Dyadic analysis and weights, Spring 2017
T. Hytönen / O. Tapiola (olli.tapiola@helsinki.fi)

Solutions to the exercise set 4 (6 pages)

Exercise 1.9.8. Show the following converse of Theorem 1.9.4: If a weight w satisfies the reverse Hölder inequality

$$
\left(f_{Q} w^{1+\varepsilon}\right)^{1 /(1+\varepsilon)} \leq K f_{Q} w
$$

for all $Q \in \mathscr{D}$, then $w \in A_{\infty}^{\mathscr{D}}$. Estimate $[w]_{A_{\infty}}^{\mathscr{D}}$ in terms of K and ε.

Solution. Suppose that $Q \in \mathscr{D}$. By Hölder's inequality and the L^{p}-boundedness of the dyadic HardyLittlewood maximal operator (Corollary 1.1.2), we have

$$
\begin{aligned}
\int_{Q} M_{Q} w & \leq\left(\int_{Q}\left(M_{Q} w\right)^{1+\varepsilon}\right)^{1 /(1+\varepsilon)}\left(\int_{Q} 1_{Q}\right)^{1 /(1+\varepsilon)^{\prime}} \\
& \leq(1+\varepsilon)^{\prime}\left(\int_{Q} w^{1+\varepsilon}\right)^{1 /(1+\varepsilon)}|Q|^{1 /(1+\varepsilon)^{\prime}} \\
& =(1+\varepsilon)^{\prime}\left(f_{Q} w^{1+\varepsilon}\right)^{1 /(1+\varepsilon)}|Q|^{1 /(1+\varepsilon)}|Q|^{1 /(1+\varepsilon)^{\prime}} \\
& =(1+\varepsilon)^{\prime}\left(f_{Q} w^{1+\varepsilon}\right)^{1 /(1+\varepsilon)}|Q| \\
& \leq(1+\varepsilon)^{\prime} K\left(f_{Q} w\right)|Q| \\
& =(1+\varepsilon)^{\prime} K \int_{Q} w
\end{aligned}
$$

Thus, we have $w \in A_{\infty}^{\mathscr{D}}$ and $[w]_{A_{\infty}}^{\mathscr{O}} \leq(1+\varepsilon)^{\prime} K=\frac{1+\varepsilon}{\varepsilon} K$.

Exercise 1.9.9. Consider the following truncated version of M_{Q} :

$$
M_{Q}^{N} f(x):=\sup _{\substack{Q^{\prime} \in \mathscr{D}, Q^{\prime} \subseteq Q \\ \ell\left(Q^{\prime}\right) \geq 2^{-N} \ell(Q)}} 1_{Q^{\prime}}(x)\langle | f| \rangle_{Q^{\prime}}
$$

and define the truncated A_{∞} constant as the smallest constant in the following inequality:

$$
\int_{Q} M_{Q}^{N} w \leq[w]_{A_{\infty}}^{\mathscr{D}, N} \int_{Q} w \quad \forall Q \in \mathscr{D}
$$

Show that $[w]_{A_{\infty}}^{\mathscr{D}, N}<\infty$ for any weight w, and that $[w]_{A_{\infty}}^{\mathscr{D}, N} \rightarrow[w]_{A_{\infty}}^{\mathscr{D}}$ as $N \rightarrow \infty$.

Solution. For every $Q \in \mathscr{D}$ we have

$$
\begin{aligned}
& \int_{Q} M_{Q}^{N} w=\int_{\substack{Q \\
\sup _{\begin{subarray}{c}{Q^{\prime} \in \mathscr{D}, Q^{\prime} \subseteq Q \\
\ell\left(Q^{\prime}\right) \geq 2^{-N} \ell(Q)} }} 1_{Q^{\prime}}(x)\langle w\rangle_{Q^{\prime}}}\end{subarray}}=\int_{\substack{Q \\
\sup ^{Q^{\prime} \in \mathscr{D}, Q^{\prime} \subseteq Q} \\
\ell\left(Q^{\prime}\right) \geq 2^{-N} \ell(Q)}} \frac{1_{Q^{\prime}}(x)}{\left|Q^{\prime}\right|} w\left(Q^{\prime}\right) \\
& \leq \frac{w(Q)}{\left|2^{-N} Q\right|} \int_{\substack{Q^{\prime} \in \mathscr{D}, Q^{\prime} \subseteq Q \\
\ell\left(Q^{\prime}\right) \geq 2^{-N} \ell(Q)}} \sup _{Q^{\prime}}(x) \\
&=\frac{w(Q)}{2^{-N d}|Q|}|Q| \\
&=2^{N d} \int_{Q} w .
\end{aligned}
$$

Thus, $[w]_{A_{\infty}}^{\mathscr{O}, N} \leq 2^{N d}<\infty$ for every weight w.
Let us then show that $[w]_{A_{\infty}}^{\mathscr{D}, N} \rightarrow[w]_{A_{\infty}}^{\mathscr{D}}$. We first notice that since the values of $M_{Q}^{N} w$ increase pointwise as N increases, we can write $M_{Q} w(x)=\lim _{N \rightarrow \infty} M_{Q}^{N} w(x)$ for every x. In particular, the sequence $\left([w]_{A_{\infty}}^{\mathscr{D}, N}\right)_{N=0}^{\infty}$ is increasing and thus, the limit $\lim _{N \rightarrow \infty}[w]_{A_{\infty}}^{\mathscr{O}, N}$ exists (it may be ∞). By definition, we have $[w]_{A_{\infty}}^{\mathscr{D}, N} \leq[w]_{A_{\infty}}^{\mathscr{D}}$ for every N and hence, $\lim _{N \rightarrow \infty}[w]_{A_{\infty}}^{\mathscr{D}, N} \leq[w]_{A_{\infty}}^{\mathscr{D}}$. Since we also have

$$
\int_{Q} M_{Q} w=\int_{Q} \lim _{N \rightarrow \infty} M_{Q}^{N} w=\lim _{N \rightarrow \infty} \int_{Q} M_{Q}^{N} w \leq \lim _{N \rightarrow \infty}[w]_{A_{\infty}}^{\mathscr{D}, N} \int_{Q} w
$$

by the monotone convergence theorem, we have $\lim _{N \rightarrow \infty}[w]_{A_{\infty}}^{\mathscr{O}, N} \geq[w]_{A_{\infty}}^{\mathscr{D}}$ as $[w]_{A_{\infty}}^{\mathscr{D}}$ is the smallest constant C in the inequality $\int_{Q} M_{Q} w \leq C \int_{Q} w$. Hence, $[w]_{A_{\infty}}^{\mathscr{O}, N} \rightarrow[w]_{A_{\infty}}^{\mathscr{B}}$ as $N \rightarrow \infty$.

Exercise 1.9.10. The following condition is often used as the definition of the (dyadic) A_{∞} : There are constant $\delta, \eta \in(0,1)$ such that for all (dyadic) cubes Q and all measurable subsets $E \subset Q$, if $|E| \leq \delta|Q|$, then $w(E) \leq \eta w(Q)$. Prove that this condition implies the dyadic A_{∞} condition as we have defined it.

Solution. For every $\lambda \geq 0$, we denote $E:=E_{\lambda}:=\left\{x \in Q_{0}: M_{Q}^{N} w(x)>\lambda\right\}$. By the same considerations as in the proof of Theorem 1.1.1, we have $E=\bigcup_{Q \in \mathcal{F}^{*}} Q$ for a collection $\mathcal{F}^{*}:=\mathcal{F}_{\lambda}^{*}$ of maximal disjoint cubes $Q \subseteq Q_{0}$ such that $\ell(Q) \geq 2^{-N} \ell\left(Q_{0}\right)$. Let us start by making two observations.
i) For any cube $Q \in \mathcal{F}_{\lambda}^{*}$, we have

$$
\langle w\rangle_{Q}>\lambda \geq \sup _{\substack{Q^{\prime} \not{ }^{Q}, Q^{\prime} \subseteq Q_{0}, \ell\left(Q^{\prime}\right) \geq 2^{-N} \ell\left(Q_{0}\right)}}\langle w\rangle_{Q^{\prime}}
$$

and thus, for any point $x \in Q$ we get

$$
\begin{equation*}
M_{Q_{0}}^{N} w(x)=\sup _{\substack{Q^{\prime} \ni x, Q^{\prime} \subseteq Q_{0}, \ell\left(Q^{\prime}\right) \geq 2^{-N} \ell\left(Q_{0}\right)}}\langle w\rangle_{Q^{\prime}}=\sup _{\substack{Q^{\prime} \ni x, Q^{\prime} \subseteq Q, \ell\left(Q^{\prime}\right) \geq 2^{-N} \ell\left(Q_{0}\right)}}\langle w\rangle_{Q^{\prime}} \leq \sup _{\substack{Q^{\prime} \ni x, Q^{\prime} \subseteq Q, \ell\left(Q^{\prime}\right) \geq 2^{-N} \ell(Q)}}\langle w\rangle_{Q^{\prime}}=M_{Q}^{N} w(x) . \tag{1}
\end{equation*}
$$

ii) Recall that we have $M_{\mathscr{D}}: L^{1} \rightarrow L^{1, \infty}$ by Theorem 1.1.1. Since $M_{Q_{0}}^{N} w(x) \leq M_{\mathscr{D}}\left(1_{Q_{0}} w\right)(x)$ for every x, we have

$$
\begin{equation*}
|E| \leq\left|\left\{x \in \mathbb{R}^{d}: M_{\mathscr{D}}\left(1_{Q_{0}} w\right)(x)>\lambda\right\}\right| \leq \frac{\left\|1_{Q_{0}} w\right\|_{L^{1}}}{\lambda}=\frac{w\left(Q_{0}\right)}{\lambda}=\frac{\langle w\rangle_{Q_{0}}\left|Q_{0}\right|}{\lambda} \tag{2}
\end{equation*}
$$

Let us choose $\lambda=\frac{\langle w\rangle_{Q_{0}}}{\delta}$. Then, by (2), we have $|E| \leq \delta\left|Q_{0}\right|$ and thus, by assumption, we have $w(E) \leq \eta w\left(Q_{0}\right)$. Hence, we get

$$
\begin{aligned}
\int_{E} M_{Q_{0}}^{N} w=\sum_{Q \in \mathcal{F}^{*}} \int_{Q} M_{Q_{0}}^{N} w & \stackrel{(1)}{\leq} \sum_{Q \in \mathcal{F}^{*}} \int_{Q} M_{Q}^{N} w \\
& \leq[w]_{A_{\infty}}^{\mathscr{O}, N} \sum_{Q \in \mathcal{F}^{*}} \int_{Q} w \\
& =[w]_{A_{\infty}}^{\mathscr{D}, N} w(E) \\
& \leq \eta[w]_{A_{\infty}}^{\mathscr{D}, N} w\left(Q_{0}\right)
\end{aligned}
$$

and

$$
\int_{Q_{0} \backslash E} M_{Q_{0}}^{N} w \leq \int_{Q_{0} \backslash E} \frac{\langle w\rangle_{Q_{0}}}{\delta} \leq \int_{Q_{0}} \frac{\langle w\rangle_{Q_{0}}}{\delta}=\frac{1}{\delta} w\left(Q_{0}\right)
$$

Combining these calculations gives us $\int_{Q_{0}} M_{Q_{0}}^{N} w \leq\left(\eta[w]_{A_{\infty}}^{\mathscr{P}, N}+\frac{1}{\delta}\right) w\left(Q_{0}\right)$. In particular, by the definition of the constant $[w]_{A_{\infty}}^{\mathscr{D}, N}$, we have $[w]_{A_{\infty}}^{\mathscr{D}, N} \leq \eta[w]_{A_{\infty}}^{\mathscr{D}, N}+\frac{1}{\delta}$. Now we can use Exercise 1.9.9:

- Since $[w]_{A_{\infty}}^{\mathscr{D}, N}<\infty$ for every weight w, we get

$$
[w]_{A_{\infty}}^{\mathscr{D}, N} \leq \eta[w]_{A_{\infty}}^{\mathscr{D}, N}+\frac{1}{\delta} \quad \Longleftrightarrow \quad[w]_{A_{\infty}}^{\mathscr{O}, N} \leq \frac{1}{\delta(1-\eta)}
$$

for every $N \in \mathbb{N}$.

- Since $[w]_{A_{\infty}}^{\mathscr{D}, N} \rightarrow[w]_{A_{\infty}}^{\mathscr{D}}$ as $N \rightarrow \infty$, we have

$$
[w]_{A_{\infty}}^{\mathscr{D}}=\lim _{N \rightarrow \infty}[w]_{A_{\infty}}^{\mathscr{O}, N} \leq \lim _{N \rightarrow \infty} \frac{1}{\delta(1-\eta)}=\frac{1}{\delta(1-\eta)}<\infty
$$

Thus, since $[w]_{A_{\infty}}^{\mathscr{D}}<\infty$, we have $w \in A_{\infty}^{\mathscr{D}}$.

Exercise 2.2.2. For self-adjoint matrices A, B, we introduce the partial order \leq as follows:

$$
A \leq B \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad(A x \mid x) \leq(B x \mid x) \quad \forall x \in \mathbb{C}^{n}
$$

For all positive matrices A, B, show that

$$
A \leq B \quad \Longleftrightarrow \quad\left\|A^{1 / 2} B^{-1 / 2}\right\|_{\mathrm{op}} \leq 1 \quad \Longleftrightarrow \quad\left\|B^{-1 / 2} A^{1 / 2}\right\|_{\mathrm{op}} \leq 1 \quad \Longleftrightarrow \quad B^{-1} \leq A^{-1}
$$

i.e., all four listed conditions are equivalent.

Solution. For simplicity, we denote
(A) $A \leq B$,
(B) $\left\|A^{1 / 2} B^{-1 / 2}\right\|_{\mathrm{op}} \leq 1$,
(C) $\left\|B^{-1 / 2} A^{1 / 2}\right\|_{\mathrm{op}} \leq 1$,
(D) $B^{-1} \leq A^{-1}$.

Since the proofs of $(A) \Leftrightarrow(B)$ and $(C) \Leftrightarrow(D)$ are virtually the same, we will just prove that $(A) \Leftrightarrow(B)$ and (B) $\Leftrightarrow(C)$.
$(\mathrm{A}) \Rightarrow(\mathrm{B}) \quad$ Since $(A y \mid y) \leq(B y \mid y)$ for every y, for every x such that $\|x\| \leq 1$ we have

$$
\begin{aligned}
\left\|A^{1 / 2} B^{-1 / 2} x\right\|^{2}=\left(A^{1 / 2} B^{-1 / 2} x \mid A^{1 / 2} B^{-1 / 2} x\right) & =\left(A B^{-1 / 2} x \mid B^{-1 / 2} x\right) \\
& \leq\left(B B^{-1 / 2} x \mid B^{-1 / 2} x\right) \\
& =(x \mid x)=\|x\| \leq 1
\end{aligned}
$$

Thus, $\left\|A^{1 / 2} B^{-1 / 2}\right\|_{\text {op }} \leq 1$.
$(\mathrm{B}) \Rightarrow(\mathrm{A}) \quad$ Since $\left\|A^{1 / 2} B^{-1 / 2}\right\|_{\mathrm{op}} \leq 1$, for every x we get

$$
\begin{aligned}
(A x \mid x)=\left(A^{1 / 2} x \mid A^{1 / 2} x\right)=\left\|A^{1 / 2} x\right\|^{2} & =\left\|A^{1 / 2} B^{-1 / 2} B^{1 / 2} x\right\|^{2} \\
& \leq\left\|A^{1 / 2} B^{-1 / 2}\right\|_{\mathrm{op}}^{2}\left\|B^{1 / 2} x\right\|^{2} \\
& \leq\left\|B^{1 / 2} x\right\|^{2}=\left(B^{1 / 2} x \mid B^{1 / 2} x\right)=(B x \mid x)
\end{aligned}
$$

Thus, $A \leq B$.
$\underline{(\mathrm{B}) \Leftrightarrow(\mathrm{C})}$ To show this equivalence, we only need to recall that $\|T\|_{\mathrm{op}}=\left\|T^{*}\right\|_{\mathrm{op}}$ and $(S T)^{*}=T^{*} S^{*}$ for any bounded linear operators on a complex Hilbert space. Indeed, since the matrices $A^{1 / 2}$ and $B^{1 / 2}$ are self-adjoint, we have

$$
\left\|A^{1 / 2} B^{-1 / 2}\right\|_{\mathrm{op}}=\left\|\left(A^{1 / 2} B^{-1 / 2}\right)^{*}\right\|_{\mathrm{op}}=\left\|\left(B^{-1 / 2}\right)^{*}\left(A^{1 / 2}\right)^{*}\right\|_{\mathrm{op}}=\left\|B^{-1 / 2} A^{1 / 2}\right\|_{\mathrm{op}}
$$

and the equivalence of (B) and (C) follows immediately.

Hence, $(\mathrm{A}) \Leftrightarrow(\mathrm{B}) \Leftrightarrow(\mathrm{C}) \Leftrightarrow(\mathrm{D})$.

Exercise 2.2.3. Show that $W \in A_{2}$ if and only if $\langle W\rangle_{Q} \leq C\left\langle W^{-1}\right\rangle_{Q}^{-1}$, if and only if $W^{-1} \in A_{2}$, and the optimal constant satisfies $C=[W]_{A_{2}}=\left[W^{-1}\right]_{A_{2}}$.

Solution. Recall that A_{2} was the set of matrix weights W such that $[W]_{A_{2}}:=\sup _{Q}\left\|\langle W\rangle_{Q}^{1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{1 / 2}\right\|_{\mathrm{op}}^{2}<\infty$. For simplicity, let us denote
(A) $W \in A_{2}$,
(B) $\langle W\rangle_{Q} \leq C\left\langle W^{-1}\right\rangle_{Q}^{-1}$ for all cubes Q,
(C) $W^{-1} \in A_{2}$.

We will prove the claim in three parts:
$(\mathrm{A}) \Rightarrow(\mathrm{B}) \quad$ For every $x \in \mathbb{R}^{d}$ we have

$$
\begin{aligned}
\left(\langle W\rangle_{Q} x \mid x\right)=\left\|\langle W\rangle_{Q}^{1 / 2} x\right\|^{2} & =\left\|\langle W\rangle_{Q}^{1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{-1 / 2} x\right\| \\
& \leq\left\|\langle W\rangle_{Q}^{1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{1 / 2}\right\|_{\mathrm{op}}^{2}\left\|\left\langle W^{-1}\right\rangle_{Q}^{-1 / 2} x\right\| \\
& (\mathrm{A}) \\
& \leq[W]_{A_{2}}\left\|\left\langle W^{-1}\right\rangle_{Q}^{-1 / 2} x\right\| \\
& =[W]_{A_{2}}\left(\left\langle W^{-1}\right\rangle_{Q} x \mid x\right)
\end{aligned}
$$

Thus, (B) holds for $C=[W]_{A_{2}}$.
$(\mathrm{B}) \Rightarrow(\mathrm{A}) \quad$ Suppose that Q is a cube and let $x \in \mathbb{R}^{d},\|x\| \leq 1$. We get

$$
\begin{aligned}
\left\|\langle W\rangle_{Q}^{1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{1 / 2} x\right\|^{2} & =\left(\langle W\rangle_{Q}^{1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{1 / 2} x \mid\langle W\rangle_{Q}^{1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{1 / 2} x\right) \\
& =\left(\langle W\rangle_{Q}\left\langle W^{-1}\right\rangle_{Q}^{1 / 2} x \mid\left\langle W^{-1}\right\rangle_{Q}^{1 / 2} x\right) \\
& \stackrel{\text { (B) }}{\leq}\left(C\left\langle W^{-1}\right\rangle_{Q}^{-1}\left\langle W^{-1}\right\rangle_{Q}^{1 / 2} x \mid\left\langle W^{-1}\right\rangle_{Q}^{1 / 2} x\right) \\
& =C(x \mid x) \leq C .
\end{aligned}
$$

Thus, $[W]_{A_{2}} \leq C<\infty$ and hence, $W \in A_{2}$.
$(\mathrm{C}) \Leftrightarrow(\mathrm{B}) \quad$ Using the previous part of the proof and the previous exercise, we get
(C) $\stackrel{(\mathrm{A}) \Leftrightarrow(\mathrm{B})}{\Longleftrightarrow}\left\langle W^{-1}\right\rangle_{Q} \leq C\left\langle\left(W^{-1}\right)^{-1}\right\rangle_{Q}^{-1}=C\langle W\rangle_{Q}^{-1} \quad$ for all cubes Q
$\stackrel{\mathrm{Ex}_{2} \text { 2.2.2. }}{\Longleftrightarrow}\left(C\langle W\rangle_{Q}^{-1}\right)^{-1} \leq\left\langle W^{-1}\right\rangle_{Q}^{-1} \quad$ for all cubes Q
$\Longleftrightarrow\langle W\rangle_{Q}^{-1} \leq C\left\langle W^{-1}\right\rangle_{Q}^{-1}$ for all cubes Q
$\Longleftrightarrow(\mathrm{B})$,
where $C=\left[W^{-1}\right]_{A_{2}}$.

Hence, $(\mathrm{A}) \Leftrightarrow(\mathrm{B}) \Leftrightarrow(\mathrm{C})$.

Exercise 2.2.4. Show that any matrix weight W satisfies estimate

$$
\left\langle W^{-1}\right\rangle_{Q}^{-1} \leq\langle W\rangle_{Q}
$$

Solution. Suppose that $x \in \mathbb{R}^{d}$. First, we notice that by the general Cauchy-Schwarz (C1) and the L^{2}-CauchySchwarz (C2) we get

$$
\begin{aligned}
\left(\left\langle W^{-1}\right\rangle_{Q}^{-1} x \mid x\right) & =\left\langle\left(W^{-1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{-1} x \mid W^{1 / 2} x\right)\right\rangle_{Q} \\
& \stackrel{\text { (C1) }}{\leq}\left\langle\left\|W^{-1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{-1} x\right\|\left\|W^{1 / 2} x\right\|\right\rangle_{Q} \\
& \stackrel{\text { (C2) }}{\leq}\left\langle\left\|W^{-1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{-1} x\right\|^{2}\right\rangle_{Q}^{1 / 2}\left\langle\left\|W^{1 / 2} x\right\|\right\rangle_{Q}^{1 / 2}
\end{aligned}
$$

Since we have

$$
\begin{aligned}
\left\langle\left\|W^{-1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{-1} x\right\|^{2}\right\rangle_{Q}^{1 / 2} & =\left\langle\left(W^{-1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{-1} x \mid W^{-1 / 2}\left\langle W^{-1}\right\rangle_{Q}^{-1} x\right)\right\rangle_{Q}^{1 / 2} \\
& =\left\langle\left(W^{-1}\left\langle W^{-1}\right\rangle_{Q}^{-1} x \mid\left\langle W^{-1}\right\rangle_{Q}^{-1} x\right)\right\rangle_{Q}^{1 / 2} \\
& =\left(\left\langle W^{-1}\right\rangle_{Q}\left\langle W^{-1}\right\rangle_{Q}^{-1} x \mid\left\langle W^{-1}\right\rangle_{Q}^{-1} x\right)^{1 / 2} \\
& =\left(\left\langle W^{-1}\right\rangle_{Q} x \mid x\right)^{1 / 2}
\end{aligned}
$$

and

$$
\left\langle\left\|W^{1 / 2} x\right\|\right\rangle_{Q}^{1 / 2}=\left\langle\left(W^{1 / 2} x \mid W^{1 / 2} x\right)\right\rangle_{Q}^{1 / 2}=\langle(W x \mid x)\rangle_{Q}^{1 / 2}=\left(\langle W\rangle_{Q} x \mid x\right)^{1 / 2}
$$

we have proven

$$
\left(\left\langle W^{-1}\right\rangle_{Q}^{-1} x \mid x\right) \leq\left(\left\langle W^{-1}\right\rangle_{Q} x \mid x\right)^{1 / 2}\left(\langle W\rangle_{Q} x \mid x\right)^{1 / 2} \quad \Longleftrightarrow \quad\left(\left\langle W^{-1}\right\rangle_{Q}^{-1} x \mid x\right) \leq\left(\langle W\rangle_{Q} x \mid x\right)
$$

Hence, $\left\langle W^{-1}\right\rangle_{Q}^{-1} \leq\langle W\rangle_{Q}$.

