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Exercise 1.9.8. Show the following converse of Theorem 1.9.4: If a weight w satisfies the reverse Holder

inequality
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for all Q € 2, then w € AZ. Estimate [w]%_ in terms of K and e.

Solution. Suppose that Q € 2. By Hoélder’s inequality and the LP-boundedness of the dyadic Hardy-
Littlewood maximal operator (Corollary 1.1.2), we have
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Thus, we have w € AZ and [w]{ < (1+¢)'K = =K. O



Exercise 1.9.9. Consider the following truncated version of Mg:

MY f(z) = sup 1o (@)(|f)qr
Q'€2,0'CQ
0(QN>2-N(Q)

and define the truncated A, constant as the smallest constant in the following inequality:

/Mgw < [w]f;iv/w VQ € 2.
Q Q
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Q;ivé[w]Aw as N — oo.

Show that [w}foiv < oo for any weight w, and that [w]

Solution. For every Q € 9 we have
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Thus, [w]foiv < 2Nd < oo for every weight w.

Let us then show that [w}foiv — [w]% _. We first notice that since the values of M) w increase pointwise as
N increases, we can write Mow(z) = Imy_00 Mé\'w(x) for every x. In particular, the sequence ([w]fﬁ)%zo
is increasing and thus, the limit lim N%oo[w]f;iv exists (it may be oo). By definition, we have [w]foiv < [w]F_

N

for every N and hence, limNﬁoo[w]f;Q < [w]{_. Since we also have

Q
by the monotone convergence theorem, we have limN%oo[w]f;iv > [w]%_ as [w]{_ is the smallest constant C
in the inequality [, Mow < C [, w. Hence, [w]foiv — [w]%_ as N — oo. O



Exercise 1.9.10. The following condition is often used as the definition of the (dyadic) As: There are
constant d,n € (0,1) such that for all (dyadic) cubes @ and all measurable subsets E C Q, if |E| < 6|Q)|, then
w(F) < nw(Q). Prove that this condition implies the dyadic A, condition as we have defined it.

Solution. For every A > 0, we denote E := E) = {x € Qo: Mjw(x) > A}. By the same considerations as in
the proof of Theorem 1.1.1, we have E = UQeF* Q for a collection F* := F} of maximal disjoint cubes Q@ C Qg

such that £(Q) > 27V¢(Qy). Let us start by making two observations.

i) For any cube @) € F5, we have
(w)yg > A= sup  (w)g
Q'2Q,Q'CQo,
£€Q")>2""e(Qo)

and thus, for any point x € QQ we get

M5 w(z) = | sup (wygr = _sup (wyg < _sup (wyg = Mw(z). (1)
Q'>5z,Q CQo, Q5w Q CQ, Q'5z,Q CQ,
£Q")>27Ve(Qo) £€Q")>2"Ne(Qo) (Q)>27NeQ)

ii) Recall that we have Mg: L' — L' by Theorem 1.1.1. Since M w(x) < Mg (lg,w)(x) for every x, we
have
HlQOwHL1 ’lU(Qo) <U)>Q0|Q0‘ (2)

< . < = = .
Bl < [{z € RY: Ma(lgu)(@) > A} < -9 N .

Let us choose A = M%. Then, by (2), we have |E| < §|Qo| and thus, by assumption, we have w(FE) < nw(Qp).
Hence, we get
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Combining these calculations gives us [, o ME w < (n[w]Z’N + Hw(Qo). In particular, by the definition of the

oo

constant [w]f;iv, we have [w]f: < n[w]f;iv + %. Now we can use Exercise 1.9.9:

e Since [w]iﬁv < oo for every weight w, we get
RN <nlwlf 41 = WY s
Ao =M= T g D)
for every N € N.
e Since [w]iﬁv — [w}%m as N — oo, we have
Wl = lim [w]?Y < lim ! = ! < oo
Ao N=oo' A= = Nooo 5(1—mn) 0(1—mn) .
Thus, since [w]% < oo, we have w € AZ. O



Exercise 2.2.2. For self-adjoint matrices A, B, we introduce the partial order < as follows:

A<B &L (Az|x) < (Bzlx) Va e C".

For all positive matrices A, B, show that
A<B << |AYV?B7YY,<1 <« |B7Y2AY?|,<1 <« Bl<Al

i.e., all four listed conditions are equivalent.

Solution. For simplicity, we denote
A) A< B,
B) [|AY2B712||o, <1,

Q) [B-1/2412]0, < 1,

(A)
B)
(©)
(D) Bt <AL

Since the proofs of (A) & (B) and (C) < (D) are virtually the same, we will just prove that (A) < (B) and
(B) < (C).

(A) = (B) Since (Ay|y) < (By|y) for every y, for every x such that ||z|| < 1 we have

||A1/2B_1/2x||2 _ (Al/zB_l/Qx\Al/zB_l/2x> _ (AB_1/2x|B_1/2x>
(BB—l/% | B—l/%)

(z|z) = [z < L
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Thus, |AY2B7/2|,, < 1.
(B) = (A) Since ||AY2B~1/2||,, < 1, for every = we get

(Az|z) = (Al/Qx‘A1/2x> — ||AY2z|2 = |AY2B V2122
1AY2B=12|12, 1B 2a
1BY 2|2 = (B1/2x|B1/2x) - (Bzl|z).

N

IN

Thus, A < B.

(B) & (C) To show this equivalence, we only need to recall that |T||op = [|T%|cp and (ST)* = T*S* for any

bounded linear operators on a complex Hilbert space. Indeed, since the matrices A*/2 and B'/? are
self-adjoint, we have

HAl/ZB_l/QHOP = ||(A1/QB_1/2)*||OP = ||(B_1/2)*(A1/2)*H0p = ||B_1/2A1/2||0p

and the equivalence of (B) and (C) follows immediately.

Hence, (A) < (B) & (C) & (D). 0



Exercise 2.2.3. Show that W € A, if and only if (W) < C(W~ > , if and only if W~ € Ay, and the
optimal constant satisfies C = [W]a, = [W 1] 4,.

Solution. Recall that A, was the set of matrix weights W such that [W] 4, := supg [[(W )1/2<W_1)é2/2||c2)p < o0
For simplicity, let us denote

(A) W e A,
(B) (W)g < C(W‘1>51 for all cubes Q,
(C) w-te As.

We will prove the claim in three parts:

(A) = (B) For every z € R? we have

(W)gz|r) = ||<W>22/23;||2 _ H<W>}Q/2<W_1>1/2<W_1>(51/2$H

Thus, (B) holds for C' = [W]4,.

(B) = (A) Suppose that @ is a cube and let 2 € R?, ||z|| < 1. We get

W G2 H Y22 = (W)W el W)y 2 (W Y 2a)

Thus, [W]a, < C < oo and hence, W € A,.

(C) & (B) Using the previous part of the proof and the previous exercise, we get

(©) ALe® W < C((W_l)_1>él = C(W}él for all cubes @
P22 cw )é )yl (W *1>(51 for all cubes Q
= (W) <C(W )g?l for all cubes Q
~ (B),
where C' = [W 1] 4,.
Hence, (A) < (B) & (C). O



Exercise 2.2.4. Show that any matrix weight W satisfies estimate

Solution. Suppose that x € R%. First, we notice that by the general Cauchy-Schwarz (C1) and the L?-Cauchy-
Schwarz (C2) we get

((W*1>élx\x> _ <(W71/2<W71>51Z|W1/2I)>
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Since we have

1/2
W2 w2y ? =
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and

(w2 = (e i) ) = el = (gele) ",

we have proven



