Dyadic analysis and weights, Spring 2017
T. Hytönen / O. Tapiola (olli.tapiola@helsinki.fi)

Solutions to the exercise set 2 (6 pages)

Exercise 1.6.6. Check that there are constants c, c^{\prime} such that every modulus of continuity ω satisfies

$$
c\|\omega\|_{\text {Dini }} \leq \sum_{k=1}^{\infty} \omega\left(2^{-k}\right) \leq c^{\prime}\|\omega\|_{\text {Dini }} .
$$

Solution. We first notice that for all $m \geq 1$ we have

$$
\begin{equation*}
\int_{2^{-m}}^{2^{-m+1}} \frac{1}{t} \mathrm{~d} t \leq \int_{2^{-m}}^{2^{-m+1}} \frac{1}{2^{-m}} \mathrm{~d} t=\frac{1}{2^{-m}}\left(2^{-m+1}-2^{-m}\right)=1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{2^{-m}}^{2^{-m+1}} \frac{1}{t} \mathrm{~d} t \geq \int_{2^{-m}}^{2^{-m+1}} \frac{1}{2^{-m+1}} \mathrm{~d} t=\frac{1}{2^{-m+1}}\left(2^{-m+1}-2^{-m}\right)=\frac{1}{2} \tag{2}
\end{equation*}
$$

Thus, since the function ω is sub-additive (SA) and increasing (In.), we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \omega\left(2^{-k}\right)=\frac{1}{3} \sum_{k=1}^{\infty} 3 \omega\left(2^{-k}\right) \geq \frac{1}{3}\left(\sum_{k=1}^{\infty} \omega\left(2^{-k}\right)+\omega\left(\frac{1}{2}\right)+\omega\left(\frac{1}{2}\right)\right) \stackrel{(\mathrm{SA})}{\geq} \frac{1}{3}\left(\sum_{k=1}^{\infty} \omega\left(2^{-k}\right)+\omega\left(\frac{1}{2}+\frac{1}{2}\right)\right) \\
&=\frac{1}{3} \sum_{k=0}^{\infty} \omega\left(2^{-k}\right) \\
& \stackrel{(1)}{\geq} \frac{1}{3} \sum_{k=0}^{\infty} \omega\left(2^{-k}\right) \int_{2^{-k+1}}^{2^{-k}} \frac{1}{t} \mathrm{~d} t \\
& \stackrel{\text { (In.) }}{\geq} \frac{1}{3} \sum_{k=0}^{\infty} \int_{2^{-k+1}}^{2^{-k}} \omega(t) \frac{\mathrm{d} t}{t} \\
&=\frac{1}{3}\|\omega\|_{\text {Dini }}
\end{aligned}
$$

and

$$
\sum_{k=1}^{\infty} \omega\left(2^{-k}\right) \stackrel{(2)}{\leq} 2 \sum_{k=1}^{\infty} \omega\left(2^{-k}\right) \int_{2^{-k}}^{2^{-k+1}} \frac{1}{t} \mathrm{~d} t \stackrel{(\text { In. })}{\leq} 2 \sum_{k=1}^{\infty} \int_{2^{-k}}^{2^{-k+1}} \omega(t) \frac{\mathrm{d} t}{t}=2\|\omega\|_{\text {Dini }}
$$

Thus, we may simply choose $c=\frac{1}{3}$ and $c^{\prime}=2$.

Exercise 1.6.7. Consider Lerner's maximal operator M_{T}, when $T=M$, the Hardy-Littlewood maximal operator, and show that $M_{M} f \leq c_{d} M f$.

Solution. In this solution, Q and P are cubes. Recall that Lerner's maximal operator M_{T} was defined pointwise as

$$
M_{T} f(x)=\sup _{Q \ni x} \sup _{y \in Q}\left|T\left(1_{(3 Q)^{c}} f\right)(y)\right|
$$

Suppose that $x, y \in Q$. Then, if $y \in P$ and $P \cap(3 Q)^{c} \neq \emptyset$, we have $\ell(P) \geq \ell(Q)$. In particular, since $\|x-y\|_{\infty} \leq \ell(Q)$, we have $x \in 3 P$ for every such cube. We also note that $|3 P|=3^{d}|P|$. This gives us

$$
\begin{aligned}
M_{T} f(x) & =\sup _{Q \ni x} \sup _{y \in Q}\left|M\left(1_{(3 Q)^{c}} f\right)(y)\right| \\
& =\sup _{Q \ni x} \sup _{y \in Q} \sup _{P \ni y} \frac{1}{|P|} \int_{P} 1_{(3 Q)^{c}}(z)|f(z)| \mathrm{d} z \\
& =\sup _{Q \ni x} \sup _{y \in Q} \sup _{P \ni(P) \geq \ell(Q)} \frac{1}{|P|} \int_{P} 1_{(3 Q)^{c}}(z)|f(z)| \mathrm{d} z \\
& \leq 3^{d} \sup _{Q \ni x} \sup _{y \in Q} \sup _{\ell \ni \ni(P) \geq \ell(Q)} \frac{1}{|3 P|} \int_{3 P} 1_{(3 Q)^{c}}(z)|f(z)| \mathrm{d} z \\
& \leq 3^{d} \sup _{Q \ni x} \sup _{y \in Q} \sup _{P \ni x} \frac{1}{|P|} \int_{P} 1_{(3 Q)^{c}}(z)|f(z)| \mathrm{d} z \\
& \leq 3^{d} \sup _{Q \ni x} \sup _{y \in Q} \sup _{P \ni x} \frac{1}{|P|} \int_{P}|f(z)| \mathrm{d} z \\
& \leq 3^{d} \sup _{Q \ni x} \sup _{y \in Q} M f(x) \\
& =3^{d} M f(x)
\end{aligned}
$$

which is what we wanted.

Exercise 1.6.8. Prove the analogue of Lemma 1.6.2 for the maximal truncated Calderón-Zygmund operator T_{\sharp} in place of the linear Calderón-Zygmund operator T, i.e. prove a pointwise bound for $M_{T_{\sharp}}$ which allows to conclude the $L^{1} \rightarrow L^{1, \infty}$ boundedness of this operator, and hence the A_{2} theorem for T_{\sharp}.

Solution. Since

$$
M_{T_{\sharp}} f(x)=\sup _{Q \ni x} \sup _{z \in Q}\left|T_{\sharp}\left(1_{(3 Q)^{c}} f\right)(z)\right|=\sup _{Q \ni x} \sup _{z \in Q} \sup _{\varepsilon>0}\left|T_{\varepsilon}\left(1_{(3 Q)^{c}} f\right)(z)\right|,
$$

it suffices to find a (ε, Q, z)-independent pointwise bound for $\left|T_{\varepsilon}\left(1_{(3 Q)^{c}} f\right)(z)\right|$. We only need to slightly modify the proof of Lemma 1.6.2 to find this bound.

Let us fix arbitrary $Q \ni x, z \in Q$ and $\varepsilon>0$. We set $\varepsilon_{\max }:=\max \{\varepsilon, 2 \sqrt{d} \ell(Q)\}$ and $B_{x}^{\varepsilon}:=B\left(x, \varepsilon_{\max }\right)$. We have

$$
T_{\varepsilon}\left(1_{(3 Q)^{c}} f\right)(z)=T\left(1_{B(x, \varepsilon)^{c}} 1_{(3 Q)^{c}} f\right)(z)=T\left(1_{(3 Q \cup B(x, \varepsilon))^{c}} f\right)(z)
$$

and $3 Q \cup B(x, \varepsilon) \subset B_{x}^{\varepsilon}$. We notice that

$$
T_{\varepsilon}\left(1_{(3 Q)^{c}} f\right)(z)=T_{\varepsilon}\left(1_{(3 Q)^{c}} f\right)(z)-T_{\varepsilon_{\max }} f(x)+T_{\varepsilon_{\max }} f(x) \leq T_{\varepsilon}\left(1_{(3 Q)^{c}} f\right)(z)-T_{\varepsilon_{\max }} f(x)+T_{\sharp} f(x) .
$$

We then write

$$
\begin{aligned}
T_{\varepsilon}\left(1_{(3 Q)^{c}} f\right)(z)-T_{\varepsilon_{\max }} f(x) & =\int_{(3 Q \cup B(x, \varepsilon))^{c}} K(z, y) f(y) \mathrm{d} y-\int_{|y-x|>\varepsilon_{\max }} K(x, y) f(y) \mathrm{d} y \\
& =\int_{|y-x|>\varepsilon_{\max }}(K(z, y)-K(x, y)) f(y) \mathrm{d} y+\int_{(3 Q \cup B(x, \varepsilon))^{c} \cap B_{x}^{\varepsilon}} K(z, y) f(y) \mathrm{d} y \\
& =: I+I I .
\end{aligned}
$$

The term I is very easy since we can simply forget the ε-dependency by using a crude estimate: we have

$$
|I| \leq \int_{|y-x|>2 \sqrt{d} \ell(Q)}|K(z, y)-K(x, y)||f(y)| \mathrm{d} y \leq \int_{|y-x|>2 \sqrt{d} \ell(Q)} \omega\left(\frac{|z-y|}{|x-y|}\right) \frac{1}{|x-y|^{d}}|f(y)| \mathrm{d} y
$$

Now we can simply proceed just as in the proof of Lemma 1.6.3 and get

$$
|I| \leq\|\omega\|_{\operatorname{Dini}} c_{d} M f(x)
$$

We can use the ideas from the proof of Lemma 1.6.3 also for the term $I I$. We have $z \in Q$ and $y \in(3 Q \cup B(x, \varepsilon))^{c}$. In particular, $|y-z| \geq \max \{\ell(Q), \varepsilon-\ell(Q)\} \geq c_{d}^{\prime} \varepsilon_{\max }$ for a dimensional constant $c_{d}^{\prime}>0$. Thus,

$$
\begin{aligned}
|I I| \leq \int_{(3 Q \cup B(x, \varepsilon))^{c} \cap B_{x}^{\varepsilon}}|K(z, y) \| f(y)| \mathrm{d} y & \leq \int_{(3 Q \cup B(x, \varepsilon))^{c} \cap B_{x}^{\varepsilon}} \frac{c_{K}}{|y-z|^{d}}|f(y)| \mathrm{d} y \\
& \leq c_{K} c_{d}^{\prime \prime} \int_{B_{x}^{\varepsilon}} \frac{1}{\varepsilon_{\max }^{d}}|f(y)| \mathrm{d} y \\
& =c_{K} c_{d} f_{B_{x}^{\varepsilon}}|f(y)| \mathrm{d} y \\
& \leq c_{K} c_{d} M f(x) .
\end{aligned}
$$

Hence, we end up with a pointwise bound

$$
M_{T_{\sharp}} f(x) \leq T_{\sharp} f(x)+c_{d}\left(c_{K}+\|\omega\|_{\text {Dini }}\right) M f(x)
$$

and the A_{2} theorem for T_{\sharp} follows immediately.

Exercise 1.6.9. Consider again the Hilbert transform H from Exercise 1.3.5. Taking for granted that $H: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is bounded, check that H is a Calderón-Zygmund operator with modulus of continuity of the form $\omega(t)=c t$ for some constant c. Conclude from the previous results that

$$
\begin{equation*}
\|H\|_{L^{2}(w) \rightarrow L^{2}(w)} \leq c[w]_{A_{2}}, \quad w \in A_{2} \tag{3}
\end{equation*}
$$

and argue by extrapolation (without a concrete example) that this dependence on $[w]_{A_{2}}$ is optimal.

Solution. Recall that the Hilbert transform is defined pointwise as the operator H,

$$
H f(x)=\lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{x-\varepsilon}+\int_{x+\varepsilon}^{\infty}\right) \frac{f(y)}{x-y} \mathrm{~d} y
$$

We claim that H is an Calderón-Zygmund operator with a kernel K,

$$
K(x, y)=\frac{1}{x-y}
$$

and modulus of continuity $\omega, \omega(t)=4 t$.
(1) Suppose that f is a function such that $H f$ is well-defined almost everywhere and let $x \notin \operatorname{supp} f$. Then, by definition, there exists $\varepsilon_{0}>0$ such that $\left.f\right|_{\left(x-\varepsilon_{0}, x+\varepsilon_{0}\right)} \equiv 0\left(^{*}\right)$. Thus, we get

$$
\begin{aligned}
H f(x)=\lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{x-\varepsilon}+\int_{x+\varepsilon}^{\infty}\right) \frac{f(y)}{x-y} \mathrm{~d} y & \stackrel{(*)}{=} \lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{x-\varepsilon}+\int_{x+\varepsilon}^{\infty}\right) \frac{f(y) 1_{\left(x-\varepsilon_{0}, x+\varepsilon_{0}\right)^{c}}(y)}{x-y} \mathrm{~d} y \\
& =\left(\int_{-\infty}^{x-\varepsilon_{0}}+\int_{x+\varepsilon_{0}}^{\infty}\right) \frac{f(y) 1_{\left(x-\varepsilon_{0}, x+\varepsilon_{0}\right)^{c}}(y)}{x-y} \mathrm{~d} y \\
& =\int_{\mathbb{R}} \frac{f(y) 1_{\left(x-\varepsilon_{0}, x+\varepsilon_{0}\right)^{c}(y)}^{x-y} \mathrm{~d} y}{x-y} \\
& \stackrel{(*)}{=} \int_{\mathbb{R}} K(x, y) f(y) \mathrm{d} y .
\end{aligned}
$$

(2) The size estimate of the kernel is satisfied trivially with $C_{K}=1$.
(3) Suppose that $|x-y|>2\left|x-x^{\prime}\right|$. This gives us

$$
\begin{equation*}
\left|x-x^{\prime}\right|+\left|x^{\prime}-y\right| \geq|x-y|>2\left|x-x^{\prime}\right| \Longrightarrow\left|x^{\prime}-y\right|>\left|x-x^{\prime}\right| \tag{4}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
\left|K(x, y)-K\left(x^{\prime}, y\right)\right|=\left|\frac{1}{x-y}-\frac{1}{x^{\prime}-y}\right| & =\frac{\left|x-x^{\prime}\right|}{|x-y|} \frac{1}{\left|x^{\prime}-y\right|} \\
& =\frac{\left|x-x^{\prime}\right|}{|x-y|} \frac{|x-y|}{\left|x^{\prime}-y\right|} \frac{1}{|x-y|} \\
& \leq \frac{\left|x-x^{\prime}\right|}{|x-y|}\left(\frac{\left|x-x^{\prime}\right|+\left|x^{\prime}-y\right|}{\left|x^{\prime}-y\right|}\right) \frac{1}{|x-y|} \\
& \leq 2 \frac{\left|x-x^{\prime}\right|}{|x-y|} \frac{1}{|x-y|} .
\end{aligned}
$$

Since we have $K(x, y)=-K(y, x)$, we get $\left|K(x, y)-K\left(x^{\prime}, y\right)\right|=\left|K(y, x)-K\left(y, x^{\prime}\right)\right|$. In particular,

$$
\left|K(x, y)-K\left(x^{\prime}, y\right)\right|+\left|K(y, x)-K\left(y, x^{\prime}\right)\right|=2\left|K(x, y)-K\left(x^{\prime}, y\right)\right| \leq 4 \frac{\left|x-x^{\prime}\right|}{|x-y|} \frac{1}{|x-y|}
$$

Hence, the Hilbert transform is a Calderón-Zygmund operator. In particular, by Theorem 1.6.3, we have

$$
\|H\|_{L^{2}(w) \rightarrow L^{2}(w)} \leq c_{d} c_{H}[w]_{A_{2}}, \quad w \in A_{2}
$$

Recall that by Exercise 1.3 .5 we have $\|H\|_{L^{p} \rightarrow L^{p}} \geq c p$ for every $p \in[2, \infty)$. Also, by Lemma 1.3.3, we have $A_{1} \subset A_{2}$ and $[w]_{A_{2}} \leq[w]_{A_{1}}$. Thus, the bound (3) is optimal with respect to $[w]_{A_{2}}$ by the FeffermanPipher theorem (Theorem 1.3.2): if we had $\|H\|_{L^{2}(w) \rightarrow L^{2}(w)} \leq c_{d} c_{H}[w]_{A_{2}}^{\alpha}$ for some $\alpha<1$, we would get $\|H\|_{L^{p} \rightarrow L^{p}} \leq c^{\prime} p^{\alpha}$ for all $p \in[2, \infty)$ which is not true for large p by Exercise 1.3.5.

Exercise 1.6.11. Show the optimality of (3) be working out the following concrete example (without using extrapolation): Cosider the weight $w(x)=|x|^{\alpha}$, and the function $f(x)=|x|^{-\alpha} 1_{(-1,0)}(x)$ and estimate the quantities $[w]_{A_{2}},\|f\|_{L^{2}(w)}$ and $\|H f\|_{L^{2}(w)}$.

Solution. Let us start by showing ${ }^{1}$ that if $w(x)=|x|^{-\beta}$, then $w \in A_{2}(\mathbb{R})$ if and only if $-1<\beta<1$, and for these β we have

$$
\begin{equation*}
[w]_{A_{2}} \lesssim \frac{1}{1-\beta^{2}} \tag{5}
\end{equation*}
$$

The necessity of the condition $-1<\beta<1$ is obvious since we can simply consider cubes of the form $(\varepsilon, 1)$ and take the limit $\varepsilon \searrow 0$ to see that $[w]_{A_{2}}$ is not finite if $\beta \notin(-1,1)$. Thus, we only need to show that if $\beta \in(-1,1)$, then (5) holds. We prove this in two parts.

1) Suppose that $|a| \geq 2 r$. Then, since $|a|+r \geq|a \pm r|$ and $|a|-r \leq|a \pm r|$, we get

$$
\frac{1}{2 r} \int_{a-r}^{a+r}|x|^{\beta} \mathrm{d} x \leq\left\{\begin{array}{cl}
(|a|+r)^{\beta}, & \text { if } \beta>0 \\
(|a|-r)^{\beta}, & \text { if } \beta \leq 0
\end{array} \leq\left\{\begin{array}{cl}
(2|a|)^{\beta}, & \text { if } \beta>0 \\
\left(\frac{a}{2}\right)^{\beta}, & \text { if } \beta \leq 0
\end{array}=2^{|\beta|}|a|^{\beta}\right.\right.
$$

In particular,

$$
\langle w\rangle_{(a-r, a+r)}\left\langle w^{-1}\right\rangle_{(a-r, a+r)} \leq 2^{|\beta|}|a|^{\beta} \cdot 2^{|\beta|}|a|^{-\beta}=4^{|\beta|} \leq 4 \lesssim \frac{1}{1-\beta^{2}}
$$

2) Suppose then that $|a|<2 r$. Then $(a-r, a+r) \subset(-3 r, 3 r)$ and we get

$$
\frac{1}{2 r} \int_{a-r}^{a+r}|x|^{\beta} \mathrm{d} x \leq \frac{1}{2 r} \int_{-3 r}^{3 r}|x|^{\beta} \mathrm{d} x=\frac{1}{r} \int_{0}^{3 r} x^{\beta} \mathrm{d} x=\frac{1}{r} \frac{(3 r)^{\beta+1}}{\beta+1}=\frac{3^{\beta+1}}{\beta+1} r^{\beta}
$$

Furthermore,

$$
\langle w\rangle_{(a-r, a+r)}\left\langle w^{-1}\right\rangle_{(a-r, a+r)} \leq \frac{3^{\beta+1}}{\beta+1} r^{\beta} \cdot \frac{3^{-\beta+1}}{-\beta+1} r^{-\beta}=\frac{3^{2}}{(1+\beta)(1-\beta)} \lesssim \frac{1}{1-\beta^{2}}
$$

Combining parts 1) and 2) gives us (5). Let us then prove the optimality of (3). Suppose that $\alpha \in(0,1)$. We first notice that for $x \in(0,1)$ we have

$$
\begin{equation*}
|H f(x)|=\int_{-1}^{0} \frac{-y^{-\alpha}}{x-y} \mathrm{~d} y \geq \int_{-x}^{0} \frac{-y^{-\alpha}}{x-y} \mathrm{~d} y \geq \frac{1}{2 x} \int_{-x}^{0}-^{-\alpha} \mathrm{d} y=\frac{1}{2 x} \cdot \frac{1}{1-\alpha} x^{-\alpha+1}=\frac{1}{2} \cdot \frac{1}{1-\alpha}|x|^{-\alpha} \tag{6}
\end{equation*}
$$

Let us then consider the weight $w, w(x)=|x|^{\alpha^{1 / 2}}$. By the previous part of the solution, we know that $w \in A_{2}(\mathbb{R})$. Since the weight w is an even function, we get

$$
\begin{aligned}
\|H f\|_{L^{2}(w)} \geq\left(\int_{0}^{1}|H f(x)|^{2} \cdot w(x) \mathrm{d} x\right)^{1 / 2} & \stackrel{(6)}{\geq} \frac{1}{2} \cdot \frac{1}{1-\alpha}\left(\int_{0}^{1}|x|^{-2 \alpha} \cdot w(x) \mathrm{d} x\right)^{1 / 2} \\
& =\frac{1}{2} \cdot \frac{1}{1-\alpha}\left(\int_{-1}^{0}|x|^{-2 \alpha} \cdot w(x) \mathrm{d} x\right)^{1 / 2} \\
& =\frac{1}{2} \cdot \frac{1}{1-\left(\alpha^{1 / 2}\right)^{2}}\|f\|_{L^{2}(w)} \\
& \stackrel{(5)}{\gtrsim}[w]_{A_{2}}\|f\|_{L^{2}(w)} .
\end{aligned}
$$

This concludes the proof.

[^0]Exercise 1.7.4. Suppose that we did the proof of Theorem 1.7 .2 only with $\alpha=1$, leading to the bound

$$
\begin{equation*}
\|T\|_{L^{1} \rightarrow L^{1, \infty}} \leq c_{d}\left(\|T\|_{L^{2} \rightarrow L^{2}}^{2}+1+\|\omega\|_{\text {Dini }}\right) . \tag{7}
\end{equation*}
$$

Apply this to the operator αT in place of T, where $\alpha>0$ is a constant, and see how the different quantities depend on α to deduce

$$
|\{|T f|>\lambda\}| \leq \frac{c_{d}}{\lambda}\|f\|_{L^{1}}\left(\alpha\|T\|_{L^{2} \rightarrow L^{2}}^{2}+\frac{1}{\alpha}+\|\omega\|_{\text {Dini }}\right)
$$

and thus the statement of Theorem 1.7.2 by this alternative route.

Solution. Suppose that T is a Calderón-Zygmund operator with kernel K and modulus of continuity ω and let $\alpha>0$. Directly from the definition it follows that αT is also a Calderón-Zygmund operator with kernel αK and modulus of continuity $\alpha \omega$. We also get

$$
\begin{aligned}
\|\alpha T\|_{L^{2} \rightarrow L^{2}}^{2} & =\left(\inf \left\{K \geq 0:\|(\alpha T) f\|_{L^{2}} \leq K\|f\|_{L^{2}}, f \in L^{2}\right\}\right)^{2} \\
& =\left(\inf \left\{K \geq 0: \alpha\|T f\|_{L^{2}} \leq K\|f\|_{L^{2}}, f \in L^{2}\right\}\right)^{2} \\
& =\left(\alpha \inf \left\{K \geq 0:\|T f\|_{L^{2}} \leq K\|f\|_{L^{2}}, f \in L^{2}\right\}\right)^{2} \\
& =\alpha^{2}\|T\|_{L^{2} \rightarrow L^{2}}
\end{aligned}
$$

and

$$
\|\alpha \omega\|_{\text {Dini }}=\int_{0}^{1} \alpha \omega(t) \frac{\mathrm{d} t}{t}=\alpha \int_{0}^{1} \omega(t) \frac{\mathrm{d} t}{t}=\alpha\|\omega\|_{\text {Dini }}
$$

Suppose that $f \in L^{1}$. We get

$$
\begin{aligned}
|\{|T f|>\lambda\}| & =|\{|(\alpha T) f|>\alpha \lambda\}| \\
& \stackrel{(7)}{\leq} \frac{c_{d}}{\alpha \lambda}\|f\|_{L^{1}}\left(\|\alpha T\|_{L^{2} \rightarrow L^{2}}^{2}+1+\|\alpha \omega\|_{\text {Dini }}\right) \\
& =\frac{c_{d}}{\lambda}\|f\|_{L^{1}}\left(\frac{\alpha^{2}}{\alpha}\|T\|_{L^{2} \rightarrow L^{2}}^{2}+\frac{1}{\alpha}+\frac{\alpha}{\alpha}\|\omega\|_{\text {Dini }}\right) \\
& =\frac{c_{d}}{\lambda}\|f\|_{L^{1}}\left(\alpha\|T\|_{L^{2} \rightarrow L^{2}}^{2}+\frac{1}{\alpha}+\|\omega\|_{\text {Dini }}\right)
\end{aligned}
$$

which is what we wanted.

[^0]: ${ }^{1}$ This results holds more generally in the following form. Suppose that $w(x)=|x|^{\beta}$. Then, for $p>1, w \in A_{p}\left(\mathbb{R}^{d}\right)$ if and only if $-d<\beta<d(p-1)$. In this range we have $[w]_{A_{p}} \bar{\sim}_{p, d} \frac{1}{(d+\beta)(d(p-1)-\alpha)^{p-1}}$.

