Dyadic analysis and weights, Spring 2017
T. Hytönen / O. Tapiola (olli.tapiola@helsinki.fi)

Solutions to the exercise set 6 (6 pages)

Exercise 2.5.7. The trace of a matrix A is defined as

$$
\operatorname{tr} A:=\sum_{i=1}^{n}\left(A e_{i} \mid e_{i}\right)
$$

where $\left(e_{i}\right)_{i=1}^{n}$ is any orthonormal basis. Show that this is well-defined, i.e. the result is independent of the chosen orthonormal basis. If G is a matrix-valued function, check that $\int_{S} \operatorname{tr} G(x) \mathrm{d} x=\operatorname{tr} \int_{S} G(x) \mathrm{d} x$.

Solution. Suppose that $\left(e_{i}\right)_{i=1}^{n}$ and $\left(f_{i}\right)_{i=1}^{n}$ are two orthonormal bases of \mathbb{R}^{n}. We simply notice that for every $i, j=1,2, \ldots, n$ we have

$$
A e_{i}=\sum_{j=1}^{n}\left(A e_{i} \mid f_{j}\right) f_{j} \quad \Longrightarrow \quad\left(A e_{i} \mid e_{i}\right)=\sum_{j=1}^{n}\left(A e_{i} \mid f_{j}\right)\left(f_{j} \mid e_{i}\right)
$$

and

$$
f_{j}=\sum_{i=1}^{n}\left(f_{j} \mid e_{i}\right) e_{i} \quad \Longrightarrow \quad A f_{j}=\sum_{i=1}^{n}\left(f_{j} \mid e_{i}\right) A e_{i} \quad \Longrightarrow \quad\left(A f_{j} \mid f_{j}\right)=\sum_{i=1}^{n}\left(f_{j} \mid e_{i}\right)\left(A e_{i} \mid f_{j}\right)
$$

Thus, we get

$$
\sum_{i=1}^{n}\left(A e_{i} \mid e_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(A e_{i} \mid f_{j}\right)\left(f_{j} \mid e_{i}\right)=\sum_{j=1}^{n} \sum_{i=1}^{n}\left(A e_{i} \mid f_{j}\right)\left(f_{j} \mid e_{i}\right)=\sum_{j=1}^{n}\left(A f_{j} \mid f_{j}\right)
$$

Since we just showed that the definition of the trace is independent of the chosen orthonormal basis, we may prove the latter claim for the standard orthonormal basis of \mathbb{R}^{n}, i.e. we simply set $e_{1}=(1,0, \ldots, 0)$, $e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$. For this basis, we get the "classical" definition of the trace: if $A=\left[a_{i j}\right]_{i, j=1}^{n}$, then

$$
A e_{i}=\sum_{j=1}^{n} a_{j i} e_{j} \quad \Longrightarrow \quad\left(A e_{i} \mid e_{i}\right)=a_{i i} \quad \Longrightarrow \quad \operatorname{tr} A=\sum_{i=1}^{n} a_{i i}
$$

Now, since $\int_{S}(G(x))_{i j} \mathrm{~d} x=\left(\int_{S} G(x) \mathrm{d} x\right)_{i j}$ for every i and j, we get

$$
\int_{S} \operatorname{tr} G(x) \mathrm{d} x=\int_{S} \sum_{i=1}^{n}(G(x))_{i i} \mathrm{~d} x=\sum_{i=1}^{n} \int_{S}(G(x))_{i i} \mathrm{~d} x=\sum_{i=1}^{n}\left(\int_{S} G(x) \mathrm{d} x\right)_{i i}=\operatorname{tr} \int_{S} G(x) \mathrm{d} x
$$

Exercise 2.5.8. Let A be a positive self-adjoint matrix. Show that $\|A\|_{\mathrm{op}} \leq \operatorname{tr} A \leq n\|A\|_{\mathrm{op}}$.

Solution. Suppose that $\left(e_{i}\right)_{i=1}^{n}$ is an orthonormal basis of \mathbb{R}^{n} and that $x=\sum_{i=1}^{n} x_{i} e_{i} \in \mathbb{R}^{n}$ with $\|x\|=1$. Since A is a positive self-adjoint matrix, we have $A=\sum_{i=1}^{n} \lambda_{i} e_{i} \otimes e_{i}$, where $e_{i} \otimes e_{i}=e_{i}\left(e_{i} \mid\right)$ and $\lambda_{i}>0$. For the trace, we get

$$
\operatorname{tr} A=\sum_{i=1}^{n}\left(A e_{i} \mid e_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{j}\left(e_{j} \otimes e_{j}\left(e_{i}\right) \mid e_{i}\right)=\sum_{i=1}^{n} \lambda_{i} .
$$

For the operator norm, we get

$$
\begin{aligned}
\|A x\|^{2}=(A x \mid A x)=\left(\sum_{i=1}^{n} \lambda_{i}\left(e_{i} \mid x\right) \mid \sum_{j=1}^{n} \lambda_{j} e_{j}\left(e_{j} \mid x\right)\right) & =\sum_{i=1}^{n} \lambda_{i}\left(e_{i} \mid x\right) \sum_{j=1}^{n} \lambda_{j}\left(e_{j} \mid x\right)\left(e_{i} \mid e_{j}\right) \\
& =\sum_{i=1}^{n} \lambda_{i}^{2}\left(e_{i} \mid x\right)^{2} \\
& \leq \max _{j} \lambda_{j}^{2} \cdot \sum_{i=1}^{n} x_{i}^{2} \\
& =\max _{j} \lambda_{j}^{2} \cdot\|x\| .
\end{aligned}
$$

On the other hand, since $A e_{j}=\sum_{i=1}^{n} \lambda_{i} e_{i} \otimes e_{i}\left(e_{j}\right)=\lambda_{j} e_{j}$, we have $\left\|A e_{j}\right\|=\lambda_{j}$ for every j and thus, $\|A\|_{\mathrm{op}} \geq \max _{j} \lambda_{j}$. Hence, we have $\operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i}$ and $\|A\|_{\mathrm{op}}=\max _{j} \lambda_{j}$. In particular,

$$
\|A\|_{\mathrm{op}}=\max _{j} \lambda_{j} \leq \sum_{j=1}^{n} \lambda_{j}=\operatorname{tr} A \leq n \cdot \max _{j} \lambda_{j}=n\|A\|_{\mathrm{op}}
$$

Exercise 2.5.9. Prove that

$$
f_{S}\left\|W(x)^{1 / 2}\langle W\rangle_{S}^{-1 / 2}\right\|_{\mathrm{op}}^{2} \mathrm{~d} x \leq c_{n}
$$

Solution. We use the facts $\|A\|_{\mathrm{op}}^{2}=\left\|A^{*} A\right\|_{\mathrm{op}}$ and $(A B)^{*}=B^{*} A^{*}$ and the self-adjointness of $W(x)^{1 / 2}$ and $\langle W\rangle_{S}^{-1 / 2}$. By the previous exercises, we get

$$
\begin{aligned}
f_{S}\left\|W(x)^{1 / 2}\langle W\rangle_{S}^{-1 / 2}\right\|_{\mathrm{op}}^{2} \mathrm{~d} x & =f_{S}\left\|\left(W(x)^{1 / 2}\langle W\rangle_{S}^{-1 / 2}\right)^{*} W(x)^{1 / 2}\langle W\rangle_{S}^{-1 / 2}\right\|_{\mathrm{op}} \mathrm{~d} x \\
& =f_{S}\left\|\left(\langle W\rangle_{S}^{-1 / 2}\right)^{*}\left(W(x)^{1 / 2}\right)^{*} W(x)^{1 / 2}\langle W\rangle_{S}^{-1 / 2}\right\|_{\mathrm{op}} \mathrm{~d} x \\
& =f_{S}\left\|\langle W\rangle_{S}^{-1 / 2} W(x)\langle W\rangle_{S}^{-1 / 2}\right\|_{\mathrm{op}} \mathrm{~d} x \\
& \leq f_{S} n \cdot \operatorname{tr}\left(\langle W\rangle_{S}^{-1 / 2} W(x)\langle W\rangle_{S}^{-1 / 2}\right) \mathrm{d} x \\
& =n \cdot \operatorname{tr} f\langle W\rangle_{S}^{-1 / 2} W(x)\langle W\rangle_{S}^{-1 / 2} \mathrm{~d} x \\
& =n \cdot \operatorname{tr}\left(\langle W\rangle_{S}^{-1 / 2} f W(x) \mathrm{d} x\langle W\rangle_{S}^{-1 / 2}\right) \\
& =n \cdot \operatorname{tr}(I) \\
& =n^{2} .
\end{aligned}
$$

Exercise 2.5.10. Suppose that \mathscr{S} is disjoint and W is a general matrix weight (not necessarily in A_{2}). Show that in this case Lemma 2.5.4 holds with just a dimensional constant in place of $c_{d, n}[W]_{A_{2}}^{1 / 2}$.

Solution. We need to show that with these assumptions we have

$$
\left(\sum_{S \in \mathscr{S}} \frac{1}{|S|}\left[\int_{S}\left\|W(x)^{1 / 2}\langle W\rangle_{S}^{-1 / 2}\right\|_{\mathrm{op}} \psi(x) \mathrm{d} x\right]^{2}\right)^{1 / 2} \leq c_{n}\|\psi\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

This is very simple with the help of Hölder's inequality (H) and the previous exercise:

$$
\begin{aligned}
\left(\sum_{S \in \mathscr{S}} \frac{1}{|S|}\left[\int_{S}\left\|W(x)^{1 / 2}\langle W\rangle_{S}^{-1 / 2}\right\|_{\mathrm{op}} \psi(x) \mathrm{d} x\right]^{2}\right)^{1 / 2} & \stackrel{(\mathrm{H})}{\leq}\left(\sum_{S \in \mathscr{S}} \frac{1}{|S|} \int_{S}\left\|W(x)^{1 / 2}\langle W\rangle_{S}^{-1 / 2}\right\|_{\mathrm{op}}^{2} \mathrm{~d} x \int_{S} \psi(x)^{2} \mathrm{~d} x\right)^{1 / 2} \\
& =\left(\sum_{S \in \mathscr{S}} f_{S}\left\|W(x)^{1 / 2}\langle W\rangle_{S}^{-1 / 2}\right\|_{\mathrm{op}}^{2} \mathrm{~d} x \int_{S} \psi(x)^{2} \mathrm{~d} x\right)^{1 / 2} \\
& \stackrel{\text { Ex. }}{\leq 2.5 .9} c_{n}\left(\sum_{S \in \mathscr{S}} \int_{S} \psi(x)^{2} \mathrm{~d} x\right)^{1 / 2} \\
& \mathscr{S} \text { disjoint } c_{n}\|\psi\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{\leq}
\end{aligned}
$$

Exercise 2.5.11. Let $W \in A_{2}$ be a $\mathscr{L}\left(\mathbb{R}^{n}\right)$-valued matrix weight, and $x \in \mathbb{R}^{n}$ a non-zero vector. Prove that $(W x \mid x) \in A_{2}$ is a scalar-valued A_{2} weight and

$$
\begin{equation*}
[(W x \mid x)]_{A_{2}} \leq[W]_{A_{2}} \tag{1}
\end{equation*}
$$

Solution. Since $W \in A_{2}$ and $t \mapsto(W(t) y \mid y)$ is a scalar-valued function for every fixed $y \in \mathbb{R}^{n}$, we only need to show the estimate (1). First, let us fix $x \in \mathbb{R}^{n} \backslash\{0\}$ and set

$$
f_{Q}(t)=1_{Q}(t) \frac{(W(t) x \mid x)^{-1 / 2}}{|Q|^{1 / 2}} x
$$

for every cube Q. These functions satisfy

$$
\left\|f_{Q}\right\|_{L^{2}(W)}^{2}=\int\left(W f_{Q} \mid f_{Q}\right)=f_{Q}(W x \mid x)^{-1 / 2}(W x \mid x)^{-1 / 2}(W x \mid x)=1
$$

Let us also denote

$$
T_{Q} g=1_{Q}\langle g\rangle_{Q}
$$

By Proposition 2.2.1 (P) and the self-adjointness of $W(\mathrm{~S})$, we get

$$
\begin{aligned}
{[W]_{A_{2}} } & =\sup _{Q}\left\|\langle W\rangle_{Q}^{1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{1 / 2}\right\|_{\mathrm{op}}^{2} \\
& \stackrel{(\mathrm{P})}{=} \sup _{Q}\left\|T_{Q}\right\|_{\mathrm{op}}^{2} \\
& =\sup _{Q} \sup _{\|g\|_{L^{2}(W)} \leq 1}\left\|T_{Q} g\right\|_{L^{2}(W)}^{2} \\
& \geq \sup _{Q}\left\|T_{Q} f_{Q}\right\|_{L^{2}(W)}^{2} \\
& =\sup _{Q} \int_{Q}\left(W\langle f\rangle_{Q} \mid\langle f\rangle_{Q}\right) \\
& =\sup _{Q}\left\langle(W x \mid x)^{-1 / 2}\right\rangle_{Q}^{2} f_{Q}(W x \mid x) \\
& \stackrel{(\mathrm{S})}{=} \sup _{Q} f_{Q}(W x \mid x)^{-1} f_{Q}(W x \mid x) \\
& =[(W x \mid x)]_{A_{2}}
\end{aligned}
$$

Exercise 2.5.12. Let $w \in A_{2}$ and $\sigma=w^{-1}$ be scalar-valued weights. Prove the linear bound

$$
\left\|T_{\mathscr{S}}^{w, \sigma}\right\|_{L^{2} \rightarrow L^{2}} \leq c_{n}[w]_{A_{2}}
$$

in this case. Why does your argument not work for matrix weights? (Or, if it does, you have proved the matrix A_{2} conjecture!)

Solution. Since w and σ are scalar-valued weights, we have

$$
\begin{aligned}
T_{\mathscr{S}}^{w, \sigma} \phi(x) & =\sum_{S \in \mathscr{S}} 1_{S}(x) f_{S}\left\|w(x)^{1 / 2} \sigma(y)^{1 / 2}\right\|_{\mathrm{op}} \phi(y) \mathrm{d} y \\
& =\sum_{S \in \mathscr{S}} 1_{S}(x) f_{S} w(x)^{1 / 2} \sigma(y)^{1 / 2} \phi(y) \mathrm{d} y \\
& =\sum_{S \in \mathscr{S}} 1_{S}(x) w(x)^{1 / 2}\left\langle\phi \sigma^{1 / 2}\right\rangle_{S}
\end{aligned}
$$

Thus, by Proposition 1.2.2 (P), we get

$$
\begin{aligned}
\left\|T_{\mathscr{S}}^{w, \sigma} \phi\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} & =\left(\int_{\mathbb{R}^{d}}\left(\sum_{S \in \mathscr{S}} 1_{S}(x) w(x)^{1 / 2}\left\langle\phi \sigma^{1 / 2}\right\rangle_{S}\right)^{2} \mathrm{~d} x\right)^{1 / 2} \\
& =\left(\int_{\mathbb{R}^{d}}\left(\sum_{S \in \mathscr{S}} 1_{S}(x)\left\langle\phi \sigma^{1 / 2}\right\rangle_{S}\right)^{2} w(x) \mathrm{d} x\right)^{1 / 2} \\
& =\left(\int_{\mathbb{R}^{d}} T_{\mathscr{S}}\left(\phi \sigma^{1 / 2}\right)(x)^{2} w(x) \mathrm{d} x\right)^{1 / 2} \\
& =\left\|T_{\mathscr{S}}\left(\phi \sigma^{1 / 2}\right)\right\|_{L^{2}(w)} \\
& \leq 4 \gamma^{(\mathrm{P})}[w]_{A_{2}^{\mathscr{O}}}\left\|\phi \sigma^{1 / 2}\right\|_{L^{2}(w)} \\
& =4 \gamma^{-1}[w]_{A_{2}}^{\mathscr{O}}\left(\int_{\mathbb{R}^{d}} \phi^{2}(x) \sigma(x) w(x) \mathrm{d} x\right)^{1 / 2} \\
& =4 \gamma^{-1}[w]_{A_{2}}^{\mathscr{O}}\left(\int_{\mathbb{R}^{d}} \phi^{2}(x) \mathrm{d} x\right)^{1 / 2} \\
& =4 \gamma^{-1}[w]_{A_{2}}^{\mathscr{O}}\|\phi\|_{L^{2}\left(\mathbb{R}^{d}\right)}
\end{aligned}
$$

where γ is the sparseness parameter of the collection \mathscr{S} and $[w]_{A_{2}}^{\mathscr{O}} \leq[w]_{A_{2}}$.
The argument does not work for matrix weights for several reasons, the most obvious being that breaking $\left\|W(x)^{1 / 2} \Sigma(y)^{1 / 2}\right\|_{\text {op }} \leq\left\|W(x)^{1 / 2}\right\|_{\text {op }}\left\|\Sigma(y)^{1 / 2}\right\|_{\text {op }}$ cannot be reversed later ${ }^{1}$.

[^0]
[^0]: ${ }^{1}$ We notice that $1=\|I\|_{\mathrm{op}}=\left\|A A^{-1}\right\|_{\mathrm{op}} \leq\|A\|_{\mathrm{op}}\left\|A^{-1}\right\|_{\mathrm{op}}$ for any invertible matrix. The right-hand side can be arbitrarily large which can be seen by choosing

 $$
 A=\left[\begin{array}{cc}
 M & 0 \\
 0 & 1
 \end{array}\right], \quad A^{-1}=\left[\begin{array}{cc}
 1 / M & 0 \\
 0 & 1
 \end{array}\right]
 $$

 and noticing that $\|A\|_{\mathrm{op}}=M$ and $\left\|A^{-1}\right\|_{\mathrm{op}}=1$ for any $M \geq 1$ by Exercise 2.5.8.

