HOMEWORK 2

(1) (10 pts). Is $\sqrt{3}+\sqrt[3]{7}+1$ integral over \mathbb{Z} ? Give reasons.
(2) (20pts). Let $f: A \hookrightarrow B$ be an injective morphism of rings, and regard A as a subring of B. Suppose B is integral over A. Let $\beta \subseteq B$ be an ideal of B. Define $\alpha:=f^{-1}(\beta)$. Show that
(a) α is an ideal of A.
(b) If β is a prime ideal, then α is also a prime ideal.
(c) The quotient ring B / β is integral over A / α.
(d) Suppose β is a prime ideal. Then β is a maximal ideal if and only if α is a maximal ideal.

Definition: Let B be an integral domain, K its field of fractions. If for any nonzero $x \in K$, we have $x \in B$ or $x^{-1} \in B$, then we call B a valuation ring of K.
(3) (20pts) Let k be a field, $B=k[[x]]$ the power series ring. Let K be the fraction field of B.
(a) If $f=a_{0}+a_{1} x+\ldots+a_{n} x^{n}+\ldots$ is an element of B. Show that f is a unit in B if and only if $a_{0} \neq 0$.
(b) Define $\mathfrak{m}=\{x \in B, x$ is not a unit of $B\}$. Show that \mathfrak{m} is a maximal ideal.
(c) What is K like?
(d) Show that B is a valuation ring of K.
(4) (20pts). This exercise generalizes many things in the above exercise, to the general setting.

Let B be an integral domain, K its field of fractions. Suppose B is a valuation ring of K. Define $\mathfrak{m}=\{x \in B, x$ is not a unit of $B\}$.
(a) Show that \mathfrak{m} is an ideal.
(b) Show that \mathfrak{m} is in fact a maximal ideal.
(c) Show that \mathfrak{m} is the unique maximal ideal of B.
(d) Show that B is integrally closed in K.

