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Exercise 1.2.3 For a given weight w and p € (1,00), find the LP dual weight ¢ such that the inequalities
ITfll e wy < K| flle) and [|[T(fo)|lLe@w) < K| fllzr(o) (for all f that make the respective right sides finite)
are equivalent.

Solution. We simply notice that if the inequality ||T'f||zr(w) < K| f|| £ (w) holds, we have
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Thus, in order for the inequality | T'(fo )| Lrw) < K||f]|Lr (o) to hold, we need to have oPw = o. In particular,
we get

o= w- /@1,

For this choice of o, it is simple to show that the latter inequality implies the first inequality:
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Exercise 1.2.4 Let w be a weight, and consider the operator f — 1g(f)g. Show that the norm of this operator
on L*(w) is ((w)q{w™")o)"/.

Solution. Take p = 2 in the proof of the next exercise. O



Exercise 1.2.5 For p € (1, 00), find the norm of the operator f +— 1g(f)g on LP(w).

Solution. Let us denote the operator by 7" and use the dual weight notation from Exercise 1.2.3: ¢ = w1/ (?=1),
We claim that

1Tl rwy = (w) g (o) g " -

For the upper bound, we can simply use Holder’s inequality to see that
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ThUS, ||THLp(w) S <w>éz/p <U>é2/p .

Let us then prove the lower bound. Since the function ¢ may not be integrable over @), we consider the
function o, = (w + 5)_1/(1’_1). The function o, is integrable over ) and we have 0. " ¢ pointwise as € \, 0.
We then set

fe = 1Q06 <06>631/p |Q|_1/p'

This gives us

Tf. = 1o(f)o = loloa)g " 1QI VP (ol)q = 1 (0)g” 1QI~ V7.

In particular:
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Thus, taking the limit € \, 0 and using the monotone convergence theorem give us:
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e if o is not integrable over @), the operator T" is not bounded on L;_;
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e if o is integrable over Q, we have ||T' fol|Lr(w) = (0) up,
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In the latter case, we also have
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which gives us

In particular, ||| Le(w) > <w>é2/1’ <0>22/p’. -



Exercise 1.3.4 Check that the function f = 1o 1)(x)logx satisfies || f||z» > cp for p € [1,00).

Solution. Since the function | f[P is decreasing on the interval (0,1), for every ¢ € (0, ) we have

[F@®)F = [logt[” > |log 5P = p”

In particular, we have
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Exercise 1.3.5 Compute the Hilbert transform
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of f= 1,1, and deduce that ||H||r»—rr > cp for p € [2,00).

Solution. Let us show that Hf(0) = —oo, Hf(1) = oo and Hf(z) = log|z| —log|z — 1| =
x#0,1.

x ¢ [0,1] The cases x < 0 and x > 0 are very similar, so we will only consider the case z < 0. If € is small enough,
we have ¢ —e,2 + ¢ < 0. Thus,
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x € (0,1) If ¢ is small enough, we have x — e,z + & € (0,1). Thus,

1 1
) = lim (/ / ) (01) = lim (/ > ! dy
e—0 e—0 z4+e) T—Y

= hH(l) (log |z| —log|z — (x — ¢)| + log |z — (x + €)| — log |z — 1|)
e—

r=0,1 We have

= log |z| — log |x — 1].

Thus, we have H f(z) =

almost everywhere. Since |H f|P is decreasing on (0,1/(1 + €P)), we get
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In particular, ||H||Le—rr > cp. O



Exercise 1.3.6 Prove an analogue of Theorem 1.3.2 starting from the assumption that ||7T|
d([w]a,) for a fixed s # 2.

Le(w)—Le(w) <

Solution. We prove the following theorem:

Theorem. Let T be an operator that satisfies
17| L (w)— L () < S([w]a,) (1)

for a fized s € [1,00) and all w € Ay. Then

: 2p
IT|| Lo e < V26 (cds)
for p € [s,00). Here cq is a dimensional constant and we may choose cq = 1 if we replace Ay by A? in
the assumption.

We only need to modify the proof of Theorem 1.3.2 in a couple of parts to prove this theorem. As in the proof

of Theorem 1.3.2, we prove both the dyadic and non-dyadic versions of the theorem simultaneously: we get the

proof of the dyadic version of the theorem by simply replacing M by M? and A; by AY in the following lines.
We first notice that since p > s, we have p/s > 1 and
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Let us set ¢ = (p/s)" and apply the Rubio de Francia algorithm to the functions g with the parameter ¢q. This
gives us functions R,g such that

i) [|RqgllLe < 2[|gllLa,

iii) [Rqgla, <2[[M||La—pa.
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Thus, we get

By the property ii) and the fact that ||g||r« < 1, we get ||ng||1L/q5 < 21/S||g||é/S < v/2. Since ¢’ = p/s, the

property iii) and the known LP-bounds of M give us

2q¢ = 2?;;7 in the dyadic case

R <2|M = . .
[Ragla, < 2IMl[zope { 2¢cqq’ = cd%”, in the non-dyadic case



