
Dyadic analysis and weights, Spring 2017
T. Hytönen / O. Tapiola (olli.tapiola@helsinki.fi)
Solutions to the exercise set 2 (6 pages)

Exercise 1.6.6. Check that there are constants c, c′ such that every modulus of continuity ω satis�es

c‖ω‖Dini ≤
∞∑
k=1

ω(2−k) ≤ c′‖ω‖Dini.

Solution. We �rst notice that for all m ≥ 1 we have

ˆ 2−m+1

2−m

1

t
dt ≤

ˆ 2−m+1

2−m

1

2−m
dt =

1

2−m
(
2−m+1 − 2−m

)
= 1 (1)

and

ˆ 2−m+1

2−m

1

t
dt ≥

ˆ 2−m+1

2−m

1

2−m+1
dt =

1

2−m+1

(
2−m+1 − 2−m

)
=

1

2
. (2)

Thus, since the function ω is sub-additive (SA) and increasing (In.), we have

∞∑
k=1

ω(2−k) =
1

3

∞∑
k=1

3ω(2−k) ≥ 1

3

( ∞∑
k=1

ω(2−k) + ω( 12 ) + ω( 12 )

)
(SA)

≥ 1

3

( ∞∑
k=1

ω(2−k) + ω( 12 + 1
2 )

)

=
1

3

∞∑
k=0

ω(2−k)

(1)

≥ 1

3

∞∑
k=0

ω(2−k)

ˆ 2−k

2−k+1

1

t
dt

(In.)

≥ 1

3

∞∑
k=0

ˆ 2−k

2−k+1

ω(t)
dt

t

=
1

3
‖ω‖Dini

and

∞∑
k=1

ω(2−k)
(2)

≤ 2

∞∑
k=1

ω(2−k)

ˆ 2−k+1

2−k

1

t
dt

(In.)

≤ 2

∞∑
k=1

ˆ 2−k+1

2−k

ω(t)
dt

t
= 2‖ω‖Dini.

Thus, we may simply choose c = 1
3 and c′ = 2.
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Exercise 1.6.7. Consider Lerner's maximal operator MT , when T = M , the Hardy-Littlewood maximal
operator, and show that MMf ≤ cdMf .

Solution. In this solution, Q and P are cubes. Recall that Lerner's maximal operatorMT was de�ned pointwise
as

MT f(x) = sup
Q3x

sup
y∈Q
|T (1(3Q)cf)(y)|.

Suppose that x, y ∈ Q. Then, if y ∈ P and P ∩ (3Q)c 6= ∅, we have `(P ) ≥ `(Q). In particular, since
‖x− y‖∞ ≤ `(Q), we have x ∈ 3P for every such cube. We also note that |3P | = 3d|P |. This gives us

MT f(x) = sup
Q3x

sup
y∈Q
|M(1(3Q)cf)(y)|

= sup
Q3x

sup
y∈Q

sup
P3y

1

|P |

ˆ
P

1(3Q)c(z)|f(z)| dz

= sup
Q3x

sup
y∈Q

sup
P3y

`(P )≥`(Q)

1

|P |

ˆ
P

1(3Q)c(z)|f(z)| dz

≤ 3d sup
Q3x

sup
y∈Q

sup
P3y

`(P )≥`(Q)

1

|3P |

ˆ
3P

1(3Q)c(z)|f(z)| dz

≤ 3d sup
Q3x

sup
y∈Q

sup
P3x

1

|P |

ˆ
P

1(3Q)c(z)|f(z)|dz

≤ 3d sup
Q3x

sup
y∈Q

sup
P3x

1

|P |

ˆ
P

|f(z)| dz

≤ 3d sup
Q3x

sup
y∈Q

Mf(x)

= 3dMf(x),

which is what we wanted.
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Exercise 1.6.8. Prove the analogue of Lemma 1.6.2 for the maximal truncated Calderón-Zygmund operator
T] in place of the linear Calderón-Zygmund operator T , i.e. prove a pointwise bound for MT]

which allows to
conclude the L1 → L1,∞ boundedness of this operator, and hence the A2 theorem for T].

Solution. Since

MT]
f(x) = sup

Q3x
sup
z∈Q

∣∣T](1(3Q)cf)(z)
∣∣ = sup

Q3x
sup
z∈Q

sup
ε>0

∣∣Tε(1(3Q)cf)(z)
∣∣ ,

it su�ces to �nd a (ε,Q, z)-independent pointwise bound for
∣∣Tε(1(3Q)cf)(z)

∣∣. We only need to slightly modify
the proof of Lemma 1.6.2 to �nd this bound.

Let us �x arbitrary Q 3 x, z ∈ Q and ε > 0. We set εmax := max{ε, 2
√
d`(Q)} and Bεx := B(x, εmax). We

have

Tε(1(3Q)cf)(z) = T (1B(x,ε)c1(3Q)cf)(z) = T (1(3Q∪B(x,ε))cf)(z).

and 3Q ∪B(x, ε) ⊂ Bεx. We notice that

Tε(1(3Q)cf)(z) = Tε(1(3Q)cf)(z)− Tεmaxf(x) + Tεmaxf(x) ≤ Tε(1(3Q)cf)(z)− Tεmaxf(x) + T]f(x).

We then write

Tε(1(3Q)cf)(z)− Tεmaxf(x) =

ˆ
(3Q∪B(x,ε))c

K(z, y)f(y) dy −
ˆ
|y−x|>εmax

K(x, y)f(y)dy

=

ˆ
|y−x|>εmax

(K(z, y)−K(x, y)) f(y) dy +

ˆ
(3Q∪B(x,ε))c∩Bε

x

K(z, y)f(y) dy

=: I + II.

The term I is very easy since we can simply forget the ε-dependency by using a crude estimate: we have

|I| ≤
ˆ
|y−x|>2

√
d`(Q)

|K(z, y)−K(x, y)| |f(y)| dy ≤
ˆ
|y−x|>2

√
d`(Q)

ω

(
|z − y|
|x− y|

)
1

|x− y|d
|f(y)| dy.

Now we can simply proceed just as in the proof of Lemma 1.6.3 and get

|I| ≤ ‖ω‖DinicdMf(x).

We can use the ideas from the proof of Lemma 1.6.3 also for the term II. We have z ∈ Q and y ∈ (3Q∪B(x, ε))c.
In particular, |y − z| ≥ max{`(Q), ε− `(Q)} ≥ c′dεmax for a dimensional constant c′d > 0. Thus,

|II| ≤
ˆ
(3Q∪B(x,ε))c∩Bε

x

|K(z, y)||f(y)| dy ≤
ˆ
(3Q∪B(x,ε))c∩Bε

x

cK
|y − z|d

|f(y)| dy

≤ cKc
′′
d

ˆ
Bε

x

1

εdmax

|f(y)|dy

= cKcd

 
Bε

x

|f(y)| dy

≤ cKcdMf(x).

Hence, we end up with a pointwise bound

MT]
f(x) ≤ T]f(x) + cd (cK + ‖ω‖Dini)Mf(x)

and the A2 theorem for T] follows immediately.
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Exercise 1.6.9. Consider again the Hilbert transform H from Exercise 1.3.5. Taking for granted that
H : L2(R) → L2(R) is bounded, check that H is a Calderón-Zygmund operator with modulus of continuity
of the form ω(t) = ct for some constant c. Conclude from the previous results that

‖H‖L2(w)→L2(w) ≤ c[w]A2
, w ∈ A2, (3)

and argue by extrapolation (without a concrete example) that this dependence on [w]A2
is optimal.

Solution. Recall that the Hilbert transform is de�ned pointwise as the operator H,

Hf(x) = lim
ε→0

(ˆ x−ε

−∞
+

ˆ ∞
x+ε

)
f(y)

x− y
dy.

We claim that H is an Calderón-Zygmund operator with a kernel K,

K(x, y) =
1

x− y

and modulus of continuity ω, ω(t) = 4t.

(1) Suppose that f is a function such that Hf is well-de�ned almost everywhere and let x /∈ supp f . Then,
by de�nition, there exists ε0 > 0 such that f |(x−ε0,x+ε0) ≡ 0 (*). Thus, we get

Hf(x) = lim
ε→0

(ˆ x−ε

−∞
+

ˆ ∞
x+ε

)
f(y)

x− y
dy

(*)
= lim

ε→0

(ˆ x−ε

−∞
+

ˆ ∞
x+ε

)
f(y)1(x−ε0,x+ε0)c(y)

x− y
dy

=

(ˆ x−ε0

−∞
+

ˆ ∞
x+ε0

)
f(y)1(x−ε0,x+ε0)c(y)

x− y
dy

=

ˆ
R

f(y)1(x−ε0,x+ε0)c(y)

x− y
dy

(*)
=

ˆ
R
K(x, y)f(y)dy.

(2) The size estimate of the kernel is satis�ed trivially with CK = 1.

(3) Suppose that |x− y| > 2|x− x′|. This gives us

|x− x′|+ |x′ − y| ≥ |x− y| > 2|x− x′| =⇒ |x′ − y| > |x− x′|. (4)

Thus,

|K(x, y)−K(x′, y)| =

∣∣∣∣ 1

x− y
− 1

x′ − y

∣∣∣∣ =
|x− x′|
|x− y|

1

|x′ − y|

=
|x− x′|
|x− y|

|x− y|
|x′ − y|

1

|x− y|

≤ |x− x′|
|x− y|

(
|x− x′|+ |x′ − y|

|x′ − y|

)
1

|x− y|
(4)

≤ 2
|x− x′|
|x− y|

1

|x− y|
.

Since we have K(x, y) = −K(y, x), we get |K(x, y)−K(x′, y)| = |K(y, x)−K(y, x′)|. In particular,

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| = 2|K(x, y)−K(x′, y)| ≤ 4
|x− x′|
|x− y|

1

|x− y|
.

Hence, the Hilbert transform is a Calderón-Zygmund operator. In particular, by Theorem 1.6.3, we have

‖H‖L2(w)→L2(w) ≤ cdcH [w]A2
, w ∈ A2.

Recall that by Exercise 1.3.5 we have ‖H‖Lp→Lp ≥ cp for every p ∈ [2,∞). Also, by Lemma 1.3.3, we
have A1 ⊂ A2 and [w]A2

≤ [w]A1
. Thus, the bound (3) is optimal with respect to [w]A2

by the Fe�erman-
Pipher theorem (Theorem 1.3.2): if we had ‖H‖L2(w)→L2(w) ≤ cdcH [w]αA2

for some α < 1, we would get
‖H‖Lp→Lp ≤ c′pα for all p ∈ [2,∞) which is not true for large p by Exercise 1.3.5.
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Exercise 1.6.11. Show the optimality of (3) be working out the following concrete example (without using
extrapolation): Cosider the weight w(x) = |x|α, and the function f(x) = |x|−α1(−1,0)(x) and estimate the
quantities [w]A2

, ‖f‖L2(w) and ‖Hf‖L2(w).

Solution. Let us start by showing1 that if w(x) = |x|−β , then w ∈ A2(R) if and only if −1 < β < 1, and for
these β we have

[w]A2
.

1

1− β2
. (5)

The necessity of the condition −1 < β < 1 is obvious since we can simply consider cubes of the form (ε, 1)
and take the limit ε ↘ 0 to see that [w]A2 is not �nite if β /∈ (−1, 1). Thus, we only need to show that if
β ∈ (−1, 1), then (5) holds. We prove this in two parts.

1) Suppose that |a| ≥ 2r. Then, since |a|+ r ≥ |a± r| and |a| − r ≤ |a± r|, we get

1

2r

ˆ a+r

a−r
|x|β dx ≤

{
(|a|+ r)β , if β > 0
(|a| − r)β , if β ≤ 0

≤
{

(2|a|)β , if β > 0(
a
2

)β
, if β ≤ 0

= 2|β||a|β .

In particular,

〈w〉(a−r,a+r)〈w−1〉(a−r,a+r) ≤ 2|β||a|β · 2|β||a|−β = 4|β| ≤ 4 .
1

1− β2
.

2) Suppose then that |a| < 2r. Then (a− r, a+ r) ⊂ (−3r, 3r) and we get

1

2r

ˆ a+r

a−r
|x|β dx ≤ 1

2r

ˆ 3r

−3r
|x|β dx =

1

r

ˆ 3r

0

xβ dx =
1

r

(3r)β+1

β + 1
=

3β+1

β + 1
rβ .

Furthermore,

〈w〉(a−r,a+r)〈w−1〉(a−r,a+r) ≤
3β+1

β + 1
rβ · 3

−β+1

−β + 1
r−β =

32

(1 + β)(1− β)
.

1

1− β2
.

Combining parts 1) and 2) gives us (5). Let us then prove the optimality of (3). Suppose that α ∈ (0, 1). We
�rst notice that for x ∈ (0, 1) we have

|Hf(x)| =

ˆ 0

−1

−y−α

x− y
dy ≥

ˆ 0

−x

−y−α

x− y
dy ≥ 1

2x

ˆ 0

−x
−y−α dy =

1

2x
· 1

1− α
x−α+1 =

1

2
· 1

1− α
|x|−α. (6)

Let us then consider the weight w, w(x) = |x|α1/2

. By the previous part of the solution, we know that
w ∈ A2(R). Since the weight w is an even function, we get

‖Hf‖L2(w) ≥
(ˆ 1

0

|Hf(x)|2 · w(x) dx
)1/2

(6)

≥ 1

2
· 1

1− α

(ˆ 1

0

|x|−2α · w(x)dx
)1/2

=
1

2
· 1

1− α

(ˆ 0

−1
|x|−2α · w(x)dx

)1/2

=
1

2
· 1

1− (α1/2)2
‖f‖L2(w)

(5)

& [w]A2
‖f‖L2(w).

This concludes the proof.

1This results holds more generally in the following form. Suppose that w(x) = |x|β . Then, for p > 1, w ∈ Ap(Rd) if and only if

−d < β < d(p− 1). In this range we have [w]Ap hp,d 1
(d+β)(d(p−1)−α)p−1 .
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Exercise 1.7.4. Suppose that we did the proof of Theorem 1.7.2 only with α = 1, leading to the bound

‖T‖L1→L1,∞ ≤ cd
(
‖T‖2L2→L2 + 1 + ‖ω‖Dini

)
. (7)

Apply this to the operator αT in place of T , where α > 0 is a constant, and see how the di�erent quantities
depend on α to deduce

|{|Tf | > λ}| ≤ cd
λ
‖f‖L1

(
α‖T‖2L2→L2 +

1

α
+ ‖ω‖Dini

)
and thus the statement of Theorem 1.7.2 by this alternative route.

Solution. Suppose that T is a Calderón-Zygmund operator with kernel K and modulus of continuity ω and
let α > 0. Directly from the de�nition it follows that αT is also a Calderón-Zygmund operator with kernel αK
and modulus of continuity αω. We also get

‖αT‖2L2→L2 =
(
inf{K ≥ 0: ‖(αT )f‖L2 ≤ K‖f‖L2 , f ∈ L2}

)2
=
(
inf{K ≥ 0: α‖Tf‖L2 ≤ K‖f‖L2 , f ∈ L2}

)2
=
(
α inf{K ≥ 0: ‖Tf‖L2 ≤ K‖f‖L2 , f ∈ L2}

)2
= α2‖T‖L2→L2

and

‖αω‖Dini =

ˆ 1

0

αω(t)
dt

t
= α

ˆ 1

0

ω(t)
dt

t
= α‖ω‖Dini.

Suppose that f ∈ L1. We get

|{|Tf | > λ}| = |{|(αT )f | > αλ}|
(7)

≤ cd
αλ
‖f‖L1

(
‖αT‖2L2→L2 + 1 + ‖αω‖Dini

)
=

cd
λ
‖f‖L1

(
α2

α
‖T‖2L2→L2 +

1

α
+
α

α
‖ω‖Dini

)
=

cd
λ
‖f‖L1

(
α‖T‖2L2→L2 +

1

α
+ ‖ω‖Dini

)
,

which is what we wanted.

6


