. Show that:
(a) The ideal $(3,1+\sqrt{-5})$ is a prime ideal.
(b) The ideal $(3,1-\sqrt{-5})$ is a prime ideal.
(c) $(3,1+\sqrt{-5}) \cdot(3,1-\sqrt{-5})=(3)$.

