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Exercise 2.5.7. The trace of a matrix A is defined as

trA :=

n∑
i=1

(Aei | ei),

where (ei)
n
i=1 is any orthonormal basis. Show that this is well-defined, i.e. the result is independent of the

chosen orthonormal basis. If G is a matrix-valued function, check that
´
S
trG(x) dx = tr

´
S
G(x)dx.

Solution. Suppose that (ei)
n
i=1 and (fi)

n
i=1 are two orthonormal bases of Rn. We simply notice that for every

i, j = 1, 2, . . . , n we have

Aei =

n∑
j=1

(Aei | fj)fj =⇒ (Aei | ei) =

n∑
j=1

(Aei | fj)(fj | ei)

and

fj =

n∑
i=1

(fj | ei)ei =⇒ Afj =

n∑
i=1

(fj | ei)Aei =⇒ (Afj | fj) =

n∑
i=1

(fj | ei)(Aei | fj).

Thus, we get

n∑
i=1

(Aei | ei) =

n∑
i=1

n∑
j=1

(Aei | fj)(fj | ei) =

n∑
j=1

n∑
i=1

(Aei | fj)(fj | ei) =

n∑
j=1

(Afj | fj).

Since we just showed that the definition of the trace is independent of the chosen orthonormal basis, we
may prove the latter claim for the standard orthonormal basis of Rn, i.e. we simply set e1 = (1, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0), . . ., en = (0, . . . , 0, 1). For this basis, we get the “classical” definition of the trace: if
A = [aij ]

n
i,j=1, then

Aei =

n∑
j=1

ajiej =⇒ (Aei | ei) = aii =⇒ trA =

n∑
i=1

aii.

Now, since
´
S

(G(x))ij dx =
(´
S
G(x) dx

)
ij

for every i and j, we get

ˆ
S

trG(x)dx =

ˆ
S

n∑
i=1

(G(x))ii dx =

n∑
i=1

ˆ
S

(G(x))ii dx =

n∑
i=1

(ˆ
S

G(x) dx
)
ii

= tr
ˆ
S

G(x) dx.
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Exercise 2.5.8. Let A be a positive self-adjoint matrix. Show that ‖A‖op ≤ trA ≤ n‖A‖op.

Solution. Suppose that (ei)
n
i=1 is an orthonormal basis of Rn and that x =

∑n
i=1 xiei ∈ Rn with ‖x‖ = 1.

Since A is a positive self-adjoint matrix, we have A =
∑n
i=1 λiei ⊗ ei, where ei ⊗ ei = ei(ei | ) and λi > 0. For

the trace, we get

trA =

n∑
i=1

(Aei | ei) =

n∑
i=1

n∑
j=1

λj(ej ⊗ ej(ei) | ei) =

n∑
i=1

λi.

For the operator norm, we get

‖Ax‖2 = (Ax |Ax) =

 n∑
i=1

λi(ei |x)

∣∣∣∣ n∑
j=1

λjej(ej |x)

 =

n∑
i=1

λi(ei |x)

n∑
j=1

λj(ej |x)(ei | ej)

=

n∑
i=1

λ2i (ei |x)2

≤ max
j
λ2j ·

n∑
i=1

x2i

= max
j
λ2j · ‖x‖.

On the other hand, since Aej =
∑n
i=1 λiei ⊗ ei(ej) = λjej , we have ‖Aej‖ = λj for every j and thus,

‖A‖op ≥ maxj λj . Hence, we have trA =
∑n
i=1 λi and ‖A‖op = maxj λj . In particular,

‖A‖op = max
j
λj ≤

n∑
j=1

λj = trA ≤ n ·max
j
λj = n‖A‖op.
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Exercise 2.5.9. Prove that  
S

‖W (x)1/2〈W 〉−1/2S ‖2opdx ≤ cn.

Solution. We use the facts ‖A‖2op = ‖A∗A‖op and (AB)∗ = B∗A∗ and the self-adjointness of W (x)1/2 and
〈W 〉−1/2S . By the previous exercises, we get

 
S

‖W (x)1/2〈W 〉−1/2S ‖2op dx =

 
S

‖(W (x)1/2〈W 〉−1/2S )∗W (x)1/2〈W 〉−1/2S ‖op dx

=

 
S

‖(〈W 〉−1/2S )∗(W (x)1/2)∗W (x)1/2〈W 〉−1/2S ‖op dx

=

 
S

‖〈W 〉−1/2S W (x)〈W 〉−1/2S ‖op dx

≤
 
S

n · tr
(
〈W 〉−1/2S W (x)〈W 〉−1/2S

)
dx

= n · tr
 
〈W 〉−1/2S W (x)〈W 〉−1/2S dx

= n · tr
(
〈W 〉−1/2S

 
W (x) dx 〈W 〉−1/2S

)
= n · tr (I)

= n2.
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Exercise 2.5.10. Suppose that S is disjoint and W is a general matrix weight (not necessarily in A2). Show
that in this case Lemma 2.5.4 holds with just a dimensional constant in place of cd,n[W ]

1/2
A2

.

Solution. We need to show that with these assumptions we have(∑
S∈S

1

|S|

[ˆ
S

‖W (x)1/2〈W 〉−1/2S ‖op ψ(x) dx
]2)1/2

≤ cn‖ψ‖L2(Rd).

This is very simple with the help of Hölder’s inequality (H) and the previous exercise:(∑
S∈S

1

|S|

[ˆ
S

‖W (x)1/2〈W 〉−1/2S ‖op ψ(x) dx
]2)1/2

(H)
≤

(∑
S∈S

1

|S|

ˆ
S

‖W (x)1/2〈W 〉−1/2S ‖2op dx
ˆ
S

ψ(x)2 dx

)1/2

=

(∑
S∈S

 
S

‖W (x)1/2〈W 〉−1/2S ‖2op dx
ˆ
S

ψ(x)2 dx

)1/2

Ex. 2.5.9
≤ cn

(∑
S∈S

ˆ
S

ψ(x)2 dx

)1/2

S disjoint
≤ cn‖ψ‖L2(Rd).
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Exercise 2.5.11. Let W ∈ A2 be a L (Rn)-valued matrix weight, and x ∈ Rn a non-zero vector. Prove that
(Wx |x) ∈ A2 is a scalar-valued A2 weight and

[(Wx |x)]A2 ≤ [W ]A2 . (1)

Solution. Since W ∈ A2 and t 7→ (W (t)y | y) is a scalar-valued function for every fixed y ∈ Rn, we only need
to show the estimate (1). First, let us fix x ∈ Rn \ {0} and set

fQ(t) = 1Q(t)
(W (t)x |x)−1/2

|Q|1/2
x

for every cube Q. These functions satisfy

‖fQ‖2L2(W ) =

ˆ
(WfQ | fQ) =

 
Q

(Wx |x)−1/2(Wx |x)−1/2(Wx |x) = 1.

Let us also denote

TQg = 1Q〈g〉Q.

By Proposition 2.2.1 (P) and the self-adjointness of W (S), we get

[W ]A2 = sup
Q
‖〈W 〉1/2Q 〈W

−1〉1/2Q ‖
2
op

(P)
= sup

Q
‖TQ‖2op

= sup
Q

sup
‖g‖L2(W )≤1

‖TQg‖2L2(W )

≥ sup
Q
‖TQfQ‖2L2(W )

= sup
Q

ˆ
Q

(W 〈f〉Q | 〈f〉Q)

= sup
Q
〈(Wx |x)−1/2〉2Q

 
Q

(Wx |x)

(S)
= sup

Q

 
Q

(Wx |x)−1
 
Q

(Wx |x)

= [(Wx |x)]A2
.
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Exercise 2.5.12. Let w ∈ A2 and σ = w−1 be scalar-valued weights. Prove the linear bound

‖Tw,σS ‖L2→L2 ≤ cn[w]A2

in this case. Why does your argument not work for matrix weights? (Or, if it does, you have proved the matrix
A2 conjecture!)

Solution. Since w and σ are scalar-valued weights, we have

Tw,σS φ(x) =
∑
S∈S

1S(x)

 
S

‖w(x)1/2σ(y)1/2‖op φ(y) dy

=
∑
S∈S

1S(x)

 
S

w(x)1/2σ(y)1/2 φ(y) dy

=
∑
S∈S

1S(x)w(x)1/2〈φσ1/2〉S .

Thus, by Proposition 1.2.2 (P), we get

‖Tw,σS φ‖L2(Rd) =

ˆ
Rd

(∑
S∈S

1S(x)w(x)1/2 〈φσ1/2〉S

)2

dx

1/2

=

ˆ
Rd

(∑
S∈S

1S(x) 〈φσ1/2〉S

)2

w(x)dx

1/2

=

(ˆ
Rd

TS (φσ1/2)(x)2 w(x)dx
)1/2

= ‖TS (φσ1/2)‖L2(w)

(P)
≤ 4γ−1[w]AD

2
‖φσ1/2‖L2(w)

= 4γ−1[w]DA2

(ˆ
Rd

φ2(x)σ(x)w(x) dx
)1/2

= 4γ−1[w]DA2

(ˆ
Rd

φ2(x) dx
)1/2

= 4γ−1[w]DA2
‖φ‖L2(Rd),

where γ is the sparseness parameter of the collection S and [w]DA2
≤ [w]A2

.

The argument does not work for matrix weights for several reasons, the most obvious being that breaking
‖W (x)1/2Σ(y)1/2‖op ≤ ‖W (x)1/2‖op‖Σ(y)1/2‖op cannot be reversed later1.

1We notice that 1 = ‖I‖op = ‖AA−1‖op ≤ ‖A‖op‖A−1‖op for any invertible matrix. The right-hand side can be arbitrarily
large which can be seen by choosing

A =

[
M 0
0 1

]
, A−1 =

[
1/M 0
0 1

]
,

and noticing that ‖A‖op = M and ‖A−1‖op = 1 for any M ≥ 1 by Exercise 2.5.8.
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