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Solutions to the exercise set 1 (4 pages)

Exercise 1.2.3 For a given weight w and p ∈ (1,∞), find the Lp dual weight σ such that the inequalities
‖Tf‖Lp(w) ≤ K‖f‖Lp(w) and ‖T (fσ)‖Lp(w) ≤ K‖f‖Lp(σ) (for all f that make the respective right sides finite)
are equivalent.

Solution. We simply notice that if the inequality ‖Tf‖Lp(w) ≤ K‖f‖Lp(w) holds, we have

‖T (fσ)‖Lp(w) ≤ K‖fσ‖Lp(σ) = K

(ˆ
Rd

|fσ|pw
)1/p

= K

(ˆ
Rd

|f |p(σpw)
)1/p

= K‖f‖Lp(σpw).

Thus, in order for the inequality ‖T (fσ)‖Lp(w) ≤ K‖f‖Lp(σ) to hold, we need to have σpw = σ. In particular,
we get

σ = w−1/(p−1).

For this choice of σ, it is simple to show that the latter inequality implies the first inequality:

‖Tf‖Lp(w) = ‖T ((fσ−1)σ)‖Lp(w) ≤ K‖fσ−1‖Lp(σ) = K

(ˆ
Rd

|fσ−1|pσ
)1/p

= K

(ˆ
Rd

|f |pσ1−p
)1/p

= K

(ˆ
Rd

|f |pw
)1/p

= K‖f‖Lp(w).

Exercise 1.2.4 Let w be a weight, and consider the operator f 7→ 1Q〈f〉Q. Show that the norm of this operator
on L2(w) is (〈w〉Q〈w−1〉Q)1/2.

Solution. Take p = 2 in the proof of the next exercise.
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Exercise 1.2.5 For p ∈ (1,∞), find the norm of the operator f 7→ 1Q〈f〉Q on Lp(w).

Solution. Let us denote the operator by T and use the dual weight notation from Exercise 1.2.3: σ = w−1/(p−1).
We claim that

‖T‖Lp(w) = 〈w〉
1/p
Q 〈σ〉1/p

′

Q .

For the upper bound, we can simply use Hölder’s inequality to see that

‖Tf‖Lp(w) =

(ˆ
Rd

1Q〈f〉pQw
)1/p

= 〈f〉Q
(ˆ

Q

w

)1/p

=
1

|Q|

(ˆ
Q

|f |
)
w(Q)1/p

=
1

|Q|1/p+1/p′

(ˆ
Q

|f |w1/p · w−1/p
)
w(Q)1/p

≤ 1

|Q|1/p′
(ˆ

Q

|f |pw
)1/p(ˆ

Q

w−p
′/p

)1/p′

〈w〉1/pQ

≤ 〈w〉1/pQ 〈σ〉1/p
′

Q ‖f‖Lp(w).

Thus, ‖T‖Lp(w) ≤ 〈w〉
1/p
Q 〈σ〉1/p

′

Q .
Let us then prove the lower bound. Since the function σ may not be integrable over Q, we consider the

function σε := (w + ε)−1/(p−1). The function σε is integrable over Q and we have σε ↗ σ pointwise as ε↘ 0.
We then set

fε := 1Qσε 〈σε〉−1/pQ |Q|−1/p.

This gives us

Tfε = 1Q〈fε〉Q = 1Q 〈σε〉−1/pQ |Q|−1/p〈σε〉Q = 1Q 〈σε〉1/p
′

Q |Q|−1/p.

In particular:

‖Tfε‖Lp(w) =

(ˆ
(Tfε)

pw

)1/p

= 〈σε〉1/p
′

Q

(
|Q|−1

ˆ
Q

w

)1/p

= 〈σε〉1/p
′

Q 〈w〉1/pQ .

Thus, taking the limit ε↘ 0 and using the monotone convergence theorem give us:

• if σ is not integrable over Q, the operator T is not bounded on L1
loc;

• if σ is integrable over Q, we have ‖Tf0‖Lp(w) = 〈σ〉
1/p′

Q 〈w〉1/pQ .

In the latter case, we also have

‖f0‖Lp(w) = 〈σ〉
−1/p
Q

(
|Q|−1

ˆ
Q

σp · w
)1/p

= 〈σ〉−1/pQ

(
|Q|−1

ˆ
Q

σ

)1/p

= 1,

which gives us

‖Tf0‖Lp(w) = 〈w〉
1/p
Q 〈σ〉1/p

′

Q = 〈w〉1/pQ 〈σ〉1/p
′

Q ‖f0‖Lp(w).

In particular, ‖T‖Lp(w) ≥ 〈w〉
1/p
Q 〈σ〉1/p

′

Q .
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Exercise 1.3.4 Check that the function f = 1(0,1)(x) log x satisfies ‖f‖Lp ≥ cp for p ∈ [1,∞).

Solution. Since the function |f |p is decreasing on the interval (0, 1), for every t ∈ (0, 1
ep ) we have

|f(t)|p = | log t|p ≥ | log 1
ep |

p = pp.

In particular, we have

‖f‖Lp =

(ˆ 1

0

| log t|pdt
)1/p

≥

(ˆ 1/ep

0

| log t|pdt

)1/p

≥

(ˆ 1/ep

0

ppdt

)1/p

=
p

e
.

Exercise 1.3.5 Compute the Hilbert transform

Hf(x) := lim
ε→0

(ˆ x−ε

−∞
+

ˆ ∞
x+ε

)
f(y)

x− y
dy

of f = 1(0,1), and deduce that ‖H‖Lp→Lp ≥ cp for p ∈ [2,∞).

Solution. Let us show that Hf(0) = −∞, Hf(1) = ∞ and Hf(x) = log |x| − log |x − 1| = log
∣∣∣ x
1−x

∣∣∣ for
x 6= 0, 1.

x /∈ [0, 1] The cases x < 0 and x > 0 are very similar, so we will only consider the case x < 0. If ε is small enough,
we have x− ε, x+ ε < 0. Thus,

Hf(x) = lim
ε→0

(ˆ x−ε

−∞
+

ˆ ∞
x+ε

)
1(0,1)(y)

x− y
dy =

ˆ 1

0

1

x− y
dy = [− log |x− y|]y=1

y=0 = log |x| − log |x− 1|.

x = 0, 1 We have

Hf(0) = lim
ε→0

(ˆ 0−ε

−∞
+

ˆ ∞
0+ε

)
1(0,1)(y)

−y
dy = − lim

ε→0

ˆ 1

ε

1

y
dy = −∞.

Hf(1) = lim
ε→0

(ˆ 1−ε

−∞
+

ˆ ∞
1+ε

)
1(0,1)(y)

1− y
dy = lim

ε→0

ˆ 1−ε

0

1

1− y
dy =∞.

x ∈ (0, 1) If ε is small enough, we have x− ε, x+ ε ∈ (0, 1). Thus,

Hf(x) = lim
ε→0

(ˆ x−ε

−∞
+

ˆ ∞
x+ε

)
1(0,1)(y)

x− y
dy = lim

ε→0

(ˆ x−ε

0

+

ˆ 1

x+ε

)
1

x− y
dy

= lim
ε→0

(log |x| − log |x− (x− ε)|+ log |x− (x+ ε)| − log |x− 1|)

= log |x| − log |x− 1|.

Thus, we have Hf(x) = log
∣∣∣ x
1−x

∣∣∣ almost everywhere. Since |Hf |p is decreasing on (0, 1/(1 + ep)), we get

‖Hf‖Lp ≥

(ˆ 1/(1+ep)

0

|Hf(x)|p dx

)1/p

≥

(ˆ 1/(1+ep)

0

∣∣∣∣Hf ( 1

1 + ep

)∣∣∣∣p dx

)1/p

=

(ˆ 1/(1+ep)

0

∣∣∣∣log( 1

ep

)∣∣∣∣p dx

)1/p

=
p

p
√
1 + ep

≥ p

e2
.

In particular, ‖H‖Lp→Lp ≥ cp.
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Exercise 1.3.6 Prove an analogue of Theorem 1.3.2 starting from the assumption that ‖T‖Ls(w)→Ls(w) ≤
φ([w]A1

) for a fixed s 6= 2.

Solution. We prove the following theorem:

Theorem. Let T be an operator that satisfies

‖T‖Ls(w)→Ls(w) ≤ φ([w]A1
) (1)

for a fixed s ∈ [1,∞) and all w ∈ A1. Then

‖T‖Lp→Lp ≤ s
√
2φ

(
cd

2p

s

)
for p ∈ [s,∞). Here cd is a dimensional constant and we may choose cd = 1 if we replace A1 by AD

1 in
the assumption.

We only need to modify the proof of Theorem 1.3.2 in a couple of parts to prove this theorem. As in the proof
of Theorem 1.3.2, we prove both the dyadic and non-dyadic versions of the theorem simultaneously: we get the
proof of the dyadic version of the theorem by simply replacing M by MD and A1 by AD

1 in the following lines.
We first notice that since p ≥ s, we have p/s ≥ 1 and

‖Tf‖Lp = ‖|Tf |s‖1/s
Lp/s = sup

{(ˆ
Rd

|Tf |sg
)1/s

: ‖g‖L(p/s)′ ≤ 1

}
.

Let us set q = (p/s)′ and apply the Rubio de Francia algorithm to the functions g with the parameter q. This
gives us functions Rqg such that

i) Rqg ≥ |g|,

ii) ‖Rqg‖Lq ≤ 2‖g‖Lq ,

iii) [Rqg]A1
≤ 2‖M‖Lq→Lq .

Thus, we get (ˆ
Rd

|Tf |sg
)1/s i)

≤
(ˆ

Rd

|Tf |sRqg
)1/s

(1)
≤ φ([Rqg]A1

)

(ˆ
Rd

|f |sRqg
)1/s

≤ φ([Rqg]A1
)

(ˆ
Rd

(|f |s)p/s
)s/sp(ˆ

Rd

(Rqg)
q

)1/sq

= φ([Rqg]A1)‖f‖Lp‖Rqg‖1/sLq

By the property ii) and the fact that ‖g‖Lq ≤ 1, we get ‖Rqg‖1/sLq ≤ 21/s‖g‖1/sq ≤ s
√
2. Since q′ = p/s, the

property iii) and the known Lp-bounds of M give us

[Rqg]A1
≤ 2‖M‖Lq→Lq =

{
2q′ = 2p

s , in the dyadic case
2cdq

′ = cd
2p
s , in the non-dyadic case

.
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