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Exercise 1.9.8. Show the following converse of Theorem 1.9.4: If a weight w satisfies the reverse Hölder
inequality ( 

Q

w1+ε

)1/(1+ε)

≤ K

 
Q

w

for all Q ∈ D , then w ∈ AD
∞. Estimate [w]DA∞ in terms of K and ε.

Solution. Suppose that Q ∈ D . By Hölder’s inequality and the Lp-boundedness of the dyadic Hardy-
Littlewood maximal operator (Corollary 1.1.2), we have

ˆ
Q

MQw ≤
(ˆ

Q

(MQw)
1+ε

)1/(1+ε)(ˆ
Q

1Q

)1/(1+ε)′

≤ (1 + ε)′
(ˆ

Q

w1+ε

)1/(1+ε)

|Q|1/(1+ε)
′

= (1 + ε)′
( 

Q

w1+ε

)1/(1+ε)

|Q|1/(1+ε)|Q|1/(1+ε)
′

= (1 + ε)′
( 

Q

w1+ε

)1/(1+ε)

|Q|

≤ (1 + ε)′K

( 
Q

w

)
|Q|

= (1 + ε)′K

ˆ
Q

w.

Thus, we have w ∈ AD
∞ and [w]DA∞ ≤ (1 + ε)′K = 1+ε

ε K.

1



Exercise 1.9.9. Consider the following truncated version of MQ:

MN
Q f(x) := sup

Q′∈D,Q′⊆Q
`(Q′)≥2−N `(Q)

1Q′(x)〈|f |〉Q′ ,

and define the truncated A∞ constant as the smallest constant in the following inequality:
ˆ
Q

MN
Q w ≤ [w]D,NA∞

ˆ
Q

w ∀Q ∈ D .

Show that [w]D,NA∞
<∞ for any weight w, and that [w]D,NA∞

→ [w]DA∞ as N →∞.

Solution. For every Q ∈ D we have
ˆ
Q

MN
Q w =

ˆ
Q

sup
Q′∈D,Q′⊆Q

`(Q′)≥2−N `(Q)

1Q′(x)〈w〉Q′ =

ˆ
Q

sup
Q′∈D,Q′⊆Q

`(Q′)≥2−N `(Q)

1Q′(x)

|Q′|
w(Q′)

≤ w(Q)

|2−NQ|

ˆ
Q

sup
Q′∈D,Q′⊆Q

`(Q′)≥2−N `(Q)

1Q′(x)

=
w(Q)

2−Nd|Q|
|Q|

= 2Nd
ˆ
Q

w.

Thus, [w]D,NA∞
≤ 2Nd <∞ for every weight w.

Let us then show that [w]D,NA∞
→ [w]DA∞ . We first notice that since the values of MN

Q w increase pointwise as
N increases, we can write MQw(x) = limN→∞MN

Q w(x) for every x. In particular, the sequence ([w]D,NA∞
)∞N=0

is increasing and thus, the limit limN→∞[w]D,NA∞
exists (it may be ∞). By definition, we have [w]D,NA∞

≤ [w]DA∞
for every N and hence, limN→∞[w]D,NA∞

≤ [w]DA∞ . Since we also have
ˆ
Q

MQw =

ˆ
Q

lim
N→∞

MN
Q w = lim

N→∞

ˆ
Q

MN
Q w ≤ lim

N→∞
[w]D,NA∞

ˆ
Q

w

by the monotone convergence theorem, we have limN→∞[w]D,NA∞
≥ [w]DA∞ as [w]DA∞ is the smallest constant C

in the inequality
´
Q
MQw ≤ C

´
Q
w. Hence, [w]D,NA∞

→ [w]DA∞ as N →∞.
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Exercise 1.9.10. The following condition is often used as the definition of the (dyadic) A∞: There are
constant δ, η ∈ (0, 1) such that for all (dyadic) cubes Q and all measurable subsets E ⊂ Q, if |E| ≤ δ|Q|, then
w(E) ≤ ηw(Q). Prove that this condition implies the dyadic A∞ condition as we have defined it.

Solution. For every λ ≥ 0, we denote E := Eλ := {x ∈ Q0 : M
N
Q w(x) > λ}. By the same considerations as in

the proof of Theorem 1.1.1, we have E =
⋃
Q∈F∗ Q for a collection F∗ := F∗λ of maximal disjoint cubes Q ⊆ Q0

such that `(Q) ≥ 2−N`(Q0). Let us start by making two observations.

i) For any cube Q ∈ F∗λ , we have

〈w〉Q > λ ≥ sup
Q′)Q,Q′⊆Q0,

`(Q′)≥2−N `(Q0)

〈w〉Q′

and thus, for any point x ∈ Q we get

MN
Q0
w(x) = sup

Q′3x,Q′⊆Q0,

`(Q′)≥2−N `(Q0)

〈w〉Q′ = sup
Q′3x,Q′⊆Q,

`(Q′)≥2−N `(Q0)

〈w〉Q′ ≤ sup
Q′3x,Q′⊆Q,
`(Q′)≥2−N `(Q)

〈w〉Q′ = MN
Q w(x). (1)

ii) Recall that we have MD : L1 → L1,∞ by Theorem 1.1.1. Since MN
Q0
w(x) ≤MD(1Q0w)(x) for every x, we

have

|E| ≤
∣∣{x ∈ Rd : MD(1Q0

w)(x) > λ}
∣∣ ≤ ‖1Q0w‖L1

λ
=

w(Q0)

λ
=
〈w〉Q0

|Q0|
λ

. (2)

Let us choose λ =
〈w〉Q0

δ . Then, by (2), we have |E| ≤ δ|Q0| and thus, by assumption, we have w(E) ≤ ηw(Q0).
Hence, we get

ˆ
E

MN
Q0
w =

∑
Q∈F∗

ˆ
Q

MN
Q0
w

(1)
≤

∑
Q∈F∗

ˆ
Q

MN
Q w

≤ [w]D,NA∞

∑
Q∈F∗

ˆ
Q

w

= [w]D,NA∞
w(E)

≤ η[w]D,NA∞
w(Q0)

and
ˆ
Q0\E

MN
Q0
w ≤

ˆ
Q0\E

〈w〉Q0

δ
≤

ˆ
Q0

〈w〉Q0

δ
=

1

δ
w(Q0).

Combining these calculations gives us
´
Q0
MN
Q0
w ≤ (η[w]D,NA∞

+ 1
δ )w(Q0). In particular, by the definition of the

constant [w]D,NA∞
, we have [w]D,NA∞

≤ η[w]D,NA∞
+ 1

δ . Now we can use Exercise 1.9.9:

• Since [w]D,NA∞
<∞ for every weight w, we get

[w]D,NA∞
≤ η[w]D,NA∞

+
1

δ
⇐⇒ [w]D,NA∞

≤ 1

δ(1− η)

for every N ∈ N.

• Since [w]D,NA∞
→ [w]DA∞ as N →∞, we have

[w]DA∞ = lim
N→∞

[w]D,NA∞
≤ lim

N→∞

1

δ(1− η)
=

1

δ(1− η)
< ∞.

Thus, since [w]DA∞ <∞, we have w ∈ AD
∞.
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Exercise 2.2.2. For self-adjoint matrices A,B, we introduce the partial order ≤ as follows:

A ≤ B def⇐⇒ (Ax|x) ≤ (Bx|x) ∀x ∈ Cn.

For all positive matrices A,B, show that

A ≤ B ⇐⇒ ‖A1/2B−1/2‖op ≤ 1 ⇐⇒ ‖B−1/2A1/2‖op ≤ 1 ⇐⇒ B−1 ≤ A−1,

i.e., all four listed conditions are equivalent.

Solution. For simplicity, we denote

(A) A ≤ B,

(B) ‖A1/2B−1/2‖op ≤ 1,

(C) ‖B−1/2A1/2‖op ≤ 1,

(D) B−1 ≤ A−1.

Since the proofs of (A) ⇔ (B) and (C) ⇔ (D) are virtually the same, we will just prove that (A) ⇔ (B) and
(B) ⇔ (C).

(A) ⇒ (B) Since (Ay | y) ≤ (By | y) for every y, for every x such that ‖x‖ ≤ 1 we have

‖A1/2B−1/2x‖2 =
(
A1/2B−1/2x |A1/2B−1/2x

)
=
(
AB−1/2x |B−1/2x

)
≤
(
BB−1/2x |B−1/2x

)
= (x |x) = ‖x‖ ≤ 1.

Thus, ‖A1/2B−1/2‖op ≤ 1.

(B) ⇒ (A) Since ‖A1/2B−1/2‖op ≤ 1, for every x we get

(Ax |x) =
(
A1/2x |A1/2x

)
= ‖A1/2x‖2 = ‖A1/2B−1/2B1/2x‖2

≤ ‖A1/2B−1/2‖2op‖B1/2x‖2

≤ ‖B1/2x‖2 =
(
B1/2x |B1/2x

)
= (Bx |x) .

Thus, A ≤ B.

(B) ⇔ (C) To show this equivalence, we only need to recall that ‖T‖op = ‖T ∗‖op and (ST )∗ = T ∗S∗ for any
bounded linear operators on a complex Hilbert space. Indeed, since the matrices A1/2 and B1/2 are
self-adjoint, we have

‖A1/2B−1/2‖op = ‖(A1/2B−1/2)∗‖op = ‖(B−1/2)∗(A1/2)∗‖op = ‖B−1/2A1/2‖op

and the equivalence of (B) and (C) follows immediately.

Hence, (A) ⇔ (B) ⇔ (C) ⇔ (D).
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Exercise 2.2.3. Show that W ∈ A2 if and only if 〈W 〉Q ≤ C〈W−1〉−1Q , if and only if W−1 ∈ A2, and the
optimal constant satisfies C = [W ]A2 = [W−1]A2 .

Solution. Recall that A2 was the set of matrix weightsW such that [W ]A2
:= supQ ‖〈W 〉

1/2
Q 〈W−1〉

1/2
Q ‖2op <∞.

For simplicity, let us denote

(A) W ∈ A2,

(B) 〈W 〉Q ≤ C〈W−1〉−1Q for all cubes Q,

(C) W−1 ∈ A2.

We will prove the claim in three parts:

(A) ⇒ (B) For every x ∈ Rd we have

(〈W 〉Qx|x) = ‖〈W 〉1/2Q x‖2 = ‖〈W 〉1/2Q 〈W
−1〉1/2Q 〈W

−1〉−1/2Q x‖

≤ ‖〈W 〉1/2Q 〈W
−1〉1/2Q ‖

2
op‖〈W−1〉

−1/2
Q x‖

(A)
≤ [W ]A2

‖〈W−1〉−1/2Q x‖
= [W ]A2

(〈W−1〉Qx|x).

Thus, (B) holds for C = [W ]A2 .

(B) ⇒ (A) Suppose that Q is a cube and let x ∈ Rd, ‖x‖ ≤ 1. We get

‖〈W 〉1/2Q 〈W
−1〉1/2Q x‖2 = (〈W 〉1/2Q 〈W

−1〉1/2Q x|〈W 〉1/2Q 〈W
−1〉1/2Q x)

= (〈W 〉Q〈W−1〉1/2Q x|〈W−1〉1/2Q x)

(B)
≤ (C〈W−1〉−1Q 〈W

−1〉1/2Q x|〈W−1〉1/2Q x)

= C(x|x) ≤ C.

Thus, [W ]A2
≤ C <∞ and hence, W ∈ A2.

(C) ⇔ (B) Using the previous part of the proof and the previous exercise, we get

(C)
(A)⇔(B)⇐⇒ 〈W−1〉Q ≤ C〈(W−1)−1〉−1Q = C〈W 〉−1Q for all cubes Q
Ex. 2.2.2.⇐⇒ (C〈W 〉−1Q )−1 ≤ 〈W−1〉−1Q for all cubes Q

⇐⇒ 〈W 〉−1Q ≤ C〈W
−1〉−1Q for all cubes Q

⇐⇒ (B),

where C = [W−1]A2
.

Hence, (A) ⇔ (B) ⇔ (C).
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Exercise 2.2.4. Show that any matrix weight W satisfies estimate

〈W−1〉−1Q ≤ 〈W 〉Q.

Solution. Suppose that x ∈ Rd. First, we notice that by the general Cauchy-Schwarz (C1) and the L2-Cauchy-
Schwarz (C2) we get (

〈W−1〉−1Q x |x
)

=
〈(
W−1/2〈W−1〉−1Q x |W 1/2x

)〉
Q

(C1)
≤

〈
‖W−1/2〈W−1〉−1Q x‖ ‖W 1/2x‖

〉
Q

(C2)
≤

〈
‖W−1/2〈W−1〉−1Q x‖2

〉1/2
Q

〈
‖W 1/2x‖

〉1/2
Q

.

Since we have 〈
‖W−1/2〈W−1〉−1Q x‖2

〉1/2
Q

=
〈(
W−1/2〈W−1〉−1Q x |W−1/2〈W−1〉−1Q x

)〉1/2
Q

=
〈(
W−1〈W−1〉−1Q x | 〈W−1〉−1Q x

)〉1/2
Q

=
(
〈W−1〉Q〈W−1〉−1Q x | 〈W−1〉−1Q x

)1/2
=
(
〈W−1〉Qx |x

)1/2
.

and 〈
‖W 1/2x‖

〉1/2
Q

=
〈(
W 1/2x |W 1/2x

)〉1/2
Q

= 〈(Wx |x)〉1/2Q =
(
〈W 〉Q x |x

)1/2
,

we have proven(
〈W−1〉−1Q x |x

)
≤
(
〈W−1〉Qx |x

)1/2 (〈W 〉Q x |x)1/2 ⇐⇒
(
〈W−1〉−1Q x |x

)
≤
(
〈W 〉Q x |x

)
.

Hence, 〈W−1〉−1Q ≤ 〈W 〉Q.
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