Dyadic analysis and weights, Spring 2017 T. Hytönen / O. Tapiola (olli.tapiola@helsinki.fi) Solutions to the exercise set 4 (6 pages)

Exercise 1.9.8. Show the following converse of Theorem 1.9.4: If a weight w satisfies the reverse Hölder inequality

$$\left({{{f}_{\!\!\!\!\;Q}}}\, w^{1+\varepsilon} \right)^{1/(1+\varepsilon)} \ \le \ K \, {{f}_{\!\!\!\!\;Q}}\, w$$

for all $Q \in \mathscr{D}$, then $w \in A_{\infty}^{\mathscr{D}}$. Estimate $[w]_{A_{\infty}}^{\mathscr{D}}$ in terms of K and ε .

Solution. Suppose that $Q \in \mathscr{D}$. By Hölder's inequality and the L^p -boundedness of the dyadic Hardy-Littlewood maximal operator (Corollary 1.1.2), we have

$$\begin{split} \int_{Q} M_{Q} w &\leq \left(\int_{Q} (M_{Q} w)^{1+\varepsilon} \right)^{1/(1+\varepsilon)} \left(\int_{Q} 1_{Q} \right)^{1/(1+\varepsilon)'} \\ &\leq (1+\varepsilon)' \left(\int_{Q} w^{1+\varepsilon} \right)^{1/(1+\varepsilon)} |Q|^{1/(1+\varepsilon)'} \\ &= (1+\varepsilon)' \left(\int_{Q} w^{1+\varepsilon} \right)^{1/(1+\varepsilon)} |Q|^{1/(1+\varepsilon)} |Q|^{1/(1+\varepsilon)'} \\ &= (1+\varepsilon)' \left(\int_{Q} w^{1+\varepsilon} \right)^{1/(1+\varepsilon)} |Q| \\ &\leq (1+\varepsilon)' K \left(\int_{Q} w \right) |Q| \\ &= (1+\varepsilon)' K \int_{Q} w. \end{split}$$

Thus, we have $w \in A_{\infty}^{\mathscr{D}}$ and $[w]_{A_{\infty}}^{\mathscr{D}} \leq (1 + \varepsilon)' K = \frac{1 + \varepsilon}{\varepsilon} K.$

Г		٦	

Exercise 1.9.9. Consider the following truncated version of M_Q :

$$M_Q^N f(x) \coloneqq \sup_{\substack{Q' \in \mathscr{D}, Q' \subseteq Q \\ \ell(Q') \ge 2^{-N}\ell(Q)}} 1_{Q'}(x) \langle |f| \rangle_{Q'},$$

and define the truncated A_∞ constant as the smallest constant in the following inequality:

$$\int_{Q} M_{Q}^{N} w \ \leq \ [w]_{A_{\infty}}^{\mathscr{D}, N} \int_{Q} w \quad \forall Q \in \mathscr{D}$$

Show that $[w]_{A_{\infty}}^{\mathscr{D},N} < \infty$ for any weight w, and that $[w]_{A_{\infty}}^{\mathscr{D},N} \to [w]_{A_{\infty}}^{\mathscr{D}}$ as $N \to \infty$.

Solution. For every $Q \in \mathscr{D}$ we have

$$\begin{split} \int_{Q} M_{Q}^{N} w &= \int_{Q} \sup_{\substack{Q' \in \mathscr{D}, Q' \subseteq Q \\ \ell(Q') \ge 2^{-N} \ell(Q)}} \mathbf{1}_{Q'}(x) \langle w \rangle_{Q'} &= \int_{Q} \sup_{\substack{Q' \in \mathscr{D}, Q' \subseteq Q \\ \ell(Q') \ge 2^{-N} \ell(Q)}} \frac{\mathbf{1}_{Q'}(x)}{|Q'|} w(Q') \\ &\leq \frac{w(Q)}{|2^{-N}Q|} \int_{Q} \sup_{\substack{Q' \in \mathscr{D}, Q' \subseteq Q \\ \ell(Q') \ge 2^{-N} \ell(Q)}} \mathbf{1}_{Q'}(x) \\ &= \frac{w(Q)}{2^{-Nd}|Q|} |Q| \\ &= 2^{Nd} \int_{Q} w. \end{split}$$

Thus, $[w]_{A_{\infty}}^{\mathscr{D},N} \leq 2^{Nd} < \infty$ for every weight w.

Let us then show that $[w]_{A_{\infty}}^{\mathscr{D},N} \to [w]_{A_{\infty}}^{\mathscr{D}}$. We first notice that since the values of $M_Q^N w$ increase pointwise as N increases, we can write $M_Q w(x) = \lim_{N \to \infty} M_Q^N w(x)$ for every x. In particular, the sequence $([w]_{A_{\infty}}^{\mathscr{D},N})_{N=0}^{\infty}$ is increasing and thus, the limit $\lim_{N \to \infty} [w]_{A_{\infty}}^{\mathscr{D},N}$ exists (it may be ∞). By definition, we have $[w]_{A_{\infty}}^{\mathscr{D},N} \leq [w]_{A_{\infty}}^{\mathscr{D}}$ for every N and hence, $\lim_{N \to \infty} [w]_{A_{\infty}}^{\mathscr{D},N} \leq [w]_{A_{\infty}}^{\mathscr{D}}$. Since we also have

$$\int_{Q} M_{Q} w = \int_{Q} \lim_{N \to \infty} M_{Q}^{N} w = \lim_{N \to \infty} \int_{Q} M_{Q}^{N} w \leq \lim_{N \to \infty} [w]_{A_{\infty}}^{\mathscr{D}, N} \int_{Q} w$$

by the monotone convergence theorem, we have $\lim_{N\to\infty} [w]_{A_{\infty}}^{\mathscr{D},N} \ge [w]_{A_{\infty}}^{\mathscr{D}}$ as $[w]_{A_{\infty}}^{\mathscr{D}}$ is the smallest constant C in the inequality $\int_{Q} M_{Q} w \le C \int_{Q} w$. Hence, $[w]_{A_{\infty}}^{\mathscr{D},N} \to [w]_{A_{\infty}}^{\mathscr{D}}$ as $N \to \infty$.

Exercise 1.9.10. The following condition is often used as the definition of the (dyadic) A_{∞} : There are constant $\delta, \eta \in (0, 1)$ such that for all (dyadic) cubes Q and all measurable subsets $E \subset Q$, if $|E| \leq \delta |Q|$, then $w(E) \leq \eta w(Q)$. Prove that this condition implies the dyadic A_{∞} condition as we have defined it.

Solution. For every $\lambda \geq 0$, we denote $E \coloneqq E_{\lambda} \coloneqq \{x \in Q_0 \colon M_Q^N w(x) > \lambda\}$. By the same considerations as in the proof of Theorem 1.1.1, we have $E = \bigcup_{Q \in \mathcal{F}^*} Q$ for a collection $\mathcal{F}^* \coloneqq \mathcal{F}^*_{\lambda}$ of maximal disjoint cubes $Q \subseteq Q_0$ such that $\ell(Q) \geq 2^{-N} \ell(Q_0)$. Let us start by making two observations.

i) For any cube $Q \in \mathcal{F}^*_{\lambda}$, we have

$$\langle w \rangle_Q > \lambda \ge \sup_{\substack{Q' \supseteq Q, \, Q' \subseteq Q_0, \\ \ell(Q') \ge 2^{-N} \ell(Q_0)}} \langle w \rangle_{Q'}$$

and thus, for any point $x \in Q$ we get

$$M_{Q_{0}}^{N}w(x) = \sup_{\substack{Q' \ni x, Q' \subseteq Q_{0}, \\ \ell(Q') \ge 2^{-N}\ell(Q_{0})}} \langle w \rangle_{Q'} = \sup_{\substack{Q' \ni x, Q' \subseteq Q, \\ \ell(Q') \ge 2^{-N}\ell(Q_{0})}} \langle w \rangle_{Q'} \le \sup_{\substack{Q' \ni x, Q' \subseteq Q, \\ \ell(Q') \ge 2^{-N}\ell(Q_{0})}} \langle w \rangle_{Q'} = M_{Q}^{N}w(x).$$
(1)

ii) Recall that we have $M_{\mathscr{D}}: L^1 \to L^{1,\infty}$ by Theorem 1.1.1. Since $M_{Q_0}^N w(x) \leq M_{\mathscr{D}}(1_{Q_0}w)(x)$ for every x, we have

$$|E| \leq \left| \left\{ x \in \mathbb{R}^d \colon M_{\mathscr{D}}(1_{Q_0}w)(x) > \lambda \right\} \right| \leq \frac{\|1_{Q_0}w\|_{L^1}}{\lambda} = \frac{w(Q_0)}{\lambda} = \frac{\langle w \rangle_{Q_0}|Q_0|}{\lambda}.$$
 (2)

Let us choose $\lambda = \frac{\langle w \rangle_{Q_0}}{\delta}$. Then, by (2), we have $|E| \leq \delta |Q_0|$ and thus, by assumption, we have $w(E) \leq \eta w(Q_0)$. Hence, we get

$$\int_{E} M_{Q_{0}}^{N} w = \sum_{Q \in \mathcal{F}^{*}} \int_{Q} M_{Q_{0}}^{N} w \stackrel{(1)}{\leq} \sum_{Q \in \mathcal{F}^{*}} \int_{Q} M_{Q}^{N} w$$
$$\leq [w]_{A_{\infty}}^{\mathscr{D}, N} \sum_{Q \in \mathcal{F}^{*}} \int_{Q} w$$
$$= [w]_{A_{\infty}}^{\mathscr{D}, N} w(E)$$
$$\leq \eta[w]_{A_{\infty}}^{\mathscr{D}, N} w(Q_{0})$$

and

$$\int_{Q_0 \setminus E} M_{Q_0}^N w \leq \int_{Q_0 \setminus E} \frac{\langle w \rangle_{Q_0}}{\delta} \leq \int_{Q_0} \frac{\langle w \rangle_{Q_0}}{\delta} = \frac{1}{\delta} w(Q_0).$$

Combining these calculations gives us $\int_{Q_0} M_{Q_0}^N w \leq (\eta[w]_{A_{\infty}}^{\mathscr{D},N} + \frac{1}{\delta})w(Q_0)$. In particular, by the definition of the constant $[w]_{A_{\infty}}^{\mathscr{D},N}$, we have $[w]_{A_{\infty}}^{\mathscr{D},N} \leq \eta[w]_{A_{\infty}}^{\mathscr{D},N} + \frac{1}{\delta}$. Now we can use Exercise 1.9.9:

• Since $[w]_{A_{\infty}}^{\mathscr{D},N} < \infty$ for every weight w, we get

$$[w]_{A_{\infty}}^{\mathscr{D},N} \leq \eta[w]_{A_{\infty}}^{\mathscr{D},N} + \frac{1}{\delta} \qquad \Longleftrightarrow \qquad [w]_{A_{\infty}}^{\mathscr{D},N} \leq \frac{1}{\delta(1-\eta)}$$

for every $N \in \mathbb{N}$.

• Since $[w]_{A_{\infty}}^{\mathscr{D},N} \to [w]_{A_{\infty}}^{\mathscr{D}}$ as $N \to \infty$, we have

$$[w]_{A_{\infty}}^{\mathscr{D}} = \lim_{N \to \infty} [w]_{A_{\infty}}^{\mathscr{D},N} \leq \lim_{N \to \infty} \frac{1}{\delta(1-\eta)} = \frac{1}{\delta(1-\eta)} < \infty.$$

Thus, since $[w]_{A_{\infty}}^{\mathscr{D}} < \infty$, we have $w \in A_{\infty}^{\mathscr{D}}$.

Exercise 2.2.2. For self-adjoint matrices A, B, we introduce the partial order \leq as follows:

 $A \leq B \qquad \stackrel{\mathrm{def}}{\Longleftrightarrow} \qquad (Ax|x) \leq (Bx|x) \ \, \forall x \in \mathbb{C}^n.$

For all positive matrices A, B, show that

 $A \leq B \quad \Longleftrightarrow \quad \|A^{1/2}B^{-1/2}\|_{\mathrm{op}} \leq 1 \quad \Longleftrightarrow \quad \|B^{-1/2}A^{1/2}\|_{\mathrm{op}} \leq 1 \quad \Longleftrightarrow \quad B^{-1} \leq A^{-1},$

i.e., all four listed conditions are equivalent.

Solution. For simplicity, we denote

- (A) $A \leq B$,
- (B) $||A^{1/2}B^{-1/2}||_{\text{op}} \le 1$,
- (C) $||B^{-1/2}A^{1/2}||_{\text{op}} \le 1$,
- (D) $B^{-1} \le A^{-1}$.

Since the proofs of (A) \Leftrightarrow (B) and (C) \Leftrightarrow (D) are virtually the same, we will just prove that (A) \Leftrightarrow (B) and (B) \Leftrightarrow (C).

(A) \Rightarrow (B) Since $(Ay | y) \le (By | y)$ for every y, for every x such that $||x|| \le 1$ we have

$$\|A^{1/2}B^{-1/2}x\|^2 = \left(A^{1/2}B^{-1/2}x | A^{1/2}B^{-1/2}x\right) = \left(AB^{-1/2}x | B^{-1/2}x\right)$$

$$\leq \left(BB^{-1/2}x | B^{-1/2}x\right)$$

$$= (x | x) = \|x\| \le 1.$$

Thus, $||A^{1/2}B^{-1/2}||_{\text{op}} \le 1$.

(B) \Rightarrow (A) Since $||A^{1/2}B^{-1/2}||_{\text{op}} \leq 1$, for every x we get

$$(Ax | x) = (A^{1/2}x | A^{1/2}x) = ||A^{1/2}x||^2 = ||A^{1/2}B^{-1/2}B^{1/2}x||^2 \leq ||A^{1/2}B^{-1/2}||_{op}^2 ||B^{1/2}x||^2 \leq ||B^{1/2}x||^2 = (B^{1/2}x | B^{1/2}x) = (Bx | x).$$

Thus, $A \leq B$.

 $(\underline{\mathbf{B}}) \Leftrightarrow (\underline{\mathbf{C}})$ To show this equivalence, we only need to recall that $||T||_{\mathrm{op}} = ||T^*||_{\mathrm{op}}$ and $(ST)^* = T^*S^*$ for any bounded linear operators on a complex Hilbert space. Indeed, since the matrices $A^{1/2}$ and $B^{1/2}$ are self-adjoint, we have

$$\|A^{1/2}B^{-1/2}\|_{\rm op} = \|(A^{1/2}B^{-1/2})^*\|_{\rm op} = \|(B^{-1/2})^*(A^{1/2})^*\|_{\rm op} = \|B^{-1/2}A^{1/2}\|_{\rm op}$$

and the equivalence of (B) and (C) follows immediately.

Hence, $(A) \Leftrightarrow (B) \Leftrightarrow (C) \Leftrightarrow (D)$.

Exercise 2.2.3. Show that $W \in A_2$ if and only if $\langle W \rangle_Q \leq C \langle W^{-1} \rangle_Q^{-1}$, if and only if $W^{-1} \in A_2$, and the optimal constant satisfies $C = [W]_{A_2} = [W^{-1}]_{A_2}$.

Solution. Recall that A_2 was the set of matrix weights W such that $[W]_{A_2} := \sup_Q \|\langle W \rangle_Q^{1/2} \langle W^{-1} \rangle_Q^{1/2} \|_{op}^2 < \infty$. For simplicity, let us denote

- (A) $W \in A_2$,
- (B) $\langle W \rangle_Q \leq C \langle W^{-1} \rangle_Q^{-1}$ for all cubes Q,
- (C) $W^{-1} \in A_2$.

We will prove the claim in three parts:

(A) \Rightarrow (B) For every $x \in \mathbb{R}^d$ we have

$$\begin{aligned} (\langle W \rangle_Q x | x) &= \| \langle W \rangle_Q^{1/2} x \|^2 &= \| \langle W \rangle_Q^{1/2} \langle W^{-1} \rangle_Q^{1/2} \langle W^{-1} \rangle_Q^{-1/2} x \| \\ &\leq \| \langle W \rangle_Q^{1/2} \langle W^{-1} \rangle_Q^{1/2} \|_{\text{op}}^2 \| \langle W^{-1} \rangle_Q^{-1/2} x \| \\ &\stackrel{(A)}{\leq} [W]_{A_2} \| \langle W^{-1} \rangle_Q^{-1/2} x \| \\ &= [W]_{A_2} (\langle W^{-1} \rangle_Q x | x). \end{aligned}$$

Thus, (B) holds for $C = [W]_{A_2}$.

 $(\mathbf{B}) \Rightarrow (\mathbf{A}) \quad \text{Suppose that } Q \text{ is a cube and let } x \in \mathbb{R}^d, \, \|x\| \leq 1. \text{ We get}$

$$\begin{split} \|\langle W \rangle_Q^{1/2} \langle W^{-1} \rangle_Q^{1/2} x \|^2 &= (\langle W \rangle_Q^{1/2} \langle W^{-1} \rangle_Q^{1/2} x | \langle W \rangle_Q^{1/2} \langle W^{-1} \rangle_Q^{1/2} x) \\ &= (\langle W \rangle_Q \langle W^{-1} \rangle_Q^{1/2} x | \langle W^{-1} \rangle_Q^{1/2} x) \\ \stackrel{(B)}{\leq} (C \langle W^{-1} \rangle_Q^{-1} \langle W^{-1} \rangle_Q^{1/2} x | \langle W^{-1} \rangle_Q^{1/2} x) \\ &= C(x|x) \leq C. \end{split}$$

Thus, $[W]_{A_2} \leq C < \infty$ and hence, $W \in A_2$.

(C) \Leftrightarrow (B) Using the previous part of the proof and the previous exercise, we get

(C)
$$\overset{(A) \Leftrightarrow (B)}{\longleftrightarrow} \langle W^{-1} \rangle_Q \leq C \langle (W^{-1})^{-1} \rangle_Q^{-1} = C \langle W \rangle_Q^{-1} \quad \text{for all cubes } Q$$
$$\overset{\text{Ex. 2.2.2.}}{\longleftrightarrow} \quad (C \langle W \rangle_Q^{-1})^{-1} \leq \langle W^{-1} \rangle_Q^{-1} \quad \text{for all cubes } Q$$
$$\iff \langle W \rangle_Q^{-1} \leq C \langle W^{-1} \rangle_Q^{-1} \quad \text{for all cubes } Q$$
$$\iff (B),$$

where $C = [W^{-1}]_{A_2}$.

Hence, $(A) \Leftrightarrow (B) \Leftrightarrow (C)$.

5

Exercise 2.2.4. Show that any matrix weight W satisfies estimate

$$\langle W^{-1} \rangle_Q^{-1} \le \langle W \rangle_Q.$$

Solution. Suppose that $x \in \mathbb{R}^d$. First, we notice that by the general Cauchy-Schwarz (C1) and the L^2 -Cauchy-Schwarz (C2) we get

$$\begin{split} \left(\langle W^{-1} \rangle_Q^{-1} x \, | \, x \right) \; &= \; \left\langle \left(W^{-1/2} \langle W^{-1} \rangle_Q^{-1} x \, | \, W^{1/2} x \right) \right\rangle_Q \\ &\stackrel{(\mathrm{C1})}{\leq} \; \left\langle \| W^{-1/2} \langle W^{-1} \rangle_Q^{-1} x \| \, \| W^{1/2} x \| \right\rangle_Q \\ &\stackrel{(\mathrm{C2})}{\leq} \; \left\langle \| W^{-1/2} \langle W^{-1} \rangle_Q^{-1} x \|^2 \right\rangle_Q^{1/2} \left\langle \| W^{1/2} x \| \right\rangle_Q^{1/2}. \end{split}$$

Since we have

$$\begin{split} \left\langle \|W^{-1/2} \langle W^{-1} \rangle_Q^{-1} x\|^2 \right\rangle_Q^{1/2} &= \left\langle \left(W^{-1/2} \langle W^{-1} \rangle_Q^{-1} x \, | \, W^{-1/2} \langle W^{-1} \rangle_Q^{-1} x \right) \right\rangle_Q^{1/2} \\ &= \left\langle \left(W^{-1} \langle W^{-1} \rangle_Q^{-1} x \, | \, \langle W^{-1} \rangle_Q^{-1} x \right) \right\rangle_Q^{1/2} \\ &= \left(\langle W^{-1} \rangle_Q \langle W^{-1} \rangle_Q^{-1} x \, | \, \langle W^{-1} \rangle_Q^{-1} x \right)^{1/2} \\ &= \left(\langle W^{-1} \rangle_Q x \, | \, x \right)^{1/2}. \end{split}$$

and

$$\left\langle \|W^{1/2}x\|\right\rangle_{Q}^{1/2} \ = \ \left\langle \left(W^{1/2}x\,|\,W^{1/2}x\right)\right\rangle_{Q}^{1/2} \ = \ \left\langle (Wx\,|\,x)\right\rangle_{Q}^{1/2} \ = \ \left(\langle W\rangle_{Q}\,x\,|\,x\right)^{1/2},$$

we have proven

$$\left(\langle W^{-1} \rangle_Q^{-1} x \, | \, x \right) \leq \left(\langle W^{-1} \rangle_Q x \, | \, x \right)^{1/2} \left(\langle W \rangle_Q \, x \, | \, x \right)^{1/2} \quad \Longleftrightarrow \quad \left(\langle W^{-1} \rangle_Q^{-1} x \, | \, x \right) \leq \left(\langle W \rangle_Q \, x \, | \, x \right).$$

$$\text{Hence, } \langle W^{-1} \rangle_Q^{-1} \leq \langle W \rangle_Q. \qquad \Box$$