- (1) (10pts). Is $\sqrt{3} + \sqrt[3]{7} + 1$ integral over \mathbb{Z} ? Give reasons.
- (2) (20pts). Let f : A → B be an injective morphism of rings, and regard A as a subring of B. Suppose B is integral over A. Let β ⊆ B be an ideal of B. Define α := f⁻¹(β). Show that
 (a) α is an ideal of A.
 - (b) If β is a prime ideal, then α is also a prime ideal.
 - (c) The quotient ring B/β is integral over A/α .
 - (d) Suppose β is a prime ideal. Then β is a maximal ideal if and only if α is a maximal ideal.

Definition: Let B be an integral domain, K its field of fractions. If for any nonzero $x \in K$, we have $x \in B$ or $x^{-1} \in B$, then we call B a valuation ring of K.

- (3) (20pts) Let k be a field, B = k[[x]] the power series ring. Let K be the fraction field of B.
 - (a) If $f = a_0 + a_1 x + \ldots + a_n x^n + \ldots$ is an element of *B*. Show that *f* is a unit in *B* if and only if $a_0 \neq 0$.
 - (b) Define $\mathfrak{m} = \{x \in B, x \text{ is not a unit of } B\}$. Show that \mathfrak{m} is a maximal ideal.
 - (c) What is K like?
 - (d) Show that B is a valuation ring of K.
- (4) (20pts). This exercise generalizes many things in the above exercise, to the general setting.

Let B be an integral domain, K its field of fractions. Suppose B is a valuation ring of K. Define $\mathfrak{m} = \{x \in B, x \text{ is not a unit of } B\}$.

- (a) Show that \mathfrak{m} is an ideal.
- (b) Show that \mathfrak{m} is in fact a maximal ideal.
- (c) Show that \mathfrak{m} is the unique maximal ideal of B.
- (d) Show that B is integrally closed in K.