Exercise 1.8.13. Suppose that $V^{r} S f(x)<\infty$ at some point x. Show that $\lim _{\varepsilon \rightarrow 0} S_{\varepsilon} f(x)$ exists at this point.

Solution. Recall that given a family of linear operators $\left(S_{\varepsilon}\right)_{\varepsilon \in(0, \infty)}$, we define

$$
\begin{aligned}
V_{\varepsilon}^{r} S f(x) & :=\sup \left(\sum_{j=1}^{N}\left|S_{\varepsilon_{j-1}} f(x)-S_{\varepsilon_{j}} f(x)\right|^{r}\right)^{1 / r} \\
V^{r} S f(x) & :=V_{0}^{r} S f(x)
\end{aligned}
$$

where the supremum is taken over all increasing sequences $\varepsilon \leq \varepsilon_{0} \leq \ldots \leq \varepsilon_{N}$ (with the additional requirement that $0<\varepsilon_{0}$ if $\varepsilon=0$), where N is finite but arbitary.

Since \mathbb{R} is complete, it suffices to fix a sequence $\left(y_{n}\right)_{n=1}^{\infty}$ such that $y_{n} \searrow 0$ and show that the corresponding sequence $\left(z_{n}\right)_{n=1}^{\infty}, z_{n}=S_{y_{n}} f(x)$, is Cauchy. Suppose that $\varepsilon>0$. Let us set $N_{\varepsilon}:=\left\lceil\left(V^{r} S f(x) / \varepsilon\right)^{r}\right\rceil$. Since $V^{r} S f(x)<\infty$, we have $N_{\varepsilon} \in \mathbb{N}$. We now claim that there exist at most N_{ε} disjoint intervals $\left[a_{i}, b_{i}\right) \subset(0, \infty)$ such that $\left|S_{a_{j}} f(x)-S_{b_{j}} f(x)\right| \geq \varepsilon$:

If no such intervals exist, we are done. Otherwise, choose any such interval $I_{1}=\left[a_{1}, b_{1}\right)$, and consider the set $(0, \infty) \backslash I_{1}$. If possible, choose another such interval $I_{2}=\left[a_{2}, b_{2}\right) \subset(0, \infty) \backslash I_{1}$, and continue the process for the set $(0, \infty) \backslash\left(I_{1} \cup I_{2}\right)$. For contradiction, suppose that we can choose $N_{\varepsilon}+1$ intervals this way. Then we have

$$
\begin{aligned}
V^{r} S f(x) & =\sup _{\substack{N \in \mathbb{N}, 0<\varepsilon_{j} \leq \varepsilon_{j+1}}}\left(\sum_{j=1}^{N}\left|S_{\varepsilon_{j-1}} f(x)-S_{\varepsilon_{j}} f(x)\right|^{r}\right)^{1 / r} \\
& \geq\left(\sum_{j=1}^{N_{\varepsilon}+1}\left|S_{b_{j}} f(x)-S_{a_{j}} f(x)\right|^{r}\right)^{1 / r} \\
& \geq\left(\sum_{j=1}^{N_{\varepsilon}+1} \varepsilon^{r}\right)^{1 / r} \\
& =\left(N_{\varepsilon}+1\right)^{1 / r} \varepsilon>N_{\varepsilon}^{1 / r} \varepsilon \geq\left(\frac{V^{r} S f(x)^{r}}{\varepsilon^{r}}\right)^{1 / r} \varepsilon=V^{r} S f(x)
\end{aligned}
$$

which is a contradiction.
Since the number of these intervals $\left[a_{j}, b_{j}\right)$ is finite, we may choose $n_{\varepsilon} \in \mathbb{N}$ to be so large that $0<y_{n}<\min _{j} a_{j}$ for every $n \geq n_{\varepsilon}$. Thus, for any $n, m \geq n_{\varepsilon}$ we have $0<y_{n}, y_{m}<\min _{j} a_{j}$ and hence, $\left|S_{y_{n}} f(x)-S_{y_{m}} f(x)\right|<\varepsilon$. In particular, the sequence $\left(z_{n}\right)$ is Cauchy.

Exercise 1.8.14. Check that if $f \in \bigcup_{p \in[1, \infty)} L^{p}\left(\mathbb{R}^{d}\right)$, then both $A_{\varepsilon} f(x)$ and $T_{\varepsilon} f(x)$ tend to zero as $\varepsilon \rightarrow \infty$.

Solution. Recall that

$$
A_{\varepsilon} f(x):=f_{B(x, \varepsilon)} f(y) \mathrm{d} y, \quad T_{\varepsilon} f(x):=\int_{|x-y|>\varepsilon} K(x, y) f(y) \mathrm{d} y
$$

Let us fix $p \in[1, \infty)$ and $f \in L^{p}\left(\mathbb{R}^{d}\right)$. If $p=1$, we have $p^{\prime}=\infty$ and interpret $1 / p^{\prime}=0$. By Hölder's inequality (H), we get

$$
\left|A_{\varepsilon} f(x)\right| \leq \frac{1}{|B(x, \varepsilon)|} \int_{B(x, \varepsilon)}|f(y)| \mathrm{d} y \stackrel{(\mathrm{H})}{\leq} \frac{1}{|B(x, \varepsilon)|}\|f\|_{L^{p}}|B(x, \varepsilon)|^{1 / p^{\prime}}=\frac{\|f\|_{L^{p}}}{|B(x, \varepsilon)|^{1 / p}}=\frac{\|f\|_{L^{p}}}{c_{d}^{1 / p} \varepsilon^{d / p}} \xrightarrow{\varepsilon \rightarrow \infty} 0 .
$$

For T_{ε}, let consider the case $p=1$ separately.
$\underline{p=1}$: In this case, we can simply use the size property of the Calderón-Zygmund kernel $K(\mathrm{CZ})$:

$$
\left|T_{\varepsilon} f(x)\right| \leq \int_{|x-y|>\varepsilon}\left|K(x, y)\left\|f(y) \left\lvert\, \mathrm{d} y \stackrel{(\mathrm{CZ})}{\leq} \int_{|x-y|>\varepsilon} \frac{|f(y)|}{|x-y|^{d}} \mathrm{~d} y \leq \frac{1}{\varepsilon^{d}}\right.\right\| f \|_{L^{1}} \xrightarrow{\varepsilon \rightarrow \infty} 0\right.
$$

$\underline{p>1}$: In this case, we need to be a little more careful. We recall from real analysis that for $a>0$ the function $x \mapsto 1 /|x|^{a}$ is integrable over $\mathbb{R}^{d} \backslash B(x, \varepsilon)$ if and only if $a>d$. In particular, the function $x \mapsto 1 /|x|^{d p^{\prime}}$ is integrable over $\mathbb{R}^{d} \backslash B(x, \varepsilon)$. Thus, since $1_{|x-\cdot|>\varepsilon}(y) \searrow 0$ for all $y \in \mathbb{R}^{d}$ as $\varepsilon \searrow 0$, the size property of the Calderón-Zygmund kernel $K(\mathrm{CZ})$, Hölder's inequality (H) and the dominated convergence theorem (DCT) give us

$$
\begin{aligned}
\left|T_{\varepsilon} f(x)\right| \leq \int_{|x-y|>\varepsilon}|K(x, y)||f(y)| \mathrm{d} y & \stackrel{\text { (CZ) }}{\leq} \int_{|x-y|>\varepsilon} \frac{|f(y)|}{|x-y|^{d}} \mathrm{~d} y \\
& \stackrel{\text { (H) }}{\leq}\left(\int_{|x-y|>\varepsilon} \frac{1}{|x-y|^{d p^{\prime}}} \mathrm{d} y\right)^{1 / p^{\prime}}\|f\|_{L^{p}} \\
& \xrightarrow[\text { (DCT) }]{\varepsilon \rightarrow \infty} 0 .
\end{aligned}
$$

Exercise 1.8.15. For $0<a<b$, prove that

$$
V_{a}^{r} T f(x) \leq V_{b}^{r} T f(x)+c_{d} c_{K}(1+\log (b / a)) M f(x)
$$

Solution. First, we notice that

$$
\begin{aligned}
V_{a}^{r} T f(x) & =\sup \left(\sum_{i=1}^{N}\left|T_{\varepsilon_{i-1}} f(x)-T_{\varepsilon_{i}} f(x)\right|^{r}\right)^{1 / r} \\
& =\sup \left(\sum_{i: a \leq \varepsilon_{i-1} \leq \varepsilon_{i} \leq b}\left|T_{\varepsilon_{i-1}} f(x)-T_{\varepsilon_{i}} f(x)\right|^{r}+\sum_{i: \varepsilon_{i-1}>b}\left|T_{\varepsilon_{i-1}} f(x)-T_{\varepsilon_{i}} f(x)\right|^{r}\right)^{1 / r} \\
& \leq \sup \left(\sum_{i: a \leq \varepsilon_{i-1} \leq \varepsilon_{i} \leq b}\left|T_{\varepsilon_{i-1}} f(x)-T_{\varepsilon_{i}} f(x)\right|^{r}\right)^{1 / r}+\sup \left(\sum_{i: \varepsilon_{i-1}>b}\left|T_{\varepsilon_{i-1}} f(x)-T_{\varepsilon_{i}} f(x)\right|^{r}\right)^{1 / r} \\
& =\sup \left(\sum_{i: a \leq \varepsilon_{i-1} \leq \varepsilon_{i} \leq b}\left|T_{\varepsilon_{i-1}} f(x)-T_{\varepsilon_{i}} f(x)\right|^{r}\right)^{1 / r}+V_{b}^{r} f(x)=: I+V_{b}^{r} f(x)
\end{aligned}
$$

so we only need to show that $I \leq c_{d} c_{K}(1+\log (b / a)) M f(x)$. For this, we use the size property of the CalderónZygmund kernels:

$$
\begin{align*}
I & \leq \sup \left(\sum_{i: a \leq \varepsilon_{i-1} \leq \varepsilon_{i} \leq b}\left|T_{\varepsilon_{i-1}} f(x)-T_{\varepsilon_{i}} f(x)\right|\right) \\
& =\sup \sum_{i: a \leq \varepsilon_{i-1} \leq \varepsilon_{i} \leq b} \int_{\varepsilon_{i-1}<|x-y|<\varepsilon_{i}}|K(x, y)||f(y)| \mathrm{d} y \\
& \leq \int_{a<|x-y|<b}|K(x, y)||f(y)| \mathrm{d} y \\
& \leq c_{K} \int_{a<|x-y|<b} \frac{|f(y)|}{|x-y|^{d}} \mathrm{~d} y \\
& =c_{K} \sum_{k \geq 0: 2^{k} a<b} \int_{2^{k} a<|x-y|<2^{k+1} a} \frac{|f(y)|}{|x-y|^{d}} \mathrm{~d} y \\
& \leq c_{K} \sum_{k \geq 0: 2^{k} a<b} \frac{1}{\left(2^{k} a\right)^{d}} \int_{B\left(x, 2^{k+1} a\right)}|f(y)| \mathrm{d} y \\
& \leq c_{K} c_{d} \sum_{k \geq 0: 2^{k} a<b} f_{B\left(x, 2^{k+1} a\right)}|f(y)| \mathrm{d} y \leq \sum_{k \geq 0: 2^{k} a<b} c_{K} c_{d} M f(x) . \tag{1}
\end{align*}
$$

Since we have

$$
2^{k} a \leq b \quad \Longrightarrow \quad k \leq \log _{2}(b / a) \leq 2 \log (b / a)
$$

we get

$$
\sum_{k \geq 0: 2^{k} a<b} 1 \leq 1+\sum_{k=1}^{\lceil 2 \log (b / a)\rceil} 1 \leq 2(1+\log (b / a))
$$

Hence, we have proven the claim.

Remark 2. We note that the same proof gives us a slightly stronger result: we have

$$
V_{a}^{r} T f(x) \leq V_{b}^{r} T f(x)+c_{d} c_{K}(1+\log (b / a)) M f\left(x^{\prime}\right)
$$

for every x^{\prime} such that $\left|x-x^{\prime}\right|<2 a$; we only need to replace $M f(x)$ by $M f\left(x^{\prime}\right)$ on the line (1).

Exercise 1.8.16. Define $\widetilde{V}^{r} T$ in a way analogous to $\widetilde{V}^{r} A$. Prove a pointwise bound for $\tilde{V}^{r} T f$, which allows to conclude that $\widetilde{V}^{r} T: L^{1} \rightarrow L^{1, \infty}$.
Solution. We define $\tilde{V}^{r} T$ by setting

$$
\widetilde{V}^{r} T f(x):=\sup _{z \in \mathbb{R}^{d}} V_{|z-x|}^{r} T f(z)
$$

and we claim that

$$
\begin{equation*}
\tilde{V}^{r} T f(x) \leq c_{d}\left(\|\omega\|_{\mathrm{Dini}}+c_{K}\right) M f(x)+V^{r} T f(x)+c_{d} c_{K} \widetilde{V}^{r} A|f|(x) \tag{3}
\end{equation*}
$$

This bound is straightforward to prove with the help of Remark 2 and Lemma 1.8.6. First, we apply Remark 2 with the choices $a=|z-x|$ and $b=2|z-x|$:

$$
V_{|z-x|}^{r} T f(x) \leq V_{2|z-x|}^{r} T f(z)+c_{d} c_{K} M f(x)
$$

Then, we notice that

$$
\begin{aligned}
V_{2|z-x|}^{r} T f(z) & \leq\left|V_{2|z-x|}^{r} T f(z)-V_{2|z-x|}^{r} T f(x)\right|+V_{2|z-x|}^{r} T f(x) \\
& \leq\left|V_{2|z-x|}^{r} T f(z)-V_{2|z-x|}^{r} T f(x)\right|+V^{r} T f(x)
\end{aligned}
$$

and since $|z-x| \leq 2|z-x| / 2$, we can apply Lemma 1.8.6 for the first term:

$$
\left|V_{2|z-x|}^{r} T f(z)-V_{2|z-x|}^{r} T f(x)\right| \leq c_{d}\left(\|\omega\|_{\mathrm{Dini}}+c_{K}\right) M f(x)+c_{d} c_{K} \widetilde{V} A|f|(x)
$$

Combining the previous estimates gives us the bound (3). By Theorem 1.8.3 and Theorem 1.8.4, this bound is enough to conclude that $\widetilde{V}^{r} T: L^{1} \rightarrow L^{1, \infty}$.

Exercise 1.8.17. Prove a pointwise bound for $M_{V^{r} A} f$, which allows to conclude that $M_{V^{r} A}: L^{1} \rightarrow L^{1, \infty}$ (and hence to apply Lerner's theorem to $V^{r} A$).

Solution. Recall that the function $M_{V^{r} A} f$ is defined as

$$
M_{V^{r} A} f(x)=\sup _{Q \ni x} \sup _{z \in Q} V^{r} A\left(1_{(3 Q)^{c}} f\right)(z)
$$

We claim that we have the pointwise bound

$$
\begin{equation*}
M_{V^{r} A} f(x) \leq \tilde{V}^{r} A f(x)+c_{d} M f(x) \tag{4}
\end{equation*}
$$

We can prove this bound using the same techniques that we used in the proof of Lemma 1.8.9. We denote

$$
\widetilde{f}:=1_{(3 Q)^{c}} f, \quad v_{i}:=v_{\varepsilon_{i}, \varepsilon_{i+1}}:=\left|A_{\varepsilon_{i}} \widetilde{f}(z)-A_{\varepsilon_{i+1}} \widetilde{f}(z)\right|
$$

and with this notation we have

$$
V^{r} A \tilde{f}(z)=\sup \left(\sum_{i} v_{i}^{r}\right)^{1 / r}
$$

Using the same considerations as in the proof of Lemma 1.8.9, we get

$$
\sup \left(\sum_{i} v_{i}^{r}\right)^{1 / r} \leq\left(\sup _{\varepsilon_{N} \leq \ell(Q)}+\sup _{\ell(Q) \leq \varepsilon_{0} \leq \varepsilon_{N} \leq 2 \sqrt{d} \ell(Q)}+\sup _{2 \sqrt{d} \ell(Q) \leq \varepsilon_{0}}\right)\left(\sum_{i} v_{i}^{r}\right)^{1 / r}=: I+I I+I I I
$$

Since $B(z, r) \subset 3 Q$ for every $r \leq \ell(Q)$, we have $I=0$. Also, we notice that since $|x-z| \leq 2 \sqrt{d} \ell(Q)$, we get

$$
I I I \leq \sup _{|x-z| \leq \varepsilon_{0}}\left(\sum_{i} v_{i}^{r}\right)^{1 / r} \leq \sup _{z \in \mathbb{R}^{d}} \sup _{|x-z| \leq \varepsilon_{0}}\left(\sum_{i} v_{i}^{r}\right)^{1 / r}=\sup _{z \in \mathbb{R}^{d}} V_{|z-x|}^{r} A f(z)=\tilde{V}^{r} A f(x)
$$

Thus, we only need to find a suitable bound for $I I$. Suppose that $\ell(Q) \leq \varepsilon_{i} \leq \varepsilon_{i+1} \leq 2 \sqrt{d} \ell(Q)$. We have

$$
\begin{aligned}
A_{\varepsilon_{i}} \tilde{f}(z)-A_{\varepsilon_{i+1}} \tilde{f}(z) & =\frac{1}{c_{d} \varepsilon_{i}^{d}} \int_{B\left(z, \varepsilon_{i}\right)} \tilde{f}-\frac{1}{c_{d} \varepsilon_{i+1}^{d}} \int_{B\left(z, \varepsilon_{i+1}\right)} \tilde{f} \\
& =\left(\frac{1}{c_{d} \varepsilon_{i}^{d}}-\frac{1}{c_{d} \varepsilon_{i+1}^{d}}\right) \int_{B\left(z, \varepsilon_{i}\right)} \tilde{f}+\frac{1}{c_{d} \varepsilon_{i+1}^{d}}\left(\int_{B\left(z, \varepsilon_{i}\right)} \tilde{f}-\int_{B\left(z, \varepsilon_{i+1}\right)} \tilde{f}\right) \\
& =\left(\frac{1}{c_{d} \varepsilon_{i}^{d}}-\frac{1}{c_{d} \varepsilon_{i+1}^{d}}\right) \int_{B\left(z, \varepsilon_{i}\right)} \tilde{f}+\frac{1}{c_{d} \varepsilon_{i+1}^{d}}\left(-\int_{B\left(z, \varepsilon_{i+1}\right) \backslash B\left(z, \varepsilon_{i}\right)} \tilde{f}\right)=: I I_{1}^{i}+I I_{2}^{i}
\end{aligned}
$$

The term $I I_{2}^{i}$ is easy: we get

$$
\begin{aligned}
\sum_{i}\left|I I_{2}^{i}\right| & =\sum_{i} \frac{1}{\ell(Q)^{d}} \int_{B\left(z, \varepsilon_{i+1}\right) \backslash B\left(z, \varepsilon_{i}\right)}|\widetilde{f}| \\
& =\frac{1}{\ell(Q)^{d}} \sum_{i} \int_{\varepsilon_{i}<|z-y|<\varepsilon_{i+1}}|f(y)| \mathrm{d} y \\
& \leq \frac{1}{\ell(Q)^{d}} \int_{\ell(Q)<|z-y|<2 \sqrt{d} \ell(Q)}|f(y)| \mathrm{d} y \\
& \leq \frac{c_{d}}{\mid B(z, 2 \sqrt{d} \ell(Q))} \int_{B(z, 2 \sqrt{d} \ell(Q))}|f(y)| \mathrm{d} y \leq c_{d} M f(x)
\end{aligned}
$$

We need to be a little bit more careful with the term $I I_{1}^{i}$. First, we notice that

$$
\begin{aligned}
\sum_{i}\left|I I_{1}^{i}\right| & \leq \sum_{i}\left(1-\frac{\varepsilon_{i}^{d}}{\varepsilon_{i+1}^{d}}\right) \frac{1}{\varepsilon_{i}^{d}} \int_{B\left(z, \varepsilon_{i}\right)}|f| \\
& \leq \sum_{i}\left(1-\frac{\varepsilon_{i}^{d}}{\varepsilon_{i+1}^{d}}\right) \frac{c_{d}}{|B(z, 2 \sqrt{d} \ell(Q))|} \int_{B(z, 2 \sqrt{d} \ell(Q))}|f| \\
& \leq c_{d} M f(x) \sum_{i}\left(1-\frac{\varepsilon_{i}^{d}}{\varepsilon_{i+1}^{d}}\right)
\end{aligned}
$$

Let us denote $g(x)=x^{d}$. For the numbers $1-\frac{\varepsilon_{i}^{d}}{\varepsilon_{i+1}^{d}}=1^{d}-\left(\frac{\varepsilon_{i}}{\varepsilon_{i+1}}\right)^{d}$ we use the mean value theorem: for every i there exists a number $\xi_{i} \in(0,1)$ such that

$$
1^{d}-\left(\frac{\varepsilon_{i}}{\varepsilon_{i+1}}\right)^{d}=g^{\prime}\left(\xi_{i}\right)\left(1-\frac{\varepsilon_{i}}{\varepsilon_{i+1}}\right)=d \xi_{i}^{d-1}\left(1-\frac{\varepsilon_{i}}{\varepsilon_{i+1}}\right) \leq d\left(1-\frac{\varepsilon_{i}}{\varepsilon_{i+1}}\right)
$$

In particular, we get

$$
\begin{aligned}
\sum_{i}\left(1-\frac{\varepsilon_{i}^{d}}{\varepsilon_{i+1}^{d}}\right) \leq d \sum_{i}\left(1-\frac{\varepsilon_{i}}{\varepsilon_{i+1}}\right) & =d \sum_{i} \frac{\varepsilon_{i+1}-\varepsilon_{i}}{\varepsilon_{i+1}} \\
& \leq \frac{d}{\ell(Q)} \sum_{i}\left(\varepsilon_{i+1}-\varepsilon_{i}\right) \\
& =\frac{d}{\ell(Q)}\left(\varepsilon_{N}-\varepsilon_{0}\right) \\
& \leq \frac{d}{\ell(Q)}(2 \sqrt{d} \ell(Q)-\ell(Q))=c_{d}
\end{aligned}
$$

Thus, we get $I I \leq c_{d} M f(x)$ and the bound (4) follows. By Theorem 1.8.3, this bound is enough for us to conclude that $M_{V^{r} A}: L^{1} \rightarrow L^{1, \infty}$.

Exercise 1.8.18 Consider the standard dyadic intervals \mathscr{D} of \mathbb{R}, and define the dyadic analogue of the averaging operators A_{ε} by $E_{j} f(x):=\langle f\rangle_{Q_{j}(x)}$, where $Q_{j}(x)$ is the unique dyadic cube of side-length 2^{-j} that contains x. The corresponding variation operator is $V^{r} E f:=\sup \left(\sum_{i}\left|E_{j_{i}} f-E_{j_{1}} f\right|^{r}\right)^{1 / r}$, where the supremum is over all increasing increasing sequences j_{i}.

Define the L^{∞}-normalised Haar functions $h_{I}^{\infty}:=1_{I_{\ell}}-1_{I_{r}}$, where $I_{\ell / r}$ is the left/right half of I, and the Rademacher functions $r_{j}:=\sum_{I \in \mathscr{D}_{j}[0,1)} h_{I}^{\infty}$, where $\mathscr{D}_{j}[0,1)=\left\{I \in \mathscr{D}: I \subseteq[0,1), \ell(I)=2^{-j}\right\}$. Check that the functions $\left(r_{i}\right)_{i=0}^{\infty}$ are orthonormal: $\int r_{i} r_{j}=\delta_{i j}\left(=: 1\right.$ if $i=j$, and $=: 0$ else). Check that $E_{j} r_{i}=r_{i}$ if $j>i$ and $E_{j} r_{i}=0$ if $j \leq i$. Then consider a function of the form $f=\sum_{i=0}^{\infty} a_{i} r_{i}$. Check that, pointwise on $[0,1)$, we have $V^{r} E f \geq\left(\sum_{i=0}^{\infty}\left|a_{i}\right|^{r}\right)^{1 / r}$, while $\|f\|_{L^{1}} \leq\|f\|_{L^{2}}=\left(\sum_{i=0}^{\infty}\left|a_{i}\right|^{2}\right)^{1 / 2}$. Conclude with a suitable choice of $\left(a_{i}\right)_{i=0}^{\infty}$ that $V^{r} E: L^{1} \nrightarrow L^{1, \infty}$ if $r<2$.

Solution. Since we have to check several small claims, we break the solution into four parts for clarity.

1) Orthogonality of the functions r_{i}.

First, we notice that for any $I, J \in \mathscr{D}([0,1))$ such that $\ell(I) \leq \ell(J)$ we have

$$
h_{I}^{\infty} h_{J}^{\infty}=\left\{\begin{array}{cl}
1_{J}, & \text { if } I=J \\
0, & \text { if } I \cap J=\emptyset \\
h_{I}^{\infty}, & \text { if } I \subseteq J_{\ell} \\
-h_{I}^{\infty}, & \text { if } I \subseteq J_{r}
\end{array}\right.
$$

Thus, for $i \geq j$ we get

$$
\begin{aligned}
r_{i} r_{j} & =\left(\sum_{\substack{I \in \mathscr{D}_{i}[0,1)}} h_{I}^{\infty}\right)\left(\sum_{J \in \mathscr{D}_{j}[0,1)} h_{J}^{\infty}\right) \\
& =\sum_{J \in \mathscr{D}_{j}[0,1)} \sum_{\substack{\left(\in \mathscr{D}_{i}[0,1) \\
I=J\right.}} 1_{J}+\sum_{J \in \mathscr{D}_{j}[0,1)} \sum_{\substack{\begin{subarray}{c}{\left.\mathscr{D}_{i} i 0,1\right) \\
I \subseteq J_{\ell}} }}\end{subarray}} h_{I}^{\infty}+\sum_{\substack{\mathscr{D}_{j}[0,1)}} \sum_{\substack{I \in \mathscr{D}_{i}[0,1) \\
I \subseteq J_{r}}}-h_{I}^{\infty} \\
& =: I+I I+I I I \\
& =\left\{\begin{array}{cc}
I, & \text { if } i=j \\
I I+I I I, & \text { if } i<j
\end{array}\right. \\
& =\left\{\begin{array}{ccc}
1_{[0,1)}, & \text { if } i=j \\
I I+I I I, & \text { if } i<j
\end{array} .\right.
\end{aligned}
$$

Since the supports of the functions $h_{I_{1}}^{\infty}$ and $h_{I_{2}}^{\infty}$ are disjoint if $I_{1}, I_{2} \in \mathscr{D}_{i}[0,1)$ and we have $\int h_{I}^{\infty}=0$ for any $I \in \mathscr{D}[0,1)$, we get

$$
\begin{aligned}
\int r_{i} r_{j} & = \begin{cases}\sum_{I_{[0,1)},} \begin{array}{ll}
\sum_{J \in \mathscr{D}_{j}[0,1)} \sum_{\substack{I \in \mathscr{O}_{i}[0,1) \\
I \subseteq J_{\ell}}} \int h_{I}^{\infty}+\sum_{J \in \mathscr{D}_{j}[0,1)} \sum_{\substack{I \in \mathscr{D}_{i}[0,1) \\
I \subseteq J_{r}}} \int-h_{I}^{\infty}, & \text { if } i<j
\end{array} \\
& = \begin{cases}1, & \text { if } i=j \\
0, & \text { if } i<j\end{cases} \\
& =\delta_{i j} .\end{cases}
\end{aligned}
$$

2) The function $E_{j} r_{i}$.

Suppose that $x \in J \in \mathscr{D}_{j}[0,1)$.

- Suppose that $i \geq j$. Now we have $\int_{J} h_{I}^{\infty}=0$ for every $I \in \mathscr{D}_{i}[0,1)$ and thus,

$$
E_{j} r_{i}(x)=\left\langle r_{i}\right\rangle_{J}=\sum_{\substack{I \in \mathscr{D}_{i}[0,1) \\ I \subseteq J}}\left\langle h_{I}^{\infty}\right\rangle_{J}=0
$$

- Suppose that $i<j$. Now there exists exactly one $I \in \mathscr{D}_{i}[0,1)$ such that $I \cap J \neq \emptyset$. Since $i<j$, we know that either $J \subset I_{\ell}$ or $J \subset I_{r}$. Thus,

$$
E_{j} r_{i}(x)=\left\langle r_{i}\right\rangle_{J}=\left\langle h_{I}^{\infty}\right\rangle_{J}=\left\{\begin{array}{cl}
\langle 1\rangle_{J}, & \text { if } J \subset I_{\ell} \\
\langle-1\rangle_{J}, & \text { if } J \subset I_{r}
\end{array}=\left\{\begin{array}{cl}
1, & \text { if } J \subset I_{\ell} \\
-1, & \text { if } J \subset I_{r}
\end{array}=h_{I}^{\infty}(x)=r_{i}(x) .\right.\right.
$$

3) Estimates for functions of the type $f=\sum_{i=0}^{\infty} a_{i} r_{i}$.

Let us notice that for any $j \geq 0$ and $x \in[0,1)$ the part 2) gives us

$$
\left|E_{j} f(x)-E_{j+1} f(x)\right|=\left|\sum_{i=0}^{j-1} a_{i} r_{i}(x)-\sum_{i=0}^{j} a_{i} r_{i}(x)\right|=\left|a_{j} r_{j}(x)\right|=\left|a_{j}\right|
$$

In particular, we get

$$
\begin{equation*}
V^{r} E f(x) \geq\left(\sum_{j=0}^{\infty}\left|E_{j} f(x)-E_{j+1} f(x)\right|^{r}\right)^{1 / r}=\left(\sum_{j=0}^{\infty}\left|a_{j}\right|^{r}\right)^{1 / r} \tag{5}
\end{equation*}
$$

for every $x \in[0,1)$. Also, by the orthogonality (O) of the Rademacher functions, we have

$$
\begin{align*}
\|f\|_{L^{2}}=\lim _{k \rightarrow \infty}\left(\int\left(\sum_{i=0}^{k} a_{i} r_{i}(x)\right)^{2} \mathrm{~d} x\right)^{1 / 2} & =\lim _{k \rightarrow \infty}\left(\int \sum_{i, j=0}^{k} a_{i} a_{j} r_{i}(x) r_{j}(x) \mathrm{d} x\right)^{1 / 2} \\
& =\lim _{k \rightarrow \infty}\left(\sum_{i, j=0}^{k} a_{i} a_{j} \int r_{i}(x) r_{j}(x) \mathrm{d} x\right)^{1 / 2} \\
& \stackrel{(\mathrm{O})}{=} \lim _{k \rightarrow \infty}\left(\sum_{i=0}^{k} a_{i}^{2}\right)^{1 / 2}=\left(\sum_{i=0}^{\infty}\left|a_{i}\right|^{2}\right)^{1 / 2} \tag{6}
\end{align*}
$$

and Hölder's inequality gives us

$$
\begin{equation*}
\|f\|_{L^{1}([0,1))} \leq\|f\|_{L^{2}([0,1))}\left\|1_{[0,1)}\right\|_{L^{2}([0,1))} \leq\|f\|_{L^{2}([0,1))} \tag{7}
\end{equation*}
$$

4) A counterexample.

Suppose that $\varepsilon>0$ and $r<2$. We set

$$
a_{0}^{\varepsilon}:=1, \quad a_{n}^{\varepsilon}:=\frac{1}{n^{1 / r+\varepsilon}}, \quad f_{\varepsilon}:=\sum_{n=0}^{\infty} a_{n}^{\varepsilon} r_{n}
$$

Since we have $2(1 / r+\varepsilon)>1$, we know that $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$ and thus, $\left\|f_{\varepsilon}\right\|_{L^{1}} \leq\left\|f_{\varepsilon}\right\|_{L^{2}}<\infty$ and $f_{\varepsilon} \in L^{1}$. Also, since $1 / r-1 / 2>0$, we get

$$
\begin{aligned}
V^{r} E f_{\varepsilon}(x) \stackrel{(5)}{\geq}\left(\sum_{n=0}^{\infty}\left|a_{n}^{\varepsilon}\right|^{r}\right)^{1 / r} & =\left(\sum_{n=0}^{\infty}\left|a_{n}^{\varepsilon}\right|^{r}\right)^{1 / r-1 / 2}\left(\sum_{n=0}^{\infty}\left|a_{n}^{\varepsilon}\right|^{r}\right)^{1 / 2} \\
& >\left(\sum_{n=0}^{\infty}\left|a_{n}^{\varepsilon}\right|^{r}\right)^{1 / r-1 / 2}\left(\sum_{n=0}^{\infty}\left|a_{n}^{\varepsilon}\right|^{2}\right)^{1 / 2} \\
& \stackrel{(6)}{=}\left(\sum_{n=0}^{\infty}\left|a_{n}^{\varepsilon}\right|^{r}\right)^{1 / r-1 / 2}\left\|f_{\varepsilon}\right\|_{L^{2}} \\
& \stackrel{(7)}{\geq}\left(\sum_{n=0}^{\infty}\left|a_{n}^{\varepsilon}\right|^{r}\right)^{1 / r-1 / 2}\left\|f_{\varepsilon}\right\|_{L^{1}} \\
& :=A_{r, \varepsilon}\left\|f_{\varepsilon}\right\|_{L^{1}} .
\end{aligned}
$$

In particular, we have

$$
\begin{aligned}
\left\|V^{r} E f_{\varepsilon}\right\|_{L^{1, \infty}} & =\sup _{t>0} t \cdot\left|\left\{x \in[0,1): V^{r} E f_{\varepsilon}(x)>t\right\}\right| \\
& \geq A_{r, \varepsilon}\left\|f_{\varepsilon}\right\|_{L^{1}} \cdot\left|\left\{x \in[0,1): V^{r} E f_{\varepsilon}(x)>A_{r, \varepsilon}\left\|f_{\varepsilon}\right\|_{L^{1}}\right\}\right| \\
& =A_{r, \varepsilon}\left\|f_{\varepsilon}\right\|_{L^{1}} .
\end{aligned}
$$

Thus, $\left\|V^{r} E\right\|_{L^{1} \rightarrow L^{1, \infty}} \geq A_{r, \varepsilon}$. Since $A_{r, \varepsilon} \nearrow \infty$ as $\varepsilon \searrow 0$, we have $\left\|V^{r} E\right\|_{L^{1} \rightarrow L^{1, \infty}}=\infty$. Hence, if $r<2$, then $V^{r} E: L^{1} \nrightarrow L^{1, \infty}$.

