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Exercise 1.8.13. Suppose that V" S f(z) < oo at some point x. Show that lim._,o Sc f(z) exists at this point.

Solution. Recall that given a family of linear operators (S:)-¢(0,00), We define

1/r

N
VZSf({L‘) = sup Z |S€j—lf(m) - SE] f(x)‘r )
j=1

V'Sf(z) = VySf(x),

where the supremum is taken over all increasing sequences € < gp < ... < ey (with the additional requirement
that 0 < g¢ if € = 0), where N is finite but arbitary.

Since R is complete, it suffices to fix a sequence (y,)52; such that y, N\, 0 and show that the corresponding
sequence (z,)5%;, zn = Sy, f(x), is Cauchy. Suppose that ¢ > 0. Let us set N, := [(V"Sf(z)/e)"]. Since
V'Sf(z) < 0o, we have N, € N. We now claim that there exist at most N, disjoint intervals [a;, b;) C (0,00)
such that |Sa, f(z) — S, f(z)] > e

If no such intervals exist, we are done. Otherwise, choose any such interval I; = [a1,b1), and consider
the set (0,00) \ I. If possible, choose another such interval Iy = [a2,bs) C (0,00) \ I1, and continue the
process for the set (0,00) \ (I3 U Iz). For contradiction, suppose that we can choose N, + 1 intervals this
way. Then we have

1/r

NEN,
0<€j§6j+1

N
V'Sf(x) =  sup [ D[S, f(z) = S, f(@)]"
j=1

1
N.+1 I

> [Sb, f(x) = S, f ()]
j=1

vV

1
N.+1 /r

>

j=1

%

VIS f ()"

1/r
= (N.+1)Y"e > NYre > ( g > e = V'Sf(x),

which is a contradiction.

Since the number of these intervals [a;, b;) is finite, we may choose n. € N to be so large that 0 < y,, < min; a;
for every n > n.. Thus, for any n,m > n. we have 0 < y,, Y, < min; a; and hence, |Sy, f(z) — Sy, f(z)] < e.
In particular, the sequence (z,) is Cauchy.



Exercise 1.8.14. Check that if f € U, (1 o) LP(R?), then both A, f(x) and T. f(z) tend to zero as € — oo.

Solution. Recall that
Af@) = f wd i@ = [ K@i
B(z,¢) lz—y|>e

Let us fix p € [1,00) and f € LP(R%). If p = 1, we have p’ = oo and interpret 1/p’ = 0. By Hoélder’s inequality
(H), we get

1 m o q / | £l [fller =0
A f(z §7/ fly dygiprBx,{—:l/p: = 0.
|Ac f ()| Bl B(I’E)\ ] |13(x’€)|H e |B(, )l Ble, e[ Mrears

For T., let consider the case p = 1 separately.

p = 1: In this case, we can simply use the size property of the Calderén-Zygmund kernel K (CZ):

(Cz) e—00
T.f()] < / K@)l f@)dy < / W4y < Lypp 22 0

|lz—y|>e z—y|>e |$ - y|d €

p > 1: In this case, we need to be a little more careful. We recall from real analysis that for a > 0 the
function z +— 1/|z|® is integrable over R? \ B(z,¢) if and only if @ > d. In particular, the function
x — 1/|x|%" is integrable over R%\ B(z,¢). Thus, since Lig—>e(y) \ O for all y € R as e \, 0, the
size property of the Calderon-Zygmund kernel K (CZ), Holder’s inequality (H) and the dominated
convergence theorem (DCT) give us

T f(@)] < /

o—y|>e

K )llfw)ldy < / FWl

|lz—y|>e ‘J} - y|d

< ./ o 1/plllJ”H
> ;7 ay Ly
le—y|>e |.Z‘ - y|dp
0

E—00

(DCT)



Exercise 1.8.15. For 0 < a < b, prove that
VaTf(z) < VyTf(x)+ cack (1 +log(b/a)) M f(z).

Solution. First, we notice that

N 1/r
VITf(x) = sup (Z IT., . f(z) Tsif(x)}r>

1/r
= Sup Z ‘Tai—lf(x) _TEif(x)‘r_‘_ Z ‘T8i71f<x)_TEif($)‘r
i:a<e;—1<e;<b ite;—1>b
1/r 1/r
< sup oo T f@) - T f@)] +sup | YT fle) = Te f (@)
i:a<e;—1<e;<b i:e,_1>b
1/r
= sup Yo @) T @] | AV @) = T4V f(),

ita<e;—1<e;<b

so we only need to show that I < cgcx (1+1log(b/a))M f(z). For this, we use the size property of the Calderén-
Zygmund kernels:

I S sup Z |Tsi_1f($) - quf(x)|

ira<e;—1<e;<b

| [ ()1 ()] dy
<b ci—1<|z—y|<e;

1:a<e;—1<¢;

</ 1K 2. )| 4 dy
a<l|z—y|<b
<o Lo
- a<|z—y|<b ‘m - y|d
e Y / |f(y)|dd
k>0: 2ka<p  2ra<lz—y|<2F*ia 2~y
1
< ex e | )l dy
k20§a<b (28a)? [ p(z,25+1a)
<eres > o Fldy < Y e f(). 1)
k>0: 2ka<p ” B(@28H1a) k>0 28 a<b
Since we have
%a<b = k<logy(b/a) < 2log(b/a),
we get
[21og(b/a)]
Y, <1+ Y 1< 2(1+logb/a).
k>0:2ka<b k=1
Hence, we have proven the claim. O

Remark 2. We note that the same proof gives us a slightly stronger result: we have
VaTf(x) < WTf(x)+ cack (1 +log(b/a))Mf(z')
for every z’ such that |x — 2| < 2a; we only need to replace M f(z) by M f(z’) on the line (1).



Exercise 1.8.16. Define V'T in a way analogous to VT A. Prove a pointwise bound for vrT f, which allows
to conclude that V"T: L' — L%,

Solution. We define V' T by setting
VT f(x) = sup ViL_, Tf(2),
z€ER4
and we claim that

VT f(2) < call|wl|pini + cx )M f(x) + VT () + cacx V" Al f|(2). (3)

This bound is straightforward to prove with the help of Remark 2 and Lemma 1.8.6. First, we apply Remark
2 with the choices a = |z — x| and b = 2|z — z|:

Vo Tf(z) < Vo, TF(2) + cacx M f ().

Then, we notice that

IA

< ‘Vz\z_mTf(Z) - ‘éﬁz_w\Tf(w)‘ +VITf(2),

A

and since |z — x| < 2|z — z|/2, we can apply Lemma 1.8.6 for the first term:

ViooaTH) = Vi TF@)| < callloliom + exc) MF(2) + cacxcV A fl(),

Combining the previous estimates gives us the bound (3). By Theorem 1.8.3 and Theorem 1.8.4, this bound is
enough to conclude that V"T: L' — L1, O



Exercise 1.8.17. Prove a pointwise bound for My 4 f, which allows to conclude that My 4: L' — L (and
hence to apply Lerner’s theorem to V" A).

Solution. Recall that the function My 4 f is defined as

Myraf(z) = supsup V" A1z f)(2).
Qo z€Q

We claim that we have the pointwise bound
Myraf(z) < VTAf(z)+ caM f (). (4)

We can prove this bound using the same techniques that we used in the proof of Lemma 1.8.9. We denote

f:: 1(3Q)Cf3 'Ui = Usi,€i+1 = ’A&f(’z) - A6i+1f(z)

and with this notation we have

1/r
VTAf = sup <Zv > .

Using the same considerations as in the proof of Lemma 1.8.9, we get

1/r 1/r
sup (ZU:) < < sup + sup + sup > (ZvZ) = [+ II+1II.

en<U(Q)  £(Q)<eo<en<2VA(Q)  2VdU(Q)<eo
Since B(z,r) C 3Q for every r < £(Q), we have I = 0. Also, we notice that since |z — z| < 2v/dl(Q), we get

1/r 1/r
< sup V; < sup sup v, = sup =V’ ).
111 ; ; Vi_Af(z) = VTAf
K3 3

lo—z|<eo 2€R4 22| <z z€Rd

Thus, we only need to find a suitable bound for I1. Suppose that £(Q) < &; < g;41 < 2v/dl(Q). We have

Asif(z)_A6i+1f(Z) = L f_ ! /B( ).]7

d d
Cd€; JB(z,e5) Cd€;41

1 1 ~ 1 ~ ~
P R e A A
Cd€; Cd€i+1 B(z,e;) Cd€i+1 B(z,e;) B(z,gi41)
1 1 ~ 1 ~ . .
_ I / - _/ 7| =i+ 1r.
Cd€; Cd€;11 B(z,ei) Cd€; 11 B(z,ei+1)\B(2,&;)

The term 1} is easy: we get

, 1 ~
I = / 7
;| g Z—f(@)d B(zsm)\B(ze)‘ |
- dZ / £ )] dy
i<lz—y|<eit1

1
0Q)“ d
= W)y /K(lez_ydm@)lf(y)l y
N ) .
= 1B(z 2valQ)) /me@))'f(y)' y < caMf(x)

We need to be a little bit more careful with the term IT:. First, we notice that

St X (1-25) 5[
—~ T4 eti1 ) e IB(aen

i +1 7

Z(l ot ) o ”
: elv1 ) IB(2,2vVd0(Q))| J B 2vdu@)

7

d
chf(m)Z <1 - ;i ) .

i i+1

IA

IN



d d
Let us denote g(z) = x¢. For the numbers 1 — = 14— ( £ ) we use the mean value theorem: for every 4

it1 €it1
there exists a number &; € (0, 1) such that

(=) = e (1) = ag (1o 2) < (1o =),

In particular, we get

621 & o Ei4+1 — &4
Z<1—5?+1> = dZ(l €i+1> B dzi:

i p Cit1
d
< = Eitl — &
d
= @(EN —€0)
d
< ——(2VAUQ) — Q) = ca.
Thus, we get IT < ¢gM f(x) and the bound (4) follows. By Theorem 1.8.3, this bound is enough for us to
conclude that Myr4: L' — L%, O



Exercise 1.8.18 Consider the standard dyadic intervals & of R, and define the dyadic analogue of the averaging
operators A. by E;f(x) = (f)q, (), where Q;(z) is the unique dyadic cube of side-length 277 that contains z.
The corresponding variation operator is V"E f = sup (3, |Ej, f — Ej1f|r)1/r, where the supremum is over all
increasing increasing sequences j;.

Define the L*°-normalised Haar functions h3® = 17, — 17, where Iy, is the left/right half of I, and the
Rademacher functions r; = ZIE%[O 1) hg°s where 2;(0,1) = {I € 2: 1 C [0,1),((I) = 277}. Check that the
functions (r;)52, are orthonormal: [r;r; =6;; (= 1if i = j, and =: 0 else). Check that E;r; = r; if j > i and
Ejr; =01if j <i. Then consider a function of the form f = >"7°  a;r;. Check that, pointwise on [0,1), we have
VIEf > (32, lai|")Y", while || fllz: < |Ifllze = (X2, \ai|2)1/2. Conclude with a suitable choice of (a;)$°,
that V"E: L' A LY>® if r < 2.

Solution. Since we have to check several small claims, we break the solution into four parts for clarity.

1) Orthogonality of the functions r;.
First, we notice that for any I,J € 2(]0,1)) such that ¢(I) < ¢(J) we have

1, ifI=J
0, fINJ=0
[o. o Mo o )
hRT = hee, itrc g,
_h, HICJ,

Thus, for 1 > j we get

Ty = Z h$° Z hs

I1€92;[0,1) JE@j[O,l)
SR I AP NED DI D DR DRt U
Je€2;[0,1) 1€92;[0,1) J€2;[0,1) I€2;[0,1) Je€2;[0,1) 1€2;(0,1)
I=J ICJ, I1CJ,
= I+ 1I+1III

IT+1II, ifi<j

_ 1[0’1), le :j
IT+1III, ifi<j

B { I, ifi=j

Since the supports of the functions h7’ and hg are disjoint if Iy, Is € ; [0,1) and we have [ h$® =0 for
any I € 2(0,1), we get

fI[O,l)a ifl::_]:
/Tirj = EJE@j[O,l) Z[e%[o,n Jhe+ Zje@j[o,1) Zle%[o,l) [—hy, ifi<j
ICJ, ICJ,
(1, ifi=j
Yo, ifi<j
= 5.

2) The function E;r;.
Suppose that z € J € Z;(0,1).
e Suppose that i > j. Now we have [, h3° =0 for every I € 2;[0,1) and thus,

Eiri(x) = (r)g = Y. (hF)s =0
1€92;[0,1)
1CJ

e Suppose that i < j. Now there exists exactly one I € %;[0,1) such that I N J # (). Since i < j, we
know that either J C I, or J C I,. Thus,

<1>J, if JC Iy {

~ 1, ifJclI
Ejri(z) = (ri)g = (h7") s = { (1), ifJCl Z

-1, ifJcClI, = hi°(z) = ri(x).



3) Estimates for functions of the type f = > 2, a;r;.
Let us notice that for any j > 0 and x € [0,1) the part 2) gives us

|Ejf(x) = Ejra f(z)] = Za ri(x) =Y airi(x)| = lari(@)] = |ag|.
=0

In particular, we get

1/r 1/r
VIEf(x) 2 | Y IBif @) = Epaf@)" | = | X lasl’ (5)
§=0 3=0
for every z € [0,1). Also, by the orthogonality (O) of the Rademacher functions, we have
. 9 1/2 1/2
Ifllzz = klgr;o / (; airi(x)> dx = kll)n;o / ]Z:O a;a;ri(x)r;(z) de
1/2

= lim E a;a; | ri(x)r;(z
k—o0

1,j=0
1/2 IS 1/2
= _ 12
o (54 <z> o

Iz o,y < 2ol Lo, n 2oy < Nfllz2(o,1))- (7)

and Holder’s inequality gives us

4) A counterexample.

Suppose that € > 0 and r < 2. We set

1 o0

. . g

= e fe = E as, -
n=0

Since we have 2(1/r 4+ ¢) > 1, we know that Y > |an|* < oo and thus, ||f|r < ||fe]lz2 < oo and
f- € LY. Also, since 1/r —1/2 > 0, we get

s 1/r o 1/r=1/2 ; o 1/2
V'Efe(z) = (ZMT) = <Zair> <Zailr>
n=0
00 1/r—1/2 1/2
- (Swr) (L)
n=0
o 1/r—1/2
(6) Zl er
= ay,|
(n—O
> (Z Jas,|”
n=0

= Arellfellr

ag=1, a

PR

—~
=

£z

[fellzr

)1/T1/2

In particular, we have

I[VTEfellpie = iuIO) t-{z €10,1): VTEf.(x) > t}|
>

Y

AnaHfs”Ll : \{:c € [0, 1): VTEfs(x) > AT,E”fs”LlH
IL:-

Thus, |V"E| L1t > Ay e. Since A, /00 as e N\ 0, we have ||[V"E| 111, = 0o. Hence, if r < 2,
then V7 E: L1 £ L1

O



