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Exercise 1.6.6. Check that there are constants ¢, ¢’ such that every modulus of continuity w satisfies
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Solution. We first notice that for all m > 1 we have
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Thus, since the function w is sub-additive (SA) and increasing (In.), we have
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Thus, we may simply choose ¢ = % and ¢’ = 2. O



Exercise 1.6.7. Consider Lerner’s maximal operator My, when T' = M, the Hardy-Littlewood maximal
operator, and show that My, f < cqM f.

Solution. In this solution, Q) and P are cubes. Recall that Lerner’s maximal operator Mp was defined pointwise
as

My f(z) = ng sgg 1T (130)ef)()]-

Suppose that z,y € Q. Then, if y € P and P N (3Q)¢ # (), we have ¢(P) > ¢(Q). In particular, since
lz — ¥l < £(Q), we have z € 3P for every such cube. We also note that [3P| = 3¢|P|. This gives us

Mrf(x) = Zgg;gglM(th)cf)(y)I

1
= sup sup supf/ Liag)e(2)|f(2)|dz
Q>3z ye P3y |P| P

1
= swpsp sp / Lsqy () f(2)] dz
Q3zyeQ P>3y | | P
L(P)>£(Q)

IA

1
39sup sup sup 7/ L@)e(2)|f(2)|d=
Q3z yeQ P>y |3P| 3P (59
L{(P)>£(Q)

1
3¢ sup sup sup — / L3y (2)|f(2)] d=
Q3> yeQ P>z |P| P

IN

IN

1
34 sup supsup—/ |f(2)]dz
Q3xyeQ Pz [Pl Jp

3% sup sup M f(x)
Q3zyeQ

= 3'Mf(a),

IN

which is what we wanted. O



Exercise 1.6.8. Prove the analogue of Lemma 1.6.2 for the maximal truncated Calderén-Zygmund operator
T} in place of the linear Calderén-Zygmund operator T, i.e. prove a pointwise bound for Mz, which allows to
conclude the L' — L1 boundedness of this operator, and hence the A, theorem for Ty.

Solution. Since

MTnf(x) = sup sup |Tﬁ(1(3Q)cf)(Z)| = sup sup sup |T5(1(3Q)cf)(z)| ,
Q3 z€Q Q3> 2€Q >0

it suffices to find a (e, @, z)-independent pointwise bound for ‘Tg(l(sQ)cf)(Z)’. We only need to slightly modify
the proof of Lemma 1.6.2 to find this bound.

Let us fix arbitrary Q 3 2, z € Q and € > 0. We set £yax = max{e, 2v/dl(Q)} and BE := B(z, emax). We
have

T.(130)-f)(2) = T(1B@,e)li@)yf)(2) = T(1(3QuB(a.e)ef)(2).
and 3Q U B(z,e) C BE. We notice that
T.(1a0)e f)(2) = T(L3Q)ef)(2) = Tepon f(2) + Te f(2) < To(L(3)e f)(2) = Tep, f(2) + Ty f(2).

We then write
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The term [ is very easy since we can simply forget the e-dependency by using a crude estimate: we have
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Now we can simply proceed just as in the proof of Lemma 1.6.3 and get

| < [|wlpinicaM f(z).

We can use the ideas from the proof of Lemma 1.6.3 also for the term I'7. We have z € Q and y € (3QUB(x, ¢))°.
In particular, |y — z| > max{{(Q),e — ¢(Q)} > ¢/ ;emax for a dimensional constant ¢/, > 0. Thus,
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Hence, we end up with a pointwise bound
My, f(x) < Tyf(x)+ ca(cx + |wlpini) M f(x)

and the Ay theorem for T} follows immediately. O



Exercise 1.6.9. Consider again the Hilbert transform H from Exercise 1.3.5. Taking for granted that
H: L?(R) — L*(R) is bounded, check that H is a Calderén-Zygmund operator with modulus of continuity
of the form w(t) = ¢t for some constant c. Conclude from the previous results that

I H| L2 (w)y—r2(w) < clw]a,, w € Ay, (3)

and argue by extrapolation (without a concrete example) that this dependence on [w] 4, is optimal.

Solution. Recall that the Hilbert transform is defined pointwise as the operator H,

wye = ([ 7)Y

We claim that H is an Calderén-Zygmund operator with a kernel K,
1
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and modulus of continuity w, w(t) = 4t.

(1) Suppose that f is a function such that Hf is well-defined almost everywhere and let x ¢ supp f. Then,
by definition, there exists eo > 0 such that f|,_., »1e,) =0 (*). Thus, we get
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(2) The size estimate of the kernel is satisfied trivially with Cx = 1.
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(3) Suppose that |z — y| > 2|z — 2’|. This gives us
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Since we have K(z,y) = —K(y,z), we get |K(z,y) — K(2',y)| = |K(y,z) — K(y,2')|. In particular,
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|K(:L‘,y)—K(m’,y)|+|K(y,x)—K(y,x’)| = QIK(.’L‘,y)—K(.ﬁ/,y)‘ <4

Hence, the Hilbert transform is a Calderén-Zygmund operator. In particular, by Theorem 1.6.3, we have
IH| 2(w)y—r2(w) < cacu[w]a,, —w € As.

Recall that by Exercise 1.3.5 we have ||H| pr—z» > cp for every p € [2,00). Also, by Lemma 1.3.3, we
have Ay C Ay and [w]a, < [w]a,. Thus, the bound (3) is optimal with respect to [w]4, by the Fefferman-

Pipher theorem (Theorem 1.3.2): if we had [|H|r2(w)—r2(w) < cacu([w]g, for some o < 1, we would get
|H||e—rr < 'p* for all p € [2,00) which is not true for large p by Exercise 1.3.5. O



Exercise 1.6.11. Show the optimality of (3) be working out the following concrete example (without using
extrapolation): Cosider the weight w(z) = |z|%, and the function f(z) = |z|7*1(_; ¢)(z) and estimate the
quantities [w]a,, ||flz2(w) and [|H f| L2 (w)-

Solution. Let us start by showing! that if w(z) = |2|7%, then w € A3(R) if and only if —1 < 8 < 1, and for
these 8 we have
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The necessity of the condition —1 < 8 < 1 is obvious since we can simply consider cubes of the form (e, 1)
and take the limit € N\, 0 to see that [w]a, is not finite if 8 ¢ (—1,1). Thus, we only need to show that if
B € (—1,1), then (5) holds. We prove this in two parts.

1) Suppose that |a| > 2r. Then, since |a| +r > |a £ r| and |a| — r < |a £ 7|, we get
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2) Suppose then that |a| < 2r. Then (a —r,a +r) C (=3r,3r) and we get
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Combining parts 1) and 2) gives us (5). Let us then prove the optimality of (3). Suppose that a € (0,1). We
first notice that for x € (0,1) we have
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Let us then consider the weight w, w(x) = |x|a1/2. By the previous part of the solution, we know that
w € Az(R). Since the weight w is an even function, we get
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This concludes the proof.

IThis results holds more generally in the following form. Suppose that w(z) = |z|?. Then, for p > 1, w € Ap(R?) if and only if
—d < B <d(p—1). In this range we have [w]a, ~p,4 (d+ﬁ)(d(p eyt




Exercise 1.7.4. Suppose that we did the proof of Theorem 1.7.2 only with a = 1, leading to the bound
1Tl s e < ca (ITNZ2op2 + 1+ wllpin) - (7)

Apply this to the operator a7 in place of T, where a > 0 is a constant, and see how the different quantities
depend on a to deduce

Cd 1
711> 20 < Gl (a7 e+ 5+ o

and thus the statement of Theorem 1.7.2 by this alternative route.

Solution. Suppose that T is a Calderéon-Zygmund operator with kernel K and modulus of continuity w and
let & > 0. Directly from the definition it follows that o1 is also a Calderén-Zygmund operator with kernel oKX
and modulus of continuity aw. We also get
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Suppose that f € L'. We get
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which is what we wanted. O



