Dyadic analysis and weights, Spring 2017
T. Hytönen / O. Tapiola (olli.tapiola@helsinki.fi)

Solutions to the exercise set 1 (4 pages)

Exercise 1.2.3 For a given weight w and $p \in(1, \infty)$, find the L^{p} dual weight σ such that the inequalities $\|T f\|_{L^{p}(w)} \leq K\|f\|_{L^{p}(w)}$ and $\|T(f \sigma)\|_{L^{p}(w)} \leq K\|f\|_{L^{p}(\sigma)}$ (for all f that make the respective right sides finite) are equivalent.

Solution. We simply notice that if the inequality $\|T f\|_{L^{p}(w)} \leq K\|f\|_{L^{p}(w)}$ holds, we have

$$
\|T(f \sigma)\|_{L^{p}(w)} \leq K\|f \sigma\|_{L^{p}(\sigma)}=K\left(\int_{\mathbb{R}^{d}}|f \sigma|^{p} w\right)^{1 / p}=K\left(\int_{\mathbb{R}^{d}}|f|^{p}\left(\sigma^{p} w\right)\right)^{1 / p}=K\|f\|_{L^{p}\left(\sigma^{p} w\right)}
$$

Thus, in order for the inequality $\|T(f \sigma)\|_{L^{p}(w)} \leq K\|f\|_{L^{p}(\sigma)}$ to hold, we need to have $\sigma^{p} w=\sigma$. In particular, we get

$$
\sigma=w^{-1 /(p-1)}
$$

For this choice of σ, it is simple to show that the latter inequality implies the first inequality:

$$
\begin{aligned}
\|T f\|_{L^{p}(w)}=\left\|T\left(\left(f \sigma^{-1}\right) \sigma\right)\right\|_{L^{p}(w)} \leq K\left\|f \sigma^{-1}\right\|_{L^{p}(\sigma)} & =K\left(\int_{\mathbb{R}^{d}}\left|f \sigma^{-1}\right|^{p} \sigma\right)^{1 / p} \\
& =K\left(\int_{\mathbb{R}^{d}}|f|^{p} \sigma^{1-p}\right)^{1 / p} \\
& =K\left(\int_{\mathbb{R}^{d}}|f|^{p} w\right)^{1 / p} \\
& =K\|f\|_{L^{p}(w)}
\end{aligned}
$$

Exercise 1.2.4 Let w be a weight, and consider the operator $f \mapsto 1_{Q}\langle f\rangle_{Q}$. Show that the norm of this operator on $L^{2}(w)$ is $\left(\langle w\rangle_{Q}\left\langle w^{-1}\right\rangle_{Q}\right)^{1 / 2}$.

Solution. Take $p=2$ in the proof of the next exercise.

Exercise 1.2.5 For $p \in(1, \infty)$, find the norm of the operator $f \mapsto 1_{Q}\langle f\rangle_{Q}$ on $L^{p}(w)$.

Solution. Let us denote the operator by T and use the dual weight notation from Exercise 1.2.3: $\sigma=w^{-1 /(p-1)}$. We claim that

$$
\|T\|_{L^{p}(w)}=\langle w\rangle_{Q}^{1 / p}\langle\sigma\rangle_{Q}^{1 / p^{\prime}}
$$

For the upper bound, we can simply use Hölder's inequality to see that

$$
\begin{aligned}
\|T f\|_{L^{p}(w)}=\left(\int_{\mathbb{R}^{d}} 1_{Q}\langle f\rangle_{Q}^{p} w\right)^{1 / p}=\langle f\rangle_{Q}\left(\int_{Q} w\right)^{1 / p} & =\frac{1}{|Q|}\left(\int_{Q}|f|\right) w(Q)^{1 / p} \\
& =\frac{1}{|Q|^{1 / p+1 / p^{\prime}}}\left(\int_{Q}|f| w^{1 / p} \cdot w^{-1 / p}\right) w(Q)^{1 / p} \\
& \leq \frac{1}{|Q|^{1 / p^{\prime}}}\left(\int_{Q}|f|^{p} w\right)^{1 / p}\left(\int_{Q} w^{-p^{\prime} / p}\right)^{1 / p^{\prime}}\langle w\rangle_{Q}^{1 / p} \\
& \leq\langle w\rangle_{Q}^{1 / p}\langle\sigma\rangle_{Q}^{1 / p^{\prime}}\|f\|_{L^{p}(w)}
\end{aligned}
$$

Thus, $\|T\|_{L^{p}(w)} \leq\langle w\rangle_{Q}^{1 / p}\langle\sigma\rangle_{Q}^{1 / p^{\prime}}$.
Let us then prove the lower bound. Since the function σ may not be integrable over Q, we consider the function $\sigma_{\varepsilon}:=(w+\varepsilon)^{-1 /(p-1)}$. The function σ_{ε} is integrable over Q and we have $\sigma_{\varepsilon} \nearrow \sigma$ pointwise as $\varepsilon \searrow 0$. We then set

$$
f_{\varepsilon}:=1_{Q} \sigma_{\varepsilon}\left\langle\sigma_{\varepsilon}\right\rangle_{Q}^{-1 / p}|Q|^{-1 / p}
$$

This gives us

$$
T f_{\varepsilon}=1_{Q}\left\langle f_{\varepsilon}\right\rangle_{Q}=1_{Q}\left\langle\sigma_{\varepsilon}\right\rangle_{Q}^{-1 / p}|Q|^{-1 / p}\left\langle\sigma_{\varepsilon}\right\rangle_{Q}=1_{Q}\left\langle\sigma_{\varepsilon}\right\rangle_{Q}^{1 / p^{\prime}}|Q|^{-1 / p}
$$

In particular:

$$
\left\|T f_{\varepsilon}\right\|_{L^{p}(w)}=\left(\int\left(T f_{\varepsilon}\right)^{p} w\right)^{1 / p}=\left\langle\sigma_{\varepsilon}\right\rangle_{Q}^{1 / p^{\prime}}\left(|Q|^{-1} \int_{Q} w\right)^{1 / p}=\left\langle\sigma_{\varepsilon}\right\rangle_{Q}^{1 / p^{\prime}}\langle w\rangle_{Q}^{1 / p}
$$

Thus, taking the limit $\varepsilon \searrow 0$ and using the monotone convergence theorem give us:

- if σ is not integrable over Q, the operator T is not bounded on $L_{\text {loc }}^{1}$;
- if σ is integrable over Q, we have $\left\|T f_{0}\right\|_{L^{p}(w)}=\langle\sigma\rangle_{Q}^{1 / p^{\prime}}\langle w\rangle_{Q}^{1 / p}$.

In the latter case, we also have

$$
\left\|f_{0}\right\|_{L^{p}(w)}=\langle\sigma\rangle_{Q}^{-1 / p}\left(|Q|^{-1} \int_{Q} \sigma^{p} \cdot w\right)^{1 / p}=\langle\sigma\rangle_{Q}^{-1 / p}\left(|Q|^{-1} \int_{Q} \sigma\right)^{1 / p}=1
$$

which gives us

$$
\left\|T f_{0}\right\|_{L^{p}(w)}=\langle w\rangle_{Q}^{1 / p}\langle\sigma\rangle_{Q}^{1 / p^{\prime}}=\langle w\rangle_{Q}^{1 / p}\langle\sigma\rangle_{Q}^{1 / p^{\prime}}\left\|f_{0}\right\|_{L^{p}(w)}
$$

In particular, $\|T\|_{L^{p}(w)} \geq\langle w\rangle_{Q}^{1 / p}\langle\sigma\rangle_{Q}^{1 / p^{\prime}}$.

Exercise 1.3.4 Check that the function $f=1_{(0,1)}(x) \log x$ satisfies $\|f\|_{L^{p}} \geq c p$ for $p \in[1, \infty)$.
Solution. Since the function $|f|^{p}$ is decreasing on the interval $(0,1)$, for every $t \in\left(0, \frac{1}{e^{p}}\right)$ we have

$$
|f(t)|^{p}=|\log t|^{p} \geq\left|\log \frac{1}{e^{p}}\right|^{p}=p^{p}
$$

In particular, we have

$$
\|f\|_{L^{p}}=\left(\int_{0}^{1}|\log t|^{p} \mathrm{~d} t\right)^{1 / p} \geq\left(\int_{0}^{1 / e^{p}}|\log t|^{p} \mathrm{~d} t\right)^{1 / p} \geq\left(\int_{0}^{1 / e^{p}} p^{p} \mathrm{~d} t\right)^{1 / p}=\frac{p}{e}
$$

Exercise 1.3.5 Compute the Hilbert transform

$$
H f(x):=\lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{x-\varepsilon}+\int_{x+\varepsilon}^{\infty}\right) \frac{f(y)}{x-y} \mathrm{~d} y
$$

of $f=1_{(0,1)}$, and deduce that $\|H\|_{L^{p} \rightarrow L^{p}} \geq c p$ for $p \in[2, \infty)$.
Solution. Let us show that $H f(0)=-\infty, H f(1)=\infty$ and $H f(x)=\log |x|-\log |x-1|=\log \left|\frac{x}{1-x}\right|$ for $x \neq 0,1$.
$\underline{x \notin[0,1]}$ The cases $x<0$ and $x>0$ are very similar, so we will only consider the case $x<0$. If ε is small enough, we have $x-\varepsilon, x+\varepsilon<0$. Thus,

$$
H f(x)=\lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{x-\varepsilon}+\int_{x+\varepsilon}^{\infty}\right) \frac{1_{(0,1)}(y)}{x-y} \mathrm{~d} y=\int_{0}^{1} \frac{1}{x-y} \mathrm{~d} y=[-\log |x-y|]_{y=0}^{y=1}=\log |x|-\log |x-1| .
$$

$\underline{x=0,1} \quad$ We have

$$
\begin{aligned}
& H f(0)=\lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{0-\varepsilon}+\int_{0+\varepsilon}^{\infty}\right) \frac{1_{(0,1)}(y)}{-y} \mathrm{~d} y=-\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1} \frac{1}{y} \mathrm{~d} y=-\infty \\
& H f(1)=\lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{1-\varepsilon}+\int_{1+\varepsilon}^{\infty}\right) \frac{1_{(0,1)}(y)}{1-y} \mathrm{~d} y=\lim _{\varepsilon \rightarrow 0} \int_{0}^{1-\varepsilon} \frac{1}{1-y} \mathrm{~d} y=\infty
\end{aligned}
$$

$x \in(0,1)$ If ε is small enough, we have $x-\varepsilon, x+\varepsilon \in(0,1)$. Thus,

$$
\begin{aligned}
H f(x)=\lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{x-\varepsilon}+\int_{x+\varepsilon}^{\infty}\right) \frac{1_{(0,1)}(y)}{x-y} \mathrm{~d} y & =\lim _{\varepsilon \rightarrow 0}\left(\int_{0}^{x-\varepsilon}+\int_{x+\varepsilon}^{1}\right) \frac{1}{x-y} \mathrm{~d} y \\
& =\lim _{\varepsilon \rightarrow 0}(\log |x|-\log |x-(x-\varepsilon)|+\log |x-(x+\varepsilon)|-\log |x-1|) \\
& =\log |x|-\log |x-1|
\end{aligned}
$$

Thus, we have $H f(x)=\log \left|\frac{x}{1-x}\right|$ almost everywhere. Since $|H f|^{p}$ is decreasing on $\left(0,1 /\left(1+e^{p}\right)\right)$, we get

$$
\begin{aligned}
\|H f\|_{L^{p}} \geq\left(\int_{0}^{1 /\left(1+e^{p}\right)}|H f(x)|^{p} \mathrm{~d} x\right)^{1 / p} & \geq\left(\int_{0}^{1 /\left(1+e^{p}\right)}\left|H f\left(\frac{1}{1+e^{p}}\right)\right|^{p} \mathrm{~d} x\right)^{1 / p} \\
& =\left(\int_{0}^{1 /\left(1+e^{p}\right)}\left|\log \left(\frac{1}{e^{p}}\right)\right|^{p} \mathrm{~d} x\right)^{1 / p} \\
& =\frac{p}{\sqrt[p]{1+e^{p}}} \geq \frac{p}{e^{2}}
\end{aligned}
$$

In particular, $\|H\|_{L^{p} \rightarrow L^{p}} \geq c p$.

Exercise 1.3.6 Prove an analogue of Theorem 1.3.2 starting from the assumption that $\|T\|_{L^{s}(w) \rightarrow L^{s}(w)} \leq$ $\phi\left([w]_{A_{1}}\right)$ for a fixed $s \neq 2$.

Solution. We prove the following theorem:
Theorem. Let T be an operator that satisfies

$$
\begin{equation*}
\|T\|_{L^{s}(w) \rightarrow L^{s}(w)} \leq \phi\left([w]_{A_{1}}\right) \tag{1}
\end{equation*}
$$

for a fixed $s \in[1, \infty)$ and all $w \in A_{1}$. Then

$$
\|T\|_{L^{p} \rightarrow L^{p}} \leq \sqrt[s]{2} \phi\left(c_{d} \frac{2 p}{s}\right)
$$

for $p \in[s, \infty)$. Here c_{d} is a dimensional constant and we may choose $c_{d}=1$ if we replace A_{1} by $A_{1}^{\mathscr{D}}$ in the assumption.

We only need to modify the proof of Theorem 1.3.2 in a couple of parts to prove this theorem. As in the proof of Theorem 1.3.2, we prove both the dyadic and non-dyadic versions of the theorem simultaneously: we get the proof of the dyadic version of the theorem by simply replacing M by $M^{\mathscr{D}}$ and A_{1} by $A_{1}^{\mathscr{D}}$ in the following lines.

We first notice that since $p \geq s$, we have $p / s \geq 1$ and

$$
\|T f\|_{L^{p}}=\left\||T f|^{s}\right\|_{L^{p / s}}^{1 / s}=\sup \left\{\left(\int_{\mathbb{R}^{d}}|T f|^{s} g\right)^{1 / s}:\|g\|_{L^{(p / s)^{\prime}}} \leq 1\right\}
$$

Let us set $q=(p / s)^{\prime}$ and apply the Rubio de Francia algorithm to the functions g with the parameter q. This gives us functions $R_{q} g$ such that
i) $R_{q} g \geq|g|$,
ii) $\left\|R_{q} g\right\|_{L^{q}} \leq 2\|g\|_{L^{q}}$,
iii) $\left[R_{q} g\right]_{A_{1}} \leq 2\|M\|_{L^{q} \rightarrow L^{q}}$.

Thus, we get

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{d}}|T f|^{s} g\right)^{1 / s} & \stackrel{\text { i) }}{\leq}\left(\int_{\mathbb{R}^{d}}|T f|^{s} R_{q} g\right)^{1 / s} \\
& \stackrel{(1)}{\leq} \phi\left(\left[R_{q} g\right]_{A_{1}}\right)\left(\int_{\mathbb{R}^{d}}|f|^{s} R_{q} g\right)^{1 / s} \\
& \leq \phi\left(\left[R_{q} g\right]_{A_{1}}\right)\left(\int_{\mathbb{R}^{d}}\left(|f|^{s}\right)^{p / s}\right)^{s / s p}\left(\int_{\mathbb{R}^{d}}\left(R_{q} g\right)^{q}\right)^{1 / s q} \\
& =\phi\left(\left[R_{q} g\right]_{A_{1}}\right)\|f\|_{L^{p}}\left\|R_{q} g\right\|_{L^{q}}^{1 / s}
\end{aligned}
$$

By the property ii) and the fact that $\|g\|_{L^{q}} \leq 1$, we get $\left\|R_{q} g\right\|_{L^{q}}^{1 / s} \leq 2^{1 / s}\|g\|_{q}^{1 / s} \leq \sqrt[s]{2}$. Since $q^{\prime}=p / s$, the property iii) and the known L^{p}-bounds of M give us

$$
\left[R_{q} g\right]_{A_{1}} \leq 2\|M\|_{L^{q} \rightarrow L^{q}}=\left\{\begin{array}{cl}
2 q^{\prime}=\frac{2 p}{s}, & \text { in the dyadic case } \\
2 c_{d} q^{\prime}=c_{d} \frac{2 p}{s}, & \text { in the non-dyadic case }
\end{array} .\right.
$$

