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Abstract

These are the lecture notes of a seven-week course at the University of Helsinki in
Spring 2017. They deal with sharp weighted inequalities for Calderón–Zygmund
operators using their domination by so-called sparse dyadic operators, incorpo-
rating several developments over the period 2015–2017. The first part of the
lectures is concerned with the scalar-valued theory and the second part with its
extension to vector-valued functions on matrix-weighted spaces. An important
omission is the extension of this theory beyond Calderón–Zygmund operators,
which has been under rapid development over the same period 2015–2017.
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Chapter 1

Dyadic analysis of
Calderón–Zygmund operators

1.1 Dyadic cubes and the maximal operator
We work in the Euclidean space Rd. Its standard dyadic cubes are defined as

D := {2−k([0, 1)d +m) : k ∈ Z,m ∈ Zd}.

However, it is useful to adopt an axiomatic approach, where we assume that
D =

⋃
k∈Zd Dk and, for some fixed λ > 0:

• each Dk is a partition of Rd consisting of cubes of sidelength λ ·2k that are
translates of each other by an integer-vector multiple of their sidelength;

• if Q,R ∈ D , then Q ∩R ∈ {Q,R,∅}.

The dyadic maximal operator is

MDf := sup
Q∈D

1Q〈|f |〉Q, where

〈f〉Q :=

 
Q

f :=
1

|Q|

ˆ
Q

f.

It is immediate that MDf ≤ Mf , where M is the Hardy–Littlewood maximal
operator,

Mf := sup
Q cube

1Q〈|f |〉Q,

so that many boundedness properties of MD could be deduced from the corre-
sponding properties of M . However, MD actually enjoys some better properties
than M itself, so that it is beneficial to work with it directly. For instance, MD

is essentially insensitive to the underlying measure, and one can almost as easily
study

Mµ
Df := sup

Q∈D
1Q〈|f |〉µQ,
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where
〈f〉µQ :=

 
Q

f dµ :=
1

µ(Q)

ˆ
Q

f dµ

for any locally finite (i.e. µ(Q) <∞ for all cubes Q) Borel measure µ.

1.1.1 Theorem. Mµ
D : L1(µ)→ L1,∞(µ), where

‖f‖L1,∞(µ) := sup
t>0

t · µ(|f | > t).

In fact,

t · µ(Mµ
Df > t) ≤

ˆ
{Mµ

Df>t}
|f |dy ≤ ‖f‖L1(µ).

Proof. By definition, we have the equality of sets

{Mµ
Df > t} =

⋃
Q∈Fλ

Q,

where Fλ := {Q ∈ D : 〈|f |〉µQ > λ}. Let F ⊂ Fλ be any finite subcollection,
and let F ∗ consist of the maximal cubes in F : those that are not contained in
any bigger element of F .

We claim that every cube Q ∈ F is contained in some maximal Q∗ ∈ F ∗. If
Q itself is maximal, this is clear. If not, it means that Q ( Q1 for some Q1 ∈ F .
If Q1 is maximal, we are done; else we have Q1 ( Q2 for some Q2 ∈ F . Since
F only contains finitely many cubes, after finitely many steps this process must
terminate and we have Q ( Q1 ( . . . ( Qn, where Qn is not contained in any
bigger Q′ ∈ F . But this means that Qn ∈ F ∗, and we are done.

From the previous claim it follows that⋃
Q∈F

Q =
⋃

Q∈F∗

Q.

On the other hand, we claim that the cubes Q ∈ F ∗ are disjoint. Namely, any
two dyadic cubes are either disjoint, or one is contained in the other. But if
Q ( Q′ ∈ F ∗, then Q is not maximal and hence not in F ∗. This only leaves
the possibility of disjointness for two different cubes.

Thus we have

µ
( ⋃
Q∈F

Q
)

= µ
( ⋃
Q∈F∗

Q
)

=
∑
Q∈F∗

µ(Q) ≤
∑
Q∈F∗

1

λ

ˆ
Q

|f |dµ

=
1

λ

ˆ
⋃
Q∈F∗ Q

|f |dµ ≤ 1

λ

ˆ
{Mµ

Df>t}
|f |dµ.

Let then Fn be an increasing sequence of finite collections such that
⋃∞
n=1 Fn =

Fλ. (Note that the latter set, as a subset of D , is countable.) Then it follows
that

µ(Mµ
Df > t) = µ

( ⋃
Q∈Fλ

Q
)

= lim
n→∞

µ
( ⋃
Q∈Fn

Q
)
≤ 1

λ

ˆ
{Mµ

Df>t}
|f |dµ,

and it is clear that the last integral is bounded by ‖f‖L1(µ).
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1.1.2 Corollary. For p ∈ (1,∞), we have Mµ
D : Lp(µ) → Lp(µ) with norm

bounded by p′ = p/(p− 1).

Proof. We compute

‖Mµ
Df‖

p
Lp(µ) =

ˆ ∞
0

ptp−1µ(Mµ
Df > t) dt

≤
ˆ ∞

0

ptp−1 1

t

ˆ
{Mµ

Df>t}
|f |dµdt

=

ˆ
Rd
|f |

ˆ Mµ
Df

0

ptp−2 dtdµ

=

ˆ
Rd
|f | p

p− 1
(Mµ

Df)p−1 dµ

= p′‖f‖Lp(µ)

(ˆ
Rd

(Mµ
Df)(p−1)p′ dµ

)1/p′

= p′‖f‖Lp(µ)‖Mµ
Df‖

p−1
Lp(µ).

From here the bound follows after dividing both sides by ‖Mµ
Df‖

p−1
Lp(µ), provided

that this number is finite. To guarantee the finiteness, we could first run the
previous computation with a maximal operator defined by a finite collection
F ⊂ D instead of D , to conclude that ‖Mµ

Ff‖Lp(µ) ≤ p′‖f‖Lp(µ), and then ap-
ply monotone convergence to an increasing family Fn such that D =

⋃∞
n=1 Fn

to get ‖Mµ
Df‖Lp(µ) = limn→∞ ‖Mµ

Fnf‖Lp(µ).

1.2 Sparse collections and operators
A collection S of sets of finite measure (mostly, cubes or even dyadic cubes)
is called γ-sparse if there are disjoint major subsets ES ⊂ S for each S ∈ S ,
i.e., ES ∩ ES′ = ∅ if S 6= S′ (disjoint) and |ES | ≥ γ|S| (major subset). More
generally, for a general measure µ, we say that S is γ-sparse with respect to µ
if there are disjoint ES ⊂ S for each S ∈ S such that µ(ES) ≥ γµ(S).

A sparse operator is an operator of the form

TµS f =
∑
S∈S

1S〈f〉µS ,

where S ⊂ D is a sparse collection of dyadic cubes.

1.2.1 Proposition. A γ-sparse operator maps TµS : Lp(µ)→ Lp
′
(µ) with norm

at most γ−1pp′.

Proof. We apply the dualisation

‖h‖Lp(µ) = sup
{ˆ

hg dµ : ‖g‖Lp′ (µ) ≤ 1
}

4



to h = TµS f and estimate (assuming first that f, g ≥ 0)
ˆ
TµS f · g dµ =

ˆ
Rd

∑
S∈S

〈f〉µS1Sg dµ

=
∑
S∈S

〈f〉µS〈g〉
µ
Sµ(S)

≤
∑
S∈S

inf
y∈S

Mµ
Df(y) inf

z∈S
Mµ

Dg(z)
µ(ES)

γ

=
1

γ

∑
S∈S

inf
y∈S

Mµ
Df(y) inf

z∈S
Mµ

Dg(z)

ˆ
ES

dµ(x)

≤ 1

γ

∑
S∈S

ˆ
ES

Mµ
Df(x)Mµ

Dg(x) dµ(x)

≤ 1

γ

ˆ
Rd
Mµ

Df(x)Mµ
Dg(x) dµ(x)

≤ 1

γ
‖Mµ

Df‖Lp(µ)‖Mµ
Dg‖Lp′ (µ)

≤ 1

γ
· p′‖f‖Lp(µ) · p‖g‖Lp′ (µ).

For general f, g, it is enough to observe that |TµS f · g| ≤ TµS |f | · |g| and apply
the bound already proved for positive function to |f | and |g|.

A variant of the same argument also gives a weighted inequality for TS .
A function w ∈ L1

loc(Rd) with w(x) ∈ (0,∞) almost everywhere is called a
weight. We usually identify the weight function x 7→ w(x) with the induced
measure E 7→

´
E
w(x) dx, and denote the latter simply by w(E). By a weighted

inequality we understand something like

‖Tf‖L2(w) ≤ K‖f‖L2(w), ‖f‖L2(w) =
(ˆ

Rd
|f |2w

)1/2

.

For T = TS , this is not a special case of the previous result, since we don’t
put the weight into the operator TS , but only in the space L2(w). There is
a useful reformulation of the previous bound as follows: Given a function σ
taking values in (0,∞), we replace f by gσ. Note that there is a bijective
correspondence between f and g when σ is fixed. Thus the previous inequality
is equivalent to

‖T (fσ)‖L2(w) ≤ K‖fσ‖L2(w) = K‖f‖L2(σ2w) = K‖f‖L2(σ),

provided that we choose σ := w−1 (the solution of σ2w = σ). This σ is called
the (L2-)dual weight of w.

We need the notation

[w]A2
:= sup

Q
〈w〉Q〈w−1〉Q,
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where the supremum is over all cubes, and we say that w is an A2-weight and
write w ∈ A2 if [w]A2 < ∞. The dyadic A2 class AD

2 and the constant [w]AD
2

are defined similarly by restricting the supremum to Q ∈ D only.

1.2.2 Theorem (Cruz-Uribe–Martell–Pérez 2010 [CUMP10]). If w ∈ AD
2 , ev-

ery γ-sparse operator maps TS : L2(w)→ L2(w) with norm at most 4γ−1[w]DA2
.

Proof. Let σ := w−1 be the dual weight. We apply the dualisation

‖h‖L2(w) = sup
{ˆ

hg dµ : ‖g‖L2(w) ≤ 1
}

to h = TS (fσ). It will be useful to observe that

〈fσ〉S =
1

|S|

ˆ
S

fσ =
σ(S)

|S|
1

σ(S)

ˆ
S

fσ = 〈σ〉S〈f〉σS .

We can then estimate (assuming again that f, g ≥ 0)ˆ
TS (fσ) · g · w =

ˆ
Rd

∑
S∈S

〈fσ〉S1Sg · w

=
∑
S∈S

〈fσ〉S〈gw〉S |S|

=
∑
S∈S

〈σ〉S〈w〉S〈f〉σS〈g〉wS |S|

≤
∑
S∈S

[w]AD
2
〈f〉σS〈g〉wS

|ES |
γ

≤
[w]AD

2

γ

∑
S∈S

inf
y∈S

Mσ
Df(y) inf

z∈S
Mw

D g(z)

ˆ
ES

dx

≤
[w]AD

2

γ

∑
S∈S

ˆ
ES

Mσ
Df(x)Mw

D g(x) dx

≤
[w]AD

2

γ

ˆ
Rd
Mσ

Df(x)Mw
D g(x)σ(x)1/2w(x)1/2 dx

≤
[w]AD

2

γ
‖Mσ

Dfσ
1/2‖L2‖Mw

D gw
1/2‖L2

=
[w]AD

2

γ
‖Mσ

Df‖L2(σ)‖Mw
D g‖L2(w)

≤
[w]AD

2

γ
· 2‖f‖L2(σ) · 2‖g‖L2(w).

1.2.3 Exercise. For a given weight w and p ∈ (1,∞), find the Lp dual weight
σ such that the inequalities ‖Tf‖Lp(w) ≤ K‖f‖Lp(w) and ‖T (fσ)‖Lp(w) ≤
K‖f‖Lp(σ) (for all f that make the respective right sides finite) are equivalent.
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1.2.4 Exercise. Let w be a weight, and consider the operator f 7→ 1Q〈f〉Q.
Show that the norm of this operator on L2(w) is (〈w〉Q〈w−1〉Q)1/2.

(Hint: The upper bound for the norm is basically Cauchy–Schwarz. For the
lower bound, think of conditions for equality in Cauchy–Schwarz. To do the
lower bound carefully, you may need to consider (w + ε)−1 first and take the
limit ε → 0 in the end; note that w−1 is not assumed to be integrable over Q,
but you can make the exercise slightly easier by adding this assumption.)

1.2.5 Exercise. For p ∈ (1,∞), find the norm of the operator f 7→ 1Q〈f〉Q on
Lp(w).

(Hint: this has something in common with both previous exercises.)

1.3 Sharpness and extrapolation
We have proved the following bounds for sparse operators:

• ‖TS ‖Lp→Lp ≤ γ−1pp′ ≤ cγp for p ≥ 2.

• ‖TS ‖L2(w)→L2(w) ≤ 4γ−1[w]DA2
= cγ [w]DA2

for w ∈ AD
2 .

We claim that both these bounds have the optimal rate of growth as a function
of the parameters p and [w]DA2

, in the following sense: If we have a bound of the
form ‖TS ‖Lp→Lp ≤ φ(p) or ‖TS ‖L2(w)→L2(w) ≤ φ([w]AD

2
), then φ(t) ≥ ct.

We begin with an example in the unweighted case:

1.3.1 Example. Consider the sparse collection S = {[0, 2−k) : k = 0, 1, 2, . . .}
and f = 1[0,1). Then clearly ‖f‖Lp = 1 for all p. On the other hand, we have

TS f =

∞∑
k=0

1[0,2−k)〈f〉[0,2−k) =

∞∑
k=0

1[0,2−k)
a.e.
=

∞∑
k=0

∞∑
j=k

1[2−j−1,2−j)

=

∞∑
j=0

1[2−j−1,2−j)

j∑
k=0

1 =

∞∑
j=0

1[2−j−1,2−j)(1 + j),

and hence

‖TS f‖pLp =

∞∑
j=0

2−1−j(1 + j)p.

To estimate this from below, let jp be the unique integer such that jp ≤ p <
jp + 1. Then 2−jp ≥ 2−p, and hence

‖TS f‖pLp ≥ 2−1−jp(1 + jp)
p ≥ 2−12−p · pp =

(
2−1/p p

2

)p
,

and hence ‖TS f‖Lp ≥ 2−1/pp/2 ≥ p/4 for p ≥ 1. So if ‖TS ‖Lp→Lp ≤ φ(p),
then φ(p) ≥ p/4.
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It is interesting that the sharpness of the weighted inequality can be deduced
indirectly from the previous example, without the need to give any example in
the weighted case. This is a consequence of the following extrapolation result.
It is most naturally stated in terms of another weight constant:

[w]A1
:=
∥∥∥Mw

w

∥∥∥
∞
.

The dyadic version [w]DA1
is defined by using MD in place of M .

1.3.2 Theorem (R. Fefferman–Pipher 1997 [FP97]). Let T be an operator that
satisfies

‖T‖L2(w)→L2(w) ≤ φ([w]A1
)

for all w ∈ A1. Then
‖T‖Lp→Lp ≤

√
2φ(cdp)

for p ∈ [2,∞). Here cd is a dimensional constant, and may be taken as cd = 1
if A1 is replaced by AD

1 in the assumption.

Before proving the theorem, we note that it applies in particular to the
situation where we have a similar bound in terms of A2 rather than A1:

1.3.3 Lemma. A1 ⊂ A2 and [w]A2 ≤ [w]A1 (both dyadic and non-dyadic cases).

Proof. Note that 〈w〉Q ≤ infz∈QMw(z) ≤ [w]A1
infz∈Q w(z), and hence

〈w〉Q〈w−1〉Q ≤ [w]A1

 
Q

inf
z∈Q

w(z)w−1(x) dx ≤ [w]A1

 
Q

w(x)w−1(x) dx = [w]A1
.

In particular, we deduce the sharpness of our estimate for ‖TS ‖L2(w)→L2(w):
Suppose that ‖TS ‖L2(w)→L2(w) ≤ φ([w]AD

2
) ≤ φ([w]AD

1
). Then the theorem

implies that ‖TS ‖L2(w)→L2(w) ≤
√

2φ(p). But our example shows that in this
case

√
2φ(p) ≥ p/4, so that φ(p) ≥ cp with c = (

√
2 · 4)−1.

Proof of the Theorem. We prove both the dyadic and non-dyadic versions of
the theorem simultaneously, understanding that all relevant objects (weights,
maximal functions etc.) are taken to be dyadic in the dyadic version, and non-
dyadic in the non-dyadic version.

We need to estimate

‖Tf‖Lp = ‖|Tf |2‖1/2
Lp/2

= sup
{(ˆ

Rd
|Tf |2g

)1/2

: ‖g‖(p/2)′ ≤ 1
}
.

Note that the last expression is formally a weighted L2 norm of Tf , but the
function g need not be in the relevant weight class to apply the assumptions.
This problem is fixed by applying to g the so-called Rubio de Francia algorithm

Rqg :=

∞∑
k=0

2−k‖M‖−kLq→LqM
kg,
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where
M0g := |g|, Mkg := M(Mk−1g),

and M is the maximal operator. The function Rqg has three important prop-
erties:

1. Rqg ≥ |g|. (Indeed, the zeroth term of the positive series is simply |g|.)

2. ‖Rqg‖Lq ≤ 2‖g‖Lq . (The Lq norm of the kth term is dominated by
2−k‖g‖Lq after using the boundedness of the maximal operator and can-
celling the norms.)

3. [Rqg]A1
≤ 2‖M‖Lq→Lq . (Applying M to the defining series, we obtain a

similar series with Mk+1g in place of Mkg. Making a change of variables,
we find that M(Rqg) is almost the same series as Rqg, only starting at
k = 1 and multiplied by 2‖M‖Lq→Lq .)

With these properties, it is easy to conclude (let q := (p/2)′)(ˆ
Rd
|Tf |2g

)1/2

≤
(ˆ

Rd
|Tf |2Rqg

)1/2

≤ φ([Rqg]A1
)
(ˆ

Rd
|f |2Rqg

)1/2

≤ φ([Rqg]A1)
(ˆ

Rd
(|f |2)p/2

)1/p(ˆ
Rd

(Rqg)q
)1/2q

= φ([Rqg]A1
)‖f‖Lp‖Rqg‖1/2Lq ,

where ‖Rqg‖1/2Lq ≤ (2‖g‖Lq )1/2 ≤
√

2 and, recalling that q = (p/2)′ so that
q′ = p/2,

[Rqg]A1 ≤ 2‖M‖Lq→Lq ≤

{
2q′ = p, in the dyadic case,
2cdq

′ = cdp, in the non-dyadic case.

In the dyadic case we used the bound for the dyadic maximal operator that we
proved earlier. We take for granted the above bound for the Hardy–Littlewood
maximal operator from Real Analysis. (This can also be deduced from the
dyadic version by the method of ‘parallel dyadic cubes’ that we might discuss
later.) Putting together these estimates, are proof is complete.

The next two exercises are preparations for continuous (non-dyadic) versions
of the sharp inequalities for sparse operators studied above.

1.3.4 Exercise. Check that the function f = 1(0,1)(x) log x satisfies ‖f‖Lp ≥ cp
for p ∈ [1,∞).

1.3.5 Exercise. Compute the Hilbert transform

Hf(x) := lim
ε→0

(ˆ x−ε

−∞
+

ˆ ∞
x+ε

) f(y)

x− y
dy

of f = 1(0,1), and deduce that ‖H‖Lp→Lp ≥ cp for p ∈ [2,∞).
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1.3.6 Exercise. Prove an analogue of Theorem 1.3.2 starting from the assump-
tion that ‖T‖Ls(w)→Ls(w) ≤ φ([w]A1) for a fixed s 6= 2.

1.3.7 Remark. R. Fefferman and Pipher [FP97] used their Theorem 1.3.2 “di-
rectly”, to deduce Lp bounds from L2(w) bounds. The idea of using it “back-
wards”, to deduce the sharpness of weighted estimates from the sharpness of
unweighted ones, was introduced by Luque, Pérez and Rela 2013 [LPR15].1

1.4 Lerner’s abstract domination theorem
Besides linear operators, we frequently encounter positive sublinear operators.
By this we mean that for all functions f and g we have that Tf ≥ 0 is a non-
negative function, T (αf) = |α|Tf for constants α, and T (f + g) ≤ Tf + Tg. A
prime example is the maximal operator M and its dyadic version. We will see
other examples later. Let us record a useful observation:

1.4.1 Lemma. If T is linear or positive sublinear, then

|Tf − Tg| ≤ |T (f − g)|.

Proof. For linear operators this is clear, since Tf−Tg = T (f−g). In the positive
sublinear case, let us fix a point x and assume first that Tf(x) ≥ Tg(x). Then

Tf(x) = T (f − g + g)(x) ≤ T (f − g)(x) + Tg(x)

so that
|Tf(x)− Tg(x)| = Tf(x)− Tg(x) ≤ T (f − g)(x).

But if Tg(x) > Tf(x), the same argument show that

|Tg(x)− Tf(x)| ≤ T (g − f)(x) = T ((−1)(f − g))(x) = T (f − g)(x),

giving the same bound in both cases.

1.4.2 Theorem (Lerner 2015 [Ler16]). Let T be linear or positive sublinear,
and consider the associated Lerner’s maximal operator

MT f(x) := sup
Q3x

sup
y∈Q
|T (1(3Q)cf)(y)|.

Suppose that both T and MT are bounded from L1 to L1,∞. Then for every
boundedly supported f ∈ L1(Rd) and ε ∈ (0, 1), there is a (1− ε)-sparse family
S of dyadic cubes such that

|Tf | ≤ cdcT
ε

∑
S∈S

1S

 
3S

|f |,

where cd depends only on dimension and

cT := ‖T‖1→1,∞ + ‖MT ‖1→1,∞.
1When possible, we have dated results according to their preprint year (here: 2013), which

is usually strictly earlier than the publication year (here: 2015).
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1.4.3 Remark. Despite the “maximal” character of MT , it is not necessarily
bigger than T itself. E.g., if T = I is the identity operator, then MT = 0.

The heart of the Theorem is contained in the following lemma:

1.4.4 Lemma. Under the assumptions of Theorem 1.4.2, for any cube Q0 and
f ∈ L1(3Q0) and ε ∈ (0, 1), there are disjoint subcubes Q′j ∈ D(Q0) such that∑

j

|Q′j | ≤ ε|Q0|.

and, if Qj ∈ D(Q0) are (possibly bigger) disjoint cubes such that
⋃
j Qj ⊃

⋃
j Q
′
j,

then ∣∣∣1Q0
T (13Q0

f)−
∑
j

1QjT (13Qjf)
∣∣∣ ≤ 1Q0

cdcT
ε

 
3Q0

|f |.

1.4.5 Remark. For the purposes of Theorem 1.4.2, the case Qj = Q′j of the
Lemma suffices. The possibility of allowing bigger cubes is relevant for a vector-
valued generalisation of Theorem 1.4.2.

Proof. Given a cubeQ0, consider any disjoint family of its subcubesQj ∈ D(Q0)
and write Ω :=

⋃
Qj . Then we have the obvious identity

1Q0
T (13Q0

f) = 1Q0\ΩT (13Q0
f) +

∑
j

1QjT (13Q0
f).

and hence

1Q0T (13Q0f)−
∑
j

1QjT (13Qjf) = 1Q0\ΩT (13Q0f)+
∑
j

1Qj (T (13Q0f)−T (13Qjf))

Taking absolute values and using Lemma 1.4.1, we have∣∣∣1Q0T (13Q0f)−
∑
j

1QjT (13Qjf)
∣∣∣

= 1Q0\Ω|T (13Q0
f)|+

∑
j

1Qj |T (13Q0
f)− T (13Qjf)|

≤ 1Q0\Ω|T (13Q0
f)|+

∑
j

1Qj |T (13Q0
f − 13Qjf)|

= 1Q0\Ω|T (13Q0f)|+
∑
j

1Qj |T (13Q0\3Qjf)|

Hence, we need to prove that

(1.4.6) 1Q0\Ω|T (13Q0
f)|+

∑
j

1Qj |T (13Q0\3Qjf)| ≤ 1Q0

cdcT
ε

 
3Q0

|f |.

For a λ > 0 to be chosen, let us define a preliminary candidate for the set Ω
by

Ω′′ := Q0 ∩ {|T (13Q0
f)| > λ or MT (13Q0

f) > λ}.

11



Thus, by the assumed L1 to L1,∞ bounds,

|Ω′′| ≤ |{|T (13Q0f)| > λ}|+ |{MT (13Q0f) > λ}|

≤ 1

λ
‖T‖1→1,∞‖13Q0f‖1 +

1

λ
‖MT ‖1→1,∞‖13Q0f‖1

=
3d

λ
cT

 
3Q0

|f | · |Q0|.

(1.4.7)

Let then Q′j ∈ D(Q0) be the maximal dyadic subcubes such that

|Q′j ∩ Ω′′|
|Q′j |

> 2−d−1.

Then the cubes Q′j are disjoint, and Ω′ :=
⋃
j Q
′
j = {Md(1Ω′) > 2−d−1}, so that

(1.4.8) |Ω′| ≤ 2d+1‖1Ω′′‖1 = 2d+1|Ω′′| ≤ 2 · 6d

λ
cT

 
3Q0

|f | · |Q0| = ε|Q0|

if we choose

λ :=
2 · 6d

ε
cT

 
3Q0

|f |.

Since 1Ω′′ ≤ Md(1Ω′′) almost everywhere, we see that Ω′′ is contained in Ω′,
except perhaps for a subset of measure zero. In particular, if Ω :=

⋃
j Qj ⊃⋃

j Q
′
j = Ω′ ⊃ Ω′′, then we have

(1.4.9) 1Q0\Ω|T (13Q0
f)| ≤ 1Q0\Ωλ.

On the other hand, the maximality of Q′j implies that its dyadic parent Q̂′j
satisfies the opposite inequality, and hence

|Q′j ∩ Ω′′|
|Q′j |

≤
|Q̂′j ∩ Ω′|
2−d|Q̂′j |

≤ 2−d−1

2−d
=

1

2
.

Thus |Q′j \Ω′′| ≥ 1
2 |Q
′
j | > 0, so in particular Q′j intersects (Ω′′)c. When

⋃
j Q
′
j ⊂⋃

Qi, then also any Qi ⊃ Q′j intersects (Ω′′)c. This means that there exists some
z ∈ Qi such that

λ ≥MT (13Q0f)(z) = sup
Q3z

sup
y∈Q
|T (13Q0\3Qf)(y)| ≥ sup

y∈Qi
|T (13Q0\3Qif)(y)|,

and hence
1Qi |T (13Q0\3Qif)| ≤ 1Qiλ.

A combination of (1.4.9) and the previous bound gives the required estimate
(1.4.6), recalling the definition of λ, and this completes the proof of the Lemma.

12



Proof of Theorem 1.4.2. We first consider 1Q0T (13Q0f) for a fixed cube Q0. By
Lemma 1.4.4, we have

1Q0
|T (13Q0

f)| ≤ 1Q0

cdcT
ε

 
3Q0

|f |+
∑
j

1Q1
j
|T (13Q1

j
f)|,

∑
j

|Q1
j | ≤ ε|Q0|.

Applying the same estimate to each Q1
j in place of Q0, and continuing by in-

duction, we obtain

(1.4.10) 1Q0
|T (13Q0

f)| ≤ cdcT
ε

N−1∑
n=0

∑
j

1Qnj

 
3Qnj

|f |+
∑
k

1QNk |T (13QNk
f)|,

where Q0 is the unique cube of the form Q0
j , and the cubes of the form Qnj are

subcubes of some Qn−1
i in such a way that∑

j:Qnj ⊂Q
n−1
i

|Qnj | ≤ ε|Qn−1
i |.

In particular, ∑
j

|Qnj | ≤ ε
∑
i

|Qn−1
i | ≤ . . . ≤ εn|Q0|,

so that the support of the last term in (1.4.10) becomes negligible in the limit
N →∞. Thus, almost everywhere, we have

(1.4.11) 1Q0
|T (13Q0

f)| ≤ cdcT
ε

∞∑
n=0

∑
j

1Qnj

 
3Qnj

|f |,

where the pairwise disjoint subsets

Enj := Qnj \
⋃
k

Qn+1
k

have measure |Enj | ≥ (1− ε)|Qnj |.
Let us finally use this local estimate to deduce a global bound. Fix a bound-

edly supported f ∈ L1(Rd) and consider the maximal dyadic cubes Q with the
property that Q does not contain the support of f . We claim that these cubes
form a partition of Rd, provided that we use a dyadic system with the following
additional property:

(1.4.12) Every bounded set is contained in some dyadic cube Q ∈ D .

Note that this is not satisfied by the standard dyadic system: e.g., all balls
centred at the origin are not contained in any dyadic cube. However, it is
not difficult to construct dyadic systems with this special property: In one
dimension, starting from I0 := [0, 1), let Ik+1 := Ik + (−1)k|Ik| (so that we
extend the previous interval to the left and to the right alternatingly). We

13



can then define a dyadic system D by taking all intervals obtained from the
intervals Ik by either shifting them by an integer multiple of their side-length,
or dividing them into halves arbitrarily many times. Then it is easy to check
that any bounded set is contained in some interval of D ; in fact, in some Ik.
A construction in Rd can be achieved by considering cubes of the form Q =
J1 × · · · × Jd, where the intervals have equal length and belong to the one-
dimensional system just described.

Returning to the proof, if f is nontrivial, then sufficiently small cubes cannot
contain its support, and hence every point x is contained in some Q with Q 6⊃
supp f . On the other hand, we assumed that every bounded set is contained in
some dyadic cube Q. Applying this to the bounded set supp f ∪Q, where Q is
any given dyadic cube, we we see that Q is contained in a dyadic cube Q′ that
also contains supp f , and hence all sufficiently large dyadic Q′ ⊃ Q violate the
condition that Q′ 6⊃ supp f . Thus, every Q with Q 6⊃ supp f is contained in a
maximal cube with this property.

Let us denote the disjoint collection of cubes just discussed by S0. For every
S ∈ S0, maximality implies that 3S ⊃ Ŝ ⊃ supp f , and hence f = 13Sf . Then
the partition property implies that

|Tf | =
∑
S∈S0

1S |Tf | =
∑
S∈S0

1S |T (13Sf)|.

Applying (1.4.11) to each S in place of Q0, we obtain

|Tf | ≤ cdcT
ε

∑
S∈S

1S

 
3S

|f |,

where S consists of all cubes of the form Qnj , starting from some Q0 = S ∈ S0.
This collection is (1− ε)-sparse, by the observations above.

1.5 Triples of dyadic cubes
1.5.1 Proposition. Suppose that D is a system of dyadic cubes on Rd. Then
{3Q : Q ∈ D} can be divided into 3d subcollections, each of which has the same
covering and nestedness properties as D .

Proof. Let us first consider d = 1.
We introduce the notation

Ĩ := the neighbour of Î that touches I.

The relevance of this definition comes from the basic observation (best seen by
drawing a picture) that

3I ⊂ 3Ĩ .

Now suppose that C is a subcollection of D such that

• it contains every third interval of each fixed length scale, and

14



• if I ∈ C , then Ĩ ∈ C .

It is clear from the first property that the triples 3I of I ∈ C of a fixed length
form a partition of R. Suppose then that I, J ∈ C and 3I ∩ 3J 6= ∅. Suppose
for instance that `(I) ≤ `(J), let `(I) = 2−k`(J), and let Ĩ(k) := (Ĩ(k−1))∼

(with Ĩ(0) := I) be the k-fold version of I 7→ Ĩ. Then by induction 3I ⊂ 3Ĩ(k),
where I(k) ∈ C (by the second property) is an interval of the same length as J .
Now ∅ 6= 3I ∩ 3J ⊂ 3Ĩ(k) ∩ 3J , and hence the partition property implies that
J = I(k). But then 3I ⊂ 3Ĩ(k) = 3J , proving the nestedness.

So it remains to check that we can divide D into three collections like C .
We introduce a relation on D as follows. For intervals I, J of equal length

`(I) = `(J), we say that I ∼ J if and only if I = J+̇3m for some m ∈ Z.
Consider two consecutive intervals I, J = I+̇3 of some equivalence class. If

I = Î`, then J = Ĵr and Ĵ = Î+̇1. (It is instructive to draw a picture.) In
this case Ĩ = Î−̇1, and J̃ = Ĵ+̇1 = Î+̇2 = Ĩ+̇3. If I = Îr, then J = Ĵ` and
Ĵ = Î+̇2. In this case Ĩ = Î+̇1 and J̃ = Ĵ−̇1 = Î+̇1 = Ĩ. Thus, J̃ is either Ĩ or
Ĩ+̇3 depending on the relative position of I and its parent interval, but in either
case we have J̃ ∼ Ĩ. This argument for consecutive intervals easily extends by
induction to any equal-length intervals I ∼ J , showing that we always have
Ĩ ∼ J̃ as well. Similarly, it is easy to check that if Ĩ ∼ J̃ , then also I ∼ J .

Let us fix a unit interval I0 and for k ≥ 1, define inductively Ik := Ĩk−1

and choose I−k (among two possibilities) such that Ĩ−k = I−(k−1). We say that
J ∈ D is in the class of I0 if J ∼ Ik when `(Ik) = `(J). By the observations
above, it follows that J is in the class of I0 if and only if J̃ is in the class of
I0. Moreover, at every length scale, exactly every third interval is in the class
of I0. If we choose two other intervals I ′0, I ′′0 such that I0 6∼ I ′0 6∼ I ′′0 6∼ I0 and
define the classes of I ′0 and I ′′0 similarly, then every dyadic interval is in the class
of exactly one of I0, I ′0, I ′′0 , and each of these classes has the properties of the
collection C above.

Thus we have constructed the one-dimensional classes C α
1 , α = 0, 1, 2. In

d-dimensions, we can simply define

C α
d = C

(α1,...,αd)
d := {Q = I1 × · · · × Id ∈ D : Ii ∈ C αi

1 ∀i = 1, . . . , d}.

The required properties are easily verified from the one-dimensional versions
observing that 3Q = 3I1 × · · · × 3Id and Q ∩ R = (I1 ∩ J1) × · · · × (Id ∩ Jd) if
Q is as above and R = J1 × · · · × Jd.

1.5.2 Corollary. Under the assumptions of Theorem 1.4.2, for every compactly
supported f ∈ L1(Rd) and ε > 0, there are 3−d(1 − ε)-sparse subcollections
Si ⊂ Di of 3d different dyadic-type collections Di such that

(1.5.3) |Tf | ≤ cdcT
ε

3d∑
i=1

TSi
|f |.

Proof. By Theorem 1.4.2 and the trivial pointwise bound 1S ≤ 13S , we have

|Tf | ≤ cdcT
ε

∑
S∈S

1S

 
3S

|f | ≤ cdcT
ε

∑
S∈S

13S

 
3S

|f |
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Letting {3Q : Q ∈ D} =
⋃3d

i=1 Di be the splitting provided by Proposition 1.5.1,
we let Si := {3S ∈ Di : S ∈ S }. Then clearly

∑
S∈S

13S

 
3S

|f | =
3d∑
i=1

∑
R∈Si

1R

 
R

|f | =
3d∑
i=1

TSi
|f |

and the pairwise disjoint sets ES ⊂ S ∈ S are also good for checking the
sparseness of 3S ∈ Si, since |ES | ≥ (1− ε)|S| = 3−d(1− ε)|3S|.

1.5.4 Corollary. Let X,Y ⊂ L1
loc(Rd) be Banach spaces such that

• compactly supported functions f ∈ X are dense in X, and

• if f ∈ X, then |f | ∈ X and ‖|f |‖X ≤ cX‖f‖X .

If T is an operator that satisfies the assumptions of Theorem 1.4.2, then

(1.5.5) ‖T‖X→Y ≤ cdcT cX sup
S
‖TS ‖X→Y ,

where the supremum is over all 3−d−1-sparse subcollections S of any system of
dyadic cubes on Rd. In particular, such operators satisfy

‖T‖Lp→Lp ≤ cdcT cXpp′, p ∈ (1,∞),

‖T‖L2(w)→L2(w) ≤ cdcT cX [w]A2
, w ∈ A2.

Proof. Let f ∈ X be compactly supported. Since X ⊂ L1
loc(Rd)? this means

that f ∈ L1(Rd). By the previous corollary, fixing ε = 2
3 , there are 3−d−1-sparse

subcollection Si ⊂ Di, where Di, i = 1, . . . , 3d, are systems of dyadic cubes on
Rd, such that

|Tf | ≤ cdcT
3d∑
i=1

TSi
|f |.

Thus

‖Tf‖Y ≤ cdcT
3d∑
i=1

‖TSi |f |‖Y

≤ cdcT
3d∑
i=1

‖TSi
‖X→T ‖|f |‖X

≤ cdcT 3d sup
S
‖TS ‖X→T cX‖f‖X .

Since compactly supported functions are dense in X, the operator T may be
extended by continuity to all f ∈ X, and the same bound above holds in gen-
eral. (Note that in the two intermediate steps the collections Si depend on
f ; however, in the right, where we have taken the supremum over all sparse
collections, the only dependence on f is via the explicit expression ‖f‖X .)
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We conclude this section with applications of Proposition 1.5.1 to the max-
imal operator.

1.5.6 Lemma. Let R ⊂ Rd be a cube. Then there is a dyadic cube Q ∈ D such
that R ⊂ 3Q and `(Q) ≤ `(R).

Proof. We consider d = 1 first. Let J be an interval, and consider dyadic
intervals I of length `(I) ≤ `(J) < 2`(I). Then J is contained in the union of
two such consecutive intervals. If I is either of these intervals, then J ⊂ 3I.

In general, if R = J1 × · · · × Jd, we find dyadic Ii such that Ji ⊂ 3Ii and
`(Ii) ≤ `(Ji) < 2`(Ii). Then all Ii have equal length, and therefore Q :=
I1 × · · · × Id is a dyadic cube such that R ⊂ 3Q and `(Q) ≤ `(R).

1.5.7 Proposition. There are 3d dyadic maximal operators MDi such that the
Hardy–Littlewood maximal operator M satisfies

Mf ≤ 3d sup
1≤i≤3d

MDif.

Proof. Given x ∈ Rd and a cube R 3, let Q ∈ D be a such that R ⊂ 3Q and
`(Q) ≤ `(R). Then

 
R

|f | ≤ |3Q|
|R|

 
3Q

|f | ≤ 3d
 

3Q

|f | ≤ 3dMDif(x),

where Di 3 3Q is one of the dyadic systems provided by Proposition 1.5.1.

1.5.8 Corollary.
‖M‖Lp→Lp ≤ 9dp′.

Proof.

‖Mf‖Lp ≤ 3d
3d∑
i=1

‖MDif‖Lp ≤ 3d
3d∑
i=1

p′‖f‖Lp = 9dp′‖f‖Lp .

1.6 Domination of Calderón–Zygmund operators
The main concrete application of Lerner’s abstract domination theorem is to
the following class of operators:

1.6.1 Definition. We say that T is a Calderón–Zygmund operator, if T is a
bounded linear operator on L2(Rd), and it has a representation

Tf(x) =

ˆ
Rd
K(x, y)f(y) dy, x /∈ supp f,
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where the kernel K satisfies

|K(x, y)| ≤ cK
|x− y|d

, x 6= y,

and

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)|

≤ ω
( |x− x′|
|x− y|

) 1

|x− y|d
, |x− y| > 2|x− x′|

for some modulus of continuity ω, by which we mean an increasing and subad-
ditive (i.e., ω(a+ b) ≤ ω(a) + ω(b)) function ω : [0,∞)→ [0,∞) with ω(0) = 0.
We say that the kernel or the modulus satisfies the Dini condition if

‖ω‖Dini :=

ˆ 1

0

ω(t)
dt

t
<∞.

Recall that Lerner’s Theorem 1.4.2 requires that T,MT : L1 → L1,∞. This is
a relatively straightforward consequence of the following results in the classical
Calderón–Zygmund theory (to which we return in the following section):

• The Hardy–Littlewood maximal operator maps M : L1 → L1,∞.

• Each Calderón–Zygmund operator maps T : L1 → L1,∞.

• The maximal truncated Calderón–Zygmund operators

T#f(x) := sup
ε>0
|Tεf(x)|, Tεf(x) :=

ˆ
|y−x|>ε

K(x, y)f(y) dy,

also map T# : L1 → L1,∞.

Note that the classical property T : L1 → L1,∞ is already “one half” of the
requirements of Theorem 1.4.2. The other half concerning MT is a consequence
of M,T# : L1 → L1,∞ and the following:

1.6.2 Lemma.

MT f(x) ≤ T#f(x) + cd(cK + ‖ω‖Dini)Mf(x).

Proof. Let Q 3 x and z ∈ Q be fixed for the moment. We need to estimate

T (1(3Q)cf)(z) = T (1(3Q)cf)(z)− T2
√
d`(Q)f(x) + T2

√
d`(Q)f(x),

where the last term is bounded by T#f(x) by definition. On the other hand,

T2
√
d`(Q)f(x) = T (1B(x,2

√
d`(Q))cf)(x),
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and 3Q ⊂ B(x, 2
√
d`(Q)) so that

T (1(3Q)cf)(z)− T2
√
d`(Q)f(x)

=

ˆ
(3Q)c

K(z, y)f(y) dy −
ˆ
|y−x|>2

√
d`(Q)

K(x, y)f(y) dy

=

ˆ
|y−x|>2

√
d`(Q)

(K(z, y)−K(x, y))f(y) dy

+

ˆ
(3Q)c∩B(x,2

√
d`(Q))

K(z, y)f(y) dy =: I + II.

In term I, we have z, x ∈ Q, thus |z − x| ≤
√
d`(Q) < 1

2 |x− y|, so that

|I| ≤
ˆ
|y−x|>2

√
d`(Q)

ω
(√d`(Q)

|x− y|

) 1

|x− y|d
|f(y)|dy

≤
∞∑
k=1

ˆ
2k
√
d`(Q)<|x−y|≤2k+1

√
d`(Q)

ω(2−k)
1

(2k
√
d`(Q))d

|f(y)|dy

≤
∞∑
k=1

ω(2−k)cd

 
B(x,2k+1

√
d`(Q)

|f(y)|dy

≤
∞∑
k=1

ω(2−k)cdMf(x) ≤ ‖ω‖DinicdMf(x),

where the last bound used Exercise 1.6.6 below.
In term II, we have z ∈ Q, y ∈ (3Q)c, thus |y − z| ≥ `(Q), so that

|II| ≤
ˆ

(3Q)c∩B(x,2
√
d`(Q))

cK
|y − z|d

|f(y)|dy

≤
ˆ
B(x,2

√
d`(Q))

cK
`(Q)d

|f(y)|dy

≤ cKcd
 
B(x,2

√
d`(Q))

|f(y)|dy ≤ cKcdMf(x).

Combining the estimates, and taking the supremum over z ∈ Q and Q 3 x, we
arrive at the claim of the lemma.

Thus, taking for granted the above-listed results of classical Calderón–Zygmund
theory, we have:

1.6.3 Theorem. Every Calderón–Zygmund operator T satisfies the assump-
tions, and hence the conclusions, of Theorem 1.4.2. In particular, every Calderón–
Zygmund operator T satisfies

(1.6.4) ‖T‖L2(w)→L2(w) ≤ cdcT [w]A2 , w ∈ A2.
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1.6.5 Remark. The bound (1.6.4) is known as the A2 theorem. It was first
proved by Hytönen in July 2010 [Hyt12]), although only for the Hölder moduli
of continuity ω(t) = tδ, δ ∈ (0, 1]; note that Calderón–Zygmund operators are
often defined using these Hölder moduli only. In the stated generality of Dini
moduli, the theorem was first proved by Lacey in January 2015 [Lac17] and
simplified by Lerner in December 2015 [Ler16].

The intermediate step of domination of T by TS has some history of its own.
The sparse operators TS were used in the proof of some special cases of the A2

theorem by Cruz-Uribe, Martell and Pérez in January 2010 [CUMP10], but not
in the first proof of the full A2 theorem [Hyt12]. They reappeared in the simple
proof of the A2 theorem by Lerner in 2012 [Ler13], where the norm domination
(1.5.5) first appeared. The stronger pointwise domination (1.5.3) was an open
question for a while, and was settled independently in 2014 by Conde-Alonso
and Rey [CAR16] and by Lerner and Nazarov [LN15]. All these results still
made slightly stronger assumptions on the modulus of continuity than the Dini
condition.

1.6.6 Exercise. Check that there are constants c, c′ such that every modulus

of continuity satisfies c‖ω‖Dini ≤
∞∑
k=1

ω(2−k) ≤ c′‖ω‖Dini.

1.6.7 Exercise. Consider Lerner’s maximal operator MT , when T = M , the
Hardy–Littlewood maximal operator, and show that MMf ≤ cdMf .

1.6.8 Exercise. Prove the analogue of Lemma 1.6.2 for the maximal truncated
Calderón–Zygmund operator T# in place of the linear Calderón–Zygmund op-
erator T , i.e., prove a pointwise bound for MT#

which allows to conclude the
L1 → L1,∞ boundedness of this operator, and hence the A2 theorem for T#.
(This extension of the A2 theorem to T# was first obtained by Hytönen, Lacey,
Martikainen, Orponen, Reguera, Sawyer and Uriarte-Tuero in 2011 [HLM+12]
by a rather difficult argument; now it is only a slight variation of the result for
T .) Hint: It suffices (why?) to consider Tε with an arbitrary but fixed ε > 0.

1.6.9 Exercise. Consider again the Hilbert transform H from Exercise 1.3.5.
Taking for granted that H : L2(R) → L2(R) is bounded (This can be proved
in various ways, but it is not completely trivial.), check that H is a Calderón–
Zygmund operator with a modulus of continuity of the form ω(t) = ct for some
constant c. Conclude from the previous results that

(1.6.10) ‖H‖L2(w)→L2(w) ≤ c[w]A2 , w ∈ A2,

and argue by extrapolation (without a concrete example) that this dependence
on [w]A2

is optimal. (This special A2 theorem for the Hilbert transform was first
proved by Petermichl [Pet07] and encouraged the quest for the general result.)

1.6.11 Exercise. Show the optimality of (1.6.10) by working out the following
concrete example (without using extrapolation): Consider the weight w(x) =
|x|α, and the function f(x) = |x|−α1(−1,0)(x) and estimate the quantities [w]A2

,
‖f‖L2(w) and ‖Hf‖L2(w). (Hint: For the last one, you only need a lower bound,
so it is enough to consider ‖1(0,1)Hf‖L2(w).)
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1.7 Some classical Calderón–Zygmund theory
We now review the aspect of the classical Calderón–Zygmund theory that were
needed in the previous section.

1.7.1 Proposition (Calderón–Zygmund decomposition). Given f ∈ L1(Rd)
and λ > 0, there exists a decomposition f = g + b, where

‖g‖∞ ≤ 2dλ, ‖g‖1 ≤ ‖f‖1, ‖g‖22 ≤ 2dλ‖f‖1

and b =
∑
i bi, where

supp bi ⊆ Qi,
ˆ
bi = 0,

∑
i

|Qi| ≤
1

λ
‖f‖1,

∑
i

‖bi‖1 ≤ 2‖f‖1

for some dyadic cubes Qi.

Proof. Let Qi ∈ D be the maximal dyadic cubes such that
ffl
Qi
|f | > λ. Then

they are pairwise disjoint, and∑
i

|Qi| = |{MDf > λ}| ≤ 1

λ
‖f‖1.

We define bi := 1Qi(f − 〈f〉Qi), whence the first two properties of bi are clear,
and it remains to estimate∑

i

‖bi‖1 ≤
∑
i

(‖1Qif‖1 + |Qi||〈f〉Qi |) ≤
∑
i

2

ˆ
Qi

|f | ≤ 2‖f‖1

by the disjointness of the cubes. To ensure that f = g + b, we must then define

g := 1(
⋃
iQi)

cf +
∑
i

1Qi〈f〉Qi ,

where the terms are disjointly supported. If x ∈ (
⋃
iQi)

c, then all dyadic cubes
Q 3 x satisfy

ffl
Q
|f | ≤ λ, and thus

|g(x)| = |f(x)| = lim
Q3x

`(Q)→0

 
Q

|f | ≤ λ

at almost every such x by Lebesgue’s differentiation theorem. On the other
hand, the maximality of Qi implies that its dyadic parent Q̂i satisfies the oppo-
site inequality,

ffl
Q̂i
|f | ≤ λ. Thus

|g(x)| = |〈f〉Qi | ≤
1

|Qi|

ˆ
Qi

|f | ≤ |Q̂i|
|Qi|

· 1

|Q̂i|

ˆ
Q̂i

|f | ≤ 2d · λ

for x ∈ Qi, and we see that |g(x)| ≤ 2dλ in both cases. Moreover,

‖g‖1 =

ˆ
(
⋃
iQi)

c

|f |+
∑
i

|Qi||〈f〉Qi | ≤
ˆ

(
⋃
iQi)

c

|f |+
∑
i

ˆ
Qi

|f | = ‖f‖1

21



by the disjointness of the cubes. Finally,

‖g‖22 =

ˆ
|g|2 ≤ ‖g‖∞‖g‖1 ≤ 2dλ‖f‖1.

1.7.2 Theorem (Calderón–Zygmund). If T is a Calderón–Zygmund operator,
then

‖T‖L1→L1,∞ ≤ cd
(
‖T‖L2→L2 + ‖ω‖Dini

)
.

Proof. Fix λ > 0; we need to estimate λ|{|Tf | > λ}|.
Let f = g + b the the Calderón–Zygmund decomposition of f at level αλ

(instead of λ), where α is to be determined. If Qi are the corresponding cubes,
let Bi be the concentric ball of twice the diameter and Ω∗ :=

⋃
iBi. Then

|{|Tf | > λ}| ≤ |{|Tg| > λ/2}|+ |{|Tb| > λ/2} \ Ω∗|+ |Ω∗|,

where the last term satisfies

|Ω∗| ≤
∑
i

|Bi| =
∑
i

cd|Qi| ≤
cd
αλ
‖f‖1.

Moreover,

|{|Tg| > λ/2}| ≤ 1

(λ/2)2
‖Tg‖22 ≤

4

λ2
‖T‖2L2→L2‖g‖22 ≤

4

λ2
‖T‖2L2→L2 · 2dαλ‖f‖1.

Finally, we estimate the bad part:

|{|Tb| > λ/2} \ Ω∗| ≤
ˆ

(Ω∗)c

|Tb|
λ/2

≤ 2

λ

∑
i

ˆ
(Ω∗)c

|Tbi| ≤
2

λ

∑
i

ˆ
(Bi)c

|Tbi|.

The ith term here isˆ
(Bi)c

|Tbi(x)|dx =

ˆ
(Bi)c

∣∣∣ˆ
Qi

K(x, y)bi(y) dy
∣∣∣dx

=

ˆ
(Bi)c

∣∣∣ˆ
Qi

[K(x, y)−K(x, zi)]bi(y) dy
∣∣∣ dx,

where zi is the common centre of the cube Qi and the ball Bi, and we used the
fact that

´
bi(y) dy = 0 for the last identity. For y ∈ Qi and x ∈ (Bi)

c, we have
|y − zi| ≤ 1

2 diam(Qi) and |x− zi| ≥ 1
2 diam(Bi) = diam(Qi). Thus we can use

continuity of the kernel to conclude that
ˆ

(Bi)c
|Tbi(x)|dx ≤

ˆ
(Bi)c

ˆ
Qi

ω
( 1

2 diam(Qi)

|x− zi|

) 1

|x− zi|d
|bi(y)|dy dx

=

ˆ
(Bi)c

ω
( 1

2 diam(Qi)

|x− zi|

) 1

|x− zi|d
dx · ‖bi‖1

= cd

ˆ ∞
diam(Qi)

ω
( 1

2 diam(Qi)

r

) 1

rd
rd−1 dr · ‖bi‖1

= cd

ˆ 1/2

0

ω(t)
dt

t
· ‖bi‖1 ≤ cd‖ω‖Dini‖bi‖1.
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Summing over i, we find that

2

λ

∑
i

ˆ
(Bi)c

|Tbi| ≤
2

λ
cd‖ω‖Dini

∑
i

‖bi‖1 ≤
2

λ
cd‖ω‖Dini · 2‖f‖1

Altogether, we have

(1.7.3) |{|Tf | > λ}| ≤ cd
λ
‖f‖1

(
α‖T‖2L2→L2 +

1

α
+ ‖ω‖Dini),

and choosing α = 1/‖T‖L2→L2 provides the claimed bound.

1.7.4 Exercise. Suppose that we did the previous proof only with α = 1,
leading to the bound

‖T‖L1→L1,∞ ≤ cd
(
‖T‖2L2→L2 + 1 + ‖ω‖Dini).

Apply this to the operator αT in place of T , where α > 0 is a constant, and
see how the different quantities depend on α to deduce (1.7.3) and thus the
statement of Theorem 1.7.2 by this alternative route. (The trick of this exercise
is an example of a “scaling argument”, which is useful in many contexts.)

We next study the truncated singular integrals

Tεf(x) :=

ˆ
|x−y|>ε

K(x, y)f(y) dy

and the maximal truncation

T]f(x) := sup
ε>0
|Tεf(x)|.

We also need a variant of the maximal operator,

Mδf :=
(
M(|f |δ)

)1/δ
.

1.7.5 Theorem (Cotlar’s inequality). For δ ∈ (0, 1), we have

T]f ≤ cd,δ
(
‖ω‖Dini + ‖T‖L1→L1,∞

)
Mf + cd,δMδ(Tf)

≤ cd,δ
(
‖ω‖Dini + ‖T‖L2→L2

)
Mf + cd,δMδ(Tf).

Proof. For a fixed x, we need to estimate Tεf(x) uniformly in ε > 0. We first
observe the identity, for every x′ ∈ B(x, 1

2ε),

Tεf(x) = T (1B(x,ε)cf)(x)

= [T (1B(x,ε)cf)(x)− T (1B(x,ε)cf)(x′)] + Tf(x′)− T (1B(x,ε)f)(x′).

We take the Lδ average of this over x′ ∈ B(x, 1
2ε). Since Lδ is only a quasi-

Banach space, this introduces a constant cδ.
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For the first term, we have

|T (1B(x,ε)cf)(x)− T (1B(x,ε)cf)(x′)|

=
∣∣∣ˆ
|x−y|>ε

[K(x, y)−K(x′, y)]f(y) dy
∣∣∣

≤
ˆ
|x−y|>ε

ω
( ε/2

|x− y|

) 1

|x− y|d
|f(y)|dy

≤
∞∑
k=0

ˆ
2kε<|x−y|<2k+1

ω(2−1−kε)
1

(2kε)d
|f(y)|dy

≤ 2d
∞∑
k=0

ω(2−k−1)

 
B(x,2k+1ε)

|f(y)|dy

≤ 2dMf(x)

∞∑
k=0

ω(2−k−1) ≤ c2dMf(x)‖ω‖Dini.

For Tf(x′), it is immediate that(  
B(x, 12 ε)

|Tf(x′)|δ dx′
)1/δ

≤Mδ(Tf)(x),

by definition of Mδ.
Concerning the final term, we note that( 

B(x, 12 ε)

|T (1B(x,ε)f)|δ
)1/δ

≤ cδ

|B(x, 1
2ε)|
‖T (1B(x,ε)f)‖L1,∞

≤ cδ‖T‖L1→L1,∞

|B(x, 1
2ε)|

‖1B(x,ε)f‖L1

≤ cδ,d‖T‖L1→L1,∞Mf(x),

where the first bound follows from the general estimate
 
F

|g|δ =
1

|F |

ˆ ∞
0

δλδ−1|F ∩ {|g| > λ}|dλ

≤
ˆ A

0

δλδ−1 dλ+
1

|F |

ˆ ∞
A

δλδ−2‖g‖L1,∞ dλ

= Aδ +
δ

1− δ
Aδ−1 ‖g‖L1,∞

|F |
=

1

1− δ

(‖g‖L1,∞

|F |

)δ
(1.7.6)

by choosing A = ‖g‖L1,∞/|F |.

1.7.7 Corollary.

‖T]‖L1→L1,∞ ≤ cd
(
‖T‖L2→L2 + ‖ω‖Dini

)
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Proof. From Cotlar’s inequality, it follows that

‖T]‖L1→L1,∞ ≤ cd,δ
(
‖ω‖Dini + ‖T‖L2→L2

)
‖M‖L1→L1,∞

+ cd,δ‖Mδ‖L1,∞→L1,∞‖T‖L1→L1,∞ .

Since

‖M‖L1→L1,∞ ≤ cd, ‖T‖L1→L1,∞ ≤ cd
(
‖T‖L2→L2 + ‖ω‖Dini

)
,

it remains to check that

‖Mδ‖L1,∞→L1,∞ ≤ cd,δ, ∀δ ∈ (0, 1),

and fix some δ ∈ (0, 1), say δ = 1
2 . We prove the final bound in the dyadic case,

as the general case follows by the method of adjacent dyadic systems.
Let Qi be the maximal dyadic cubes such that

ffl
Qi
|f |δ > λδ; hence {Mδf >

λ} =
⋃
iQi. Let us first consider a union of finitely many of these cubes only,

say F :=
⋃N
i=1Qi. Then |F | <∞, and

|F | =
N∑
i=1

|Qi| ≤
1

λδ

N∑
i=1

ˆ
Qi

|f |δ =
1

λδ

ˆ
F

|f |δ ≤ 1

λδ
|F |1−δ‖f‖δL1,∞

(1− δ)

by (1.7.6) in the last step. Simplifying, this shows that |F | ≤ cδ‖f‖L1,∞/λ,
and since this is true for any finite union F =

⋃N
i=1Qi ⊂ {Mδf > λ}, letting

N →∞ it follows that |{Mδf > λ}| ≤ cδ‖f‖L1,∞/λ.

Now we have proved the estimates from classical Calderón–Zygmund theory
needed for Lerner’s dyadic domination of Calderón–Zygmund operators.

1.8 Variational estimates*
In this section we show the applicability of Lerner’s domination to so-called
variational Calderón–Zygmund operators. However, this section will not be self-
contained, but we will instead borrow and use some results from the theory of
variational operators as black boxes. In a way, the possibility of using such black
box input is also an illustration of the power of Lerner’s abstract domination
theorem.

Given a family of linear operators (Sε)ε∈(0,∞), we define its r-variation op-
erator

V rε Sf(x) := sup
( N∑
j=1

|Sεjf(x)− Sεj+1
f(x)|r

)1/r

,

where the supremum is over all increasing sequences ε ≤ ε0 ≤ . . . ≤ εN (with
the additional requirement that 0 < ε0 if ε = 0), where the length N is finite
but arbitrary. We also denote V rS := V r0 S.
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Two main examples of Sε are the averaging operators

Aεf(x) :=

 
B(x,ε)

f(y) dy

and the truncated Calderón–Zygmund operators

Tεf(x) :=

ˆ
|x−y|>ε

K(x, y)f(y) dy.

1.8.1 Remark (Variational vs. maximal operators). Interpreting r = ∞ in the
“usual way”, V∞S is essentially a maximal operator. Indeed

V∞Sf(x) = sup
ε<δ
|Sεf(x)− Sδf(x)| ≤ 2 sup

ε>0
|Sεf(x)|,

and if infδ>0 |Sf(x)| = 0 (e.g., if limδ→∞ |Sδf(x)| = 0), then V∞Sf(x) ≥
supε>0 |Sεf(x)|.

Since ‖ ‖`r ≥ ‖ ‖`s ≥ ‖ ‖`∞ for r < s < ∞, the variational operators V rS
are bigger than the maximal operator for finite r, and they increase in size as r
decreases.
1.8.2 Remark. A prime application of maximal operators is the study of point-
wise convergence of Sεf(x) as ε→ 0: Suppose that this convergence holds (for
a.e. x) for every f ∈ F , where F ⊂ Lp is dense, and suppose that V∞ : Lp →
Lp,∞ is bounded. Then the convergence holds for all f ∈ Lp.

To see this, define the sublinear operator

Λf(x) := lim sup
ε,δ→0

|Sεf(x)− Sδf(x)| ≤ V∞Sf(x).

By assumption, Λf = 0 (a.e.) if f ∈ F . If f ∈ Lp and g ∈ F , we have
Λf = Λ(f − g + g) ≤ Λ(f − g) + Λg = Λ(f − g), thus

|{Λf > ε}| ≤ |{Λ(f − g) > ε}| ≤ |{V∞S(f − g) > ε}|
≤ ε−p‖V∞S(f − g)‖pLp,∞ ≤ ε

−p‖V∞S‖pLp→Lp,∞‖f − g‖
p
Lp .

Taking the limit g → f in Lp, we see that |{Λf > ε}| = 0, hence |{Λ > 0}| =⋃∞
n=1 |{Λf > n−1}| = 0, and thus Λf = 0 almost everywhere.
On the other hand, the knowledge that V rS : Lp → Lp,∞ (or the stronger

V rS : Lp → Lp) allows to conclude the convergence of Sεf(x) without any a
priori knowledge of this convergence on a dense subspace, which is useful in
some applications. Equally importantly, the variational bounds give quantita-
tive information on the rate of convergence.

We state without proof two theorems about variational operators:

1.8.3 Theorem. For r > 2, the operator

Ṽ rAf(x) := sup
z∈Rd

V r|z−x|Af(z)

is bounded from L1(Rd) to L1,∞(Rd).
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1.8.4 Theorem. Let T be a Calderón–Zygmund operator of convolution-type,
meaning that its kernel has the form K(x, y) = k(x− y). Suppose also that

ˆ
∂B(0,t)

k(u) dσ(u) = 0

for all t > 0, where σ is the (d− 1)-dimensional surface measure, and moreover
that at least one of the following additional conditions holds:

1. k(x) =
1

|x|d
k
( x
|x|

)
for all x ∈ Rd \ {0} (k is homogeneous), or

2. |∇k(x)| ≤ c′K |x|−d−1 (k is smooth).

Then, for every r > 2, the operator V rT is bounded from L1(Rd) to L1,∞(Rd).

1.8.5 Remark. Theorem 1.8.3 as stated is from de França Silva and Zorin-
Kranich 2016 [FZ16], but a similar bound for V rA in place of Ṽ rA is much
older. Case (1) of Theorem 1.8.4 is from Campbell, Jones, Reinhold and Wierdl
[CJRW03]. In case (2), an Lp → Lp bound for V rT is from Mirek, Stein and
Trojan [MST15], and the L1 → L1,∞ bound follows from this by the results of
[CJRW03], as noted in [FZ16].

Our present goal is to study the dyadic domination of V rT . In order to
deduce this by Lerner’s method, we need the L1 → L1,∞ bounds of this operator
itself (which is given by Theorem 1.8.4), as well as of MV rT . A key to the latter
is the following bound:

1.8.6 Lemma (de França Silva & Zorin-Kranich 2016 [FZ16]). Let T be a
Calderón–Zygmund operator. If |x− x′| ≤ ε/2, then

|V rε Tf(x)− V rε Tf(x′)| ≤ cd(‖ω‖Dini + cK)Mf(x) + cdcK Ṽ
rA|f |(x).

Proof. By the triangle inequality, we have

|V rε Tf(x)− V rε Tf(x′)|

≤ sup
(∑

j

|(Tεjf(x)− Tεj+1f(x))− (Tεjf(x′)− Tεj+1f(x′))|r
)1/r

,

where the supremum is over all increasing sequences ε ≤ ε0 ≤ ε1 ≤ . . . ≤ εN .
Moreover,

(Tεjf(x)− Tεj+1f(x))− (Tεjf(x′)− Tεj+1f(x′))

=

ˆ
εj<|y−x|<εj+1

K(x, y)f(y) dy −
ˆ
εj<|y−x′|<εj+1

K(x′, y)f(y) dy

=
( ˆ

εj<|y−x|<εj+1

−
ˆ
εj<|y−x′|<εj+1

)
K(x, y)f(y) dy

+

ˆ
εj<|y−x′|<εj+1

(K(x, y)−K(x′, y))f(y) dy = Ij + IIj ,

(1.8.7)
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where(∑
j

|IIj |r
)1/r

≤
∑
j

ˆ
εj<|y−x′|<εj+1

|K(x, y)−K(x′, y)||f(y)|dy

≤
ˆ
|y−x′|>ε

ω
( |x− x′|
|x′ − y|

) 1

|x′ − y|d
|f(y)|dy

≤
∞∑
k=0

ˆ
2kε<|y−x′|<2k+1

ω(2−k−1)
1

(2kε)d
|f(y)|dy

≤ cd
∞∑
k=0

ω(2−k−1)

 
B(x′,2k+1ε)

|f(y)|dy ≤ cd‖ω‖DiniMf(x),

observing that |x− x′| ≤ ε/2 implies that the balls B(x′, 2k+1ε) also contain x.
For the first term on the left of (1.8.7), we write it as

Ij =

ˆ
Rd
χj(y)K(x, y)f(y) dy,

where (suppressing the dependence on the fixed x, x′)

χj(y) := 1εj<|y−x|<εj+1
− 1εj<|y−x′|<εj+1

We consider two cases. If εj+1 ≤ εj + ε, then we simply estimate

|χj(y)| ≤ 1εj<|y−x|<εj+1
+ 1εj<|y−x′|<εj+1

If εj+1 > εj + ε, then we write

χj(y) = 1|y−x|>εj − 1|y−x′|>εj −
(

1|y−x|>εj+1
− 1|y−x′|>εj+1

)
= 1|y−x|>εj>|y−x′| − 1|y−x′|>εj>|y−x|

−
(

1|y−x|>εj+1>|y−x′| − 1|y−x′|>εj+1>|y−x|

)
.

Since
∣∣∣|y − x| − |y − x′|∣∣∣ ≤ |x− x′| ≤ ε/2, we deduce that

|χj(y)| ≤ 1εj<|y−x|<εj+ε/2 + 1εj<|y−x′|<εj+ε/2

+
(

1εj+1−ε/2<|y−x′|<εj+1
+ 1εj+1−ε/2<|y−x|<εj+1

)
.

Let us define η3j := εj . In the first case that εj+1 ≤ εj + ε, we define
η3j+1 := η3j+2 := εj+1. In the second case that εj+1 > εj + ε, we define
η3j+1 := εj + ε/2 and η3j+2 := εj+1 − ε/2. In both cases, we have checked that

|χj(y)| ≤
∑
x̂=x,x′

∑
i=0,2

1η3j+i<|y−x̂|<η3j+i+1
,

28



where ηj is an increasing sequence with η3j+i+1 ≤ η3j+i + ε for i = 0, 2. Hence,
using

(1.8.8) |K(x, y)| ≤ cK
|x− y|d

≤ 2dcK
|x′ − y|d

we have

|Ij | =
∣∣∣ ˆ χj(y)K(x, y)f(y) dy

∣∣∣
≤
∑
x̂,i

ˆ
η3j+i<|y−x̂|<η3j+i+1

2dcK
|x̂− y|d

|f(y)|dy

≤ cdcK
∑
x̂,i

1

ηd3j+i+1

ˆ
η3j+i<|y−x̂|<η3j+i+1

|f(y)|dy,

where

1

ηd3j+i+1

ˆ
η3j+i<|y−x̂|<η3j+i+1

|f(y)|dy

=
( 1

ηd3j+i+1

ˆ
|y−x̂|<η3j+i+1

− 1

ηd3j+i

ˆ
|y−x̂|<η3j+i

|f(y)|dy

+
( 1

ηd3j+i
− 1

ηd3j+i+1

) ˆ
|y−x̂|<η3j+i

)
|f(y)|dy

= cd

( 
B(x̂,η3j+i+1)

−
 
B(x̂,η3j+i)

)
|f(y)|dy

+ cd

(
1−

ηd3j+i
ηd3j+i+1

) 
B(x̂,η3j+i)

|f(y)|dy = IIIj + IVj .

Here, by definition,(∑
j

|IIIj |r
)1/r

≤ cdV rεA|f |(x̂) ≤ cdṼ rA|f |(x);

the case x̂ = x of the last inequality is clear, and the case x̂ = x′ also follows
from the definition of Ṽ rA, recalling that |x′ − x| < ε/2.

On the other hand,

|IVj | ≤ cd
∣∣∣1− ηd3j+i

ηd3j+i+1

∣∣∣Mf(x),

and, using the mean value estimate 1 − ζd = dξd−1(1 − ζ) ≤ d(1 − ζ) with
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ζ = η3j+i/η3j+i+1, we may continue with(∑
j

∣∣∣1− ηd3j+i
ηd3j+i+1

∣∣∣r)1/r

≤ d
(∑

j

∣∣∣1− η3j+i

η3j+i+1

∣∣∣r)1/r

= d
( ∞∑
k=1

∑
j:kε≤η3j+i<(k+1)ε

∣∣∣η3j+i+1 − η3j+i

η3j+i+1

∣∣∣r)1/r

≤ d
( ∞∑
k=1

∣∣∣ ∑
j:kε≤η3j+i<(k+1)ε

η3j+i+1 − η3j+i

kε

∣∣∣r)1/r

.

In the inner sum, we have η3j+i+1 ≤ η3j+i + ε < (k + 2)ε. On the other hand,
since 3j + i+ 1 ≤ 3(j + 1) + i, the intervals [η3j+i, η3j+i+1) ⊂ [kε, (k + 2)ε) are
pairwise disjoint, so their lengths sum up to at most 2ε. Thus we continue the
estimate with

≤ d
( ∞∑
k=1

∣∣∣2ε
kε

∣∣∣r)1/r

= 2d
( ∞∑
k=1

k−r
)1/r

≤ cd,

since r > 2.

With the hard work done in Lemma 1.8.6, it is now reasonably straightfor-
ward to obtain the following:

1.8.9 Lemma. Let T be a Calderón–Zygmund operator. Then

MV rT f(x) ≤ V rTf(x) + cd(‖ω‖Dini + cK)Mf(x) + cdcK Ṽ
rA|f |(x).

Proof. Recall that

MV rT f(x) = sup
Q3x

sup
z∈Q

V rT (1(3Q)cf)(z).

Fix some Q and z as here, and abbreviate f̃ := 1(3Q)cf
With

vi := vεi,εi+1 := |Tεi f̃(z)− Tεi+1 f̃(z)| =
∣∣∣ˆ
εj<|y−z|<εj+1

K(z, y)f̃(y) dy
∣∣∣

we have
V rT f̃(z) = sup

(∑
i

vri

)1/r

,

where the supremum is over all increasing sequences 0 < ε0 < ε1 < . . . < εN .
We want to break the sum at the thresholds `(Q) and 2

√
d`(Q). If these

numbers are not already part of the sequences of εi’s, we can add them by using
the triangle inequality

vi ≤ vεi,`(Q) + v`(Q),εi+1
if εi < `(Q) < εi+1 ≤ 2

√
d`(Q),

vi ≤ vεi,2
√
d`(Q) + v2

√
d`(Q),εi+1

if `(Q) ≤ εi < 2
√
d`(Q) < εi+1,

vi ≤ vεi,`(Q) + v`(Q),2
√
d`(Q) + v2

√
d`(Q),εi+1

if εi < `(Q) < 2
√
d`(Q) < εi+1,
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leading to

sup
(∑

i

vri

)1/r

≤
(

sup
εN≤`(Q)

+ sup
`(Q)≤ε0

εN≤2
√
d`(Q)

+ sup
2
√
d`(Q)≤ε0

)(∑
i

vri

)1/r

,

where e.g. the first supremum on the right is over all increasing sequences of
0 < ε0 ≤ ε1 ≤ . . . ≤ εN ≤ `(Q), and the other two suprema have an analogous
meaning.

In the first supremum, the integration domain in vi is always contained in
B(z, `(Q)), which does not meet supp f̃ ⊂ (3Q)c, since z ∈ Q and dist(Q, (3Q)c) =
`(Q). In the second supremum, we simply dominate ‖ ‖`r ≤ ‖ ‖`1 , leading to∑

`(Q)≤εi
εi+1≤2

√
d`(Q)

ˆ
εi<|z−y|<εi+1

|K(z, y)||f(y)|dy

≤
ˆ
`(Q)<|z−y|<2

√
d`(Q)

cK
|z − y|d

|f(y)|dy

≤ cdcK
 
B(z,2

√
d`(Q))

|f(y)|dy ≤ cdcKMf(x),

since x ∈ Q also belongs to the same ball.
Finally, the third supremum is by definition V r

2
√
d`(Q)

f̃(z) = V r
2
√
d`(Q)

f(z),

where we could replace f̃ = 1(3Q)cf by f , since the truncation parameter in the
variation operator already ensures that we only integrate over B(2

√
d`(Q))c ⊂

(3Q)c anyway.
Since |x − z| <

√
d`(Q) = 1

2 · 2
√
d`(Q), the previous Lemma 1.8.6 ensures

that

V r
2
√
d`(Q)

f(z) ≤ V r
2
√
d`(Q)

Tf(x) + cd(‖ω‖Dini + cK)Mf(x) + cdcK Ṽ
rA|f |(x),

and the first term on the right is obviously dominated by V rTf(x). In com-
bination with the bound for the second supremum above, this concludes the
proof.

1.8.10 Theorem (de França Silva & Zorin-Kranich 2016). Let r > 2 and T
be a Calderón–Zygmund operator for which V rT : L1 → L1,∞. Then for every
compactly supported f ∈ L1(Rd), there are sparse collection Si ⊂ Di such that

V rT ≤ cd,r,T
3d∑
i=1

TSi
|f |

and consequently ‖V rT‖L2(w)→L2(w) ≤ cd,r,T [w]A2
∀w ∈ A2.

Proof. We of course want to apply Lerner’s Theorem 1.4.2, and the condition
that V rT : L1 → L1,∞ is part of the assumption. The other condition of
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Theorem 1.4.2, that MV rT : L1 → L1,∞ follows from Lemma 1.8.9 and the
L1 → L1,∞ bounds of the operators V rT , M and Ṽ rA, where the last result is
contained in Theorem 1.8.3.

1.8.11 Remark. Theorem 1.8.4 provides concrete conditions under which the
property that V rT : L1 → L1,∞ is valid. However, in the above theorem we
don’t need to make any reference to these conditions, only to the boundedness
V rT : L1 → L1,∞. If, in the future, this boundedness is verified for other classes
of Calderón–Zygmund operators, Theorem 1.8.10 automatically applies to these
operators as well.

1.8.12 Remark. The key Lemma 1.8.6 is taken from the original paper of de
França Silva and Zorin-Kranich [FZ16] almost verbatim, but after this we have
deviated from their original presentation in completing the proof of Theorem
1.8.10. The original paper used Lemma 1.8.6 as an input for an earlier approach
to dyadic domination by Lacey from January 2015 [Lac17], whereas we have used
the simplified approach of Lerner from December 2015 [Ler16].

1.8.13 Exercise. Suppose that V rSf(x) < ∞ at some point x. Show that
limε→0 Sεf(x) exists at this point. (Hint: Given δ > 0, check first that there
are at most Nδ <∞ disjoint intervals [ai, bi) with |Saif(x)− Sbif(x)| ≥ δ.)

1.8.14 Exercise. Check that if f ∈
⋃
p∈[1,∞) L

p(Rd), then both Aεf(x) and
Tεf(x) tend to zero as ε→∞.

1.8.15 Exercise. For 0 < a < b, prove that

V ra Tf(x) ≤ V rb Tf(x) + cdcK(1 + log(b/a))Mf(x).

1.8.16 Exercise. Define Ṽ rT in a way analogous to Ṽ rA. Prove a pointwise
bound for Ṽ rTf , which allows to conclude that Ṽ rT : L1 → L1,∞.

1.8.17 Exercise. Prove a pointwise bound forMV rAf , which allows to conclude
that MV rA : L1 → L1,∞ (and hence to apply Lerner’s theorem to V rA.)

1.8.18 Exercise (Motivation for “r > 2” in the variational estimates). Consider
the standard dyadic intervals D of R, and define the dyadic analogue of the
averaging operators Aε by Ejf(x) := 〈f〉Qj(x), where Qj(x) is the unique dyadic
cube of side-length 2−j that contains x. The corresponding variation operator is
V rEf := sup(

∑
i |Ejif−Eji+1

f |r)1/r, where the supremum is over all increasing
integer sequences ji.

Define the L∞-normalised Haar functions h∞I := 1I` − 1Ir , where I`/r is the
left/right half of I, and the Rademacher functions rj :=

∑
I∈Dj [0,1) h

∞
I , where

Dj [0, 1) = {I ∈ D : I ⊆ [0, 1), `(I) = 2−j}. Check that the functions (ri)
∞
i=0 are

orthonormal:
´
rirj = δij (:= 1 if i = j, and := 0 else). Check that Ejri = ri if

j > i and Ejri = 0 if j ≤ i. Then consider a function of the form f =
∑∞
i=0 airi.

Check that, pointwise on [0, 1), we have V rEf ≥ (
∑∞
i=0 |ai|r)1/r (hint: a very

easy choice of ji works), while ‖f‖L1 ≤ ‖f‖L2 = (
∑∞
i=0 |ai|2)1/2. Conclude with

a suitable choice of (ai)
∞
i=0 that V rE : L1 6→ L1,∞ if r < 2.
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1.9 A∞ weights and the reverse Hölder inequality
1.9.1 Definition. We say that w ∈ AD

∞ with constant [w]DA∞ if
ˆ
Q

MQw ≤ [w]DA∞

ˆ
Q

w

for all Q ∈ D , where MQw := supQ′∈D,Q′⊆Q 1Q′〈w〉Q′ .

1.9.2 Proposition. We have AD
2 ⊂ AD

∞ and [w]DA∞ ≤ e[w]DA2
.

Proof. Since x 7→ expx is convex, we deduce from Jensen’s inequality that

〈w−1〉Q = 〈exp logw−1〉Q ≥ exp〈logw−1〉Q = exp〈− logw〉Q =
1

exp〈logw〉Q

and hence
〈w〉Q ≤ [w]DA2

〈w−1〉−1
Q ≤ [w]DA2

exp〈logw〉Q.

On the other hand, for p ∈ (1,∞),

exp〈logw〉Q = (exp〈logw1/p〉Q)p ≤ (〈w1/p〉Q)p,

and hence

MQw ≤ [w]DA2
(MQ(w1/p))p ≤ [w]DA2

(MD(1Qw
1/p))p.

Thus ˆ
Q

MQw ≤ [w]DA2

ˆ
(MD(1Qw

1/p))p ≤ [w]DA2
(p′)pw(Q).

Being valid for every p ∈ (1,∞), this implies that

[w]DA∞ ≤ [w]DA2
lim
p→∞

(p′)p,

where
(p′)p =

( p

p− 1

)p
=

1

(1− 1
p )p
→ 1

e−1
= e

as p→∞.

1.9.3 Lemma. Let Q0 be a cube, and w and u be weights related by the following
condition: Whenever Q = Q0, or Q ⊂ Q0 is a maximal cube with 〈w〉Q > λ for
some λ > 〈w〉Q0

, then u(Q) ≤ Kw(Q) with some fixed constant K. Then
 
Q0

(MQ0w)εNu ≤ K〈w〉1+ε
Q0

+
ε

1 + ε
K2d

 
Q0

(MQ0w)1+ε
N ,

where xN := min(x,N).
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Proof. If N ≤ 〈w〉Q0 , then the estimate holds even without the second term on
the right:

ˆ
Q0

(MQ0
w)εNu ≤ Nεu(Q0) ≤ 〈w〉εQ0

Kw(Q0) = K〈w〉1+ε
Q0
|Q0|.

We then assume that N > 〈w〉Q0
and write

ˆ
Q0

(MQ0w)εNu =

ˆ ∞
0

ελε−1u({(MQ0w)N > λ}) dλ

=

ˆ N

0

ελε−1u({MQ0w > λ}) dλ

=

ˆ 〈w〉Q0

0

ελε−1u(Q0) dλ+

ˆ N

〈w〉Q0

ελε−1
∑
Q∈Qλ

u(Q) dλ,

where Qλ is the collection of maximal cubes Q ⊂ Q0 with 〈w〉Q > λ. By
assumption, we have u(Q0) ≤ Kw(Q0); hence

ˆ 〈w〉Q0

0

ελε−1u(Q0) dλ ≤ K
ˆ 〈w〉Q0

0

ελε−1w(Q0) dλ

= K〈w〉εQ0
w(Q0) = K〈w〉1+ε

Q0
|Q0|.

For Q ∈ Qλ, we have

u(Q) ≤ Kw(Q) ≤ Kw(Q̂) = K〈w〉Q̂|Q̂| ≤ Kλ · 2
d|Q|,

and hence
ˆ N

〈w〉Q0

ελε−1
∑
Q∈Qλ

u(Q) dλ ≤ 2dK

ˆ N

〈w〉Q0

ελε
∑
Q∈Qλ

|Q|dλ

≤ 2dK

ˆ N

0

ελε|{MQ0w > λ}|dλ

= 2dK

ˆ ∞
0

ελε|{(MQ0
w)N > λ}|dλ

= 2dK
ε

1 + ε

ˆ
Q0

(MQ0
w)1+ε

N .

1.9.4 Theorem (Reverse Hölder inequality). If Q0 ∈ D and w ∈ AD
∞, then

 
Q0

w1+ε ≤ 2
(  

Q0

w
)1+ε

, ε =
1

2d+1[w]DA∞ − 1
.

Proof. We apply Lemma 1.9.3 with two choices of u and K: the trivial case
u = w, K = 1; as well as u = (MQ0

w)N and K = [w]DA∞ . For the latter case, it
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suffices to check the case N = ∞, i.e., u = MQ0w, since clearly uN (Q) ≤ u(Q)
for every cube Q. The case

u(Q0) =

ˆ
Q0

MQ0
w ≤ [w]DA∞w(Q0)

is immediate from the definition of AD
∞. Concerning maximal Q ⊂ Q0 with

〈w〉Q > λ, we note that

sup
Q′)Q
Q′⊆Q0

〈w〉Q′ ≤ λ < 〈w〉Q,

and hence, for all x ∈ Q,

(1.9.5) MQ0
w(x) = sup

Q′3x
Q′⊆Q0

〈w〉Q′ = sup
Q′3x
Q′⊆Q

〈w〉Q′ = MQw(x),

and thus
u(Q) =

ˆ
Q

MQ0
w =

ˆ
Q

MQw ≤ [w]DA∞w(Q)

also in this case.
We first apply Lemma 1.9.3 to (u,K) = ((MQ0

w)N , [w]DA∞) to deduce that
 
Q0

(MQ0
w)1+ε

N ≤ K〈w〉1+ε
Q0

+
ε

1 + ε
[w]DA∞2d

 
Q0

(MQ0
w)1+ε

N ,

and hence

(1.9.6)
 
Q0

(MQ0
w)1+ε

N ≤
[w]DA∞

1− ε
1+ε2d[w]DA∞

〈w〉1+ε
Q0

provided that ε
1+εK2d < 1. Note that subtracting a multiple of the integralffl

Q0
(MQ0

w)1+ε
N from both sides is legitimate, since

ffl
Q0

(MQ0
w)1+ε

N ≤
ffl
Q0
N1+ε =

N1+ε <∞.
We then apply Lemma 1.9.3 to (u,K) = (w, 1) to deduce that 

Q0

(MQ0
w)εNw ≤ 〈w〉1+ε

Q0
+

ε

1 + ε
2d

 
Q0

(MQ0
w)1+ε

N

≤ 〈w〉1+ε
Q0

+
ε

1+ε2d[w]DA∞
1− ε

1+ε2d[w]DA∞
〈w〉1+ε

Q0
=

1

1− ε
1+ε2d[w]DA∞

〈w〉1+ε
Q0

,

substituting the bound from (1.9.6) in the second step.
Observing that w ≤ MQ0

w = limN→∞MQ0
w, we deduce from monotone

convergence that  
Q0

w1+ε ≤ 1

1− ε
1+ε2d[w]DA∞

〈w〉1+ε
Q0

,

and choosing ε so that ε
1+ε2d[w]DA∞ = 1

2 , namely ε = (2d+1[w]DA∞ − 1)−1, we
obtain the Theorem.
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1.9.7 Remark. The reverse Hölder inequality of A∞ weights is a classical result
of Coifman and C. Fefferman [CF74]; its sharp form stated in Theorem 1.9.4 is
from [HPR12], which also contains an extension to spaces of homogeneous type.

1.9.8 Exercise. Show the following converse of Theorem 1.9.4: If a weight w
satisfies the reverse Hölder inequality( 

Q

w1+ε
)1/(1+ε)

≤ K
 
Q

w

for all Q ∈ D , then w ∈ AD
∞. Estimate [w]DA∞ in terms of K and ε. (Hint: Use

the boundedness of the maximal operator in L1+ε.)

1.9.9 Exercise. Consider the following truncated version of MQ:

MN
Q f(x) := sup

Q′∈D,Q′⊆Q
`(Q′)≥2−N `(Q)

1Q′(x)〈|f |〉Q′ ,

and define the truncated dyadic A∞ constant as the smallest constant in the
following inequality:

ˆ
Q

MN
Q w ≤ [w]D,NA∞

ˆ
Q

w ∀Q ∈ D .

Show that [w]D,NA∞
<∞ for any weight w, and that [w]D,NA∞

→ [w]DA∞ as N →∞.

1.9.10 Exercise. The following condition is often used as the definition of the
(dyadic) A∞: There are constants δ, η ∈ (0, 1) such that for all (dyadic) cubes
Q and all measurable subsets E ⊂ Q, if |E| ≤ δ|Q|, then w(E) ≤ ηw(Q). Prove
that this condition implies the dyadic A∞ condition as we have defined it.

Hint: Prove that [w]D,NA∞
≤ 1

δ + η[w]D,NA∞
by splitting the integral

´
Q0
MN
Q0
w

over Q0 \ E and E, where E = {x ∈ Q0 : MN
Q0
w > λ}, where λ is chosen

appropriately to ensure that |E| ≤ δ|Q0|. Check that (1.9.5) also works for
MN
Q0

.
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Chapter 2

Introduction to the theory of
matrix weights

2.1 The matrix-weighted L2 space
We are now going to study matrix-valued weights W : Rd → L (Cn) h Cn×n.

A scalar-valued weight is usually assumed to be positive almost everywhere.
We assume that a matrix-valued weight is also positive almost everywhere, in
the sense of self-adjoint operators. Namely, we demand that W is self-adjoint,
and

(Wx|x) > 0 ∀ x ∈ Cn.
Recall from Linear Algebra that a self-adjoint matrix can always be diagonalised;
namely, there is an orthonormal basis (ei)

n
i=1 of Cn (consisting of eigenvectors

of W ) and real eigenvalues (λi)
n
i=1 such that

W =

n∑
i=1

λiei ⊗ ei, ei ⊗ ei := ei(ei| )

Testing the previous inequality with x = ei, we find that λi > 0 ifW is positive.
The eigenvalue expansion leads to the functional calculus of W , i.e., a way

of defining functions of W via

φ(W ) :=

n∑
i=1

φ(λi)ei ⊗ ei.

Important particular cases are the square root φ(t) =
√
t and the inverse φ(t) =

t−1; it is easy to see that W−1 so defined in the special case of a positive matrix
coincides with the usual matrix inverse.

Note that all functions φ(W ) are also self-adjoint matrices. In particular,
we have

(Wx|y) = (W 1/2W 1/2x|y) = (W 1/2x|W 1/2y), (Wx|x) = ‖W 1/2x‖2.
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For scalar-valued functions f and w, the quantity ‖f‖L2(w) can be expressed
in different equivalent ways:

‖f‖2L2(w) =

ˆ
|f |2w =

ˆ
|w1/2f |2 =

ˆ
wff̄ .

For a vector-valued function f : Rd → Rn and a matrix-valued weightW : Rd →
L (Rn) h Rn×n, we take the last two expressions as the basis of the definition:

‖f‖2L2(W ) :=

ˆ
‖W 1/2f‖2 =

ˆ
(Wf |f).

2.2 The matrix A2 condition
The following proposition motivates the definition

[W ]A2
:= sup

Q
‖〈W 〉1/2Q 〈W

−1〉1/2Q ‖
2
op,

and W ∈ A2 if and only if [W ]A2
<∞.

2.2.1 Proposition. The norm of the operator f 7→ 1Q〈f〉Q on L2(W ) is equal
to ‖〈W 〉1/2Q 〈W−1〉1/2Q ‖op.

Proof. I. Upper bound for the norm:

‖1Q〈f〉Q‖L2(W ) =
( ˆ

Q

(W 〈f〉Q|〈f〉Q)
)1/2

=
(
|Q|(〈W 〉Q〈f〉Q|〈f〉Q)

)1/2

=
(
|Q|‖〈W 〉1/2Q 〈f〉Q‖

2
)1/2

= |Q|1/2 sup
‖x‖≤1

|(〈W 〉1/2Q 〈f〉Q|x)|

where

|(〈W 〉1/2Q 〈f〉Q|x)| =
∣∣∣(〈f〉Q∣∣∣〈W 〉1/2Q x

)∣∣∣ =
∣∣∣〈(f |〈W 〉1/2Q x)

〉
Q

∣∣∣
=
∣∣∣〈(W 1/2f

∣∣∣W−1/2〈W 〉1/2Q x
)〉

Q

∣∣∣
≤
〈∣∣∣(W 1/2f |W−1/2〈W 〉1/2Q x)

∣∣∣〉
Q

≤
〈
‖W 1/2f‖‖W−1/2〈W 〉1/2Q x‖

〉
Q

≤
〈
‖W 1/2f‖2

〉1/2

Q

〈
‖W−1/2〈W 〉1/2Q x‖2

〉1/2

Q
,
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where
〈
‖W 1/2f‖2

〉1/2

Q
= |Q|−1/2‖1Qf‖L2(W ) and

〈
‖W−1/2〈W 〉1/2Q x‖2

〉
Q

=
〈(
W−1/2〈W 〉1/2Q x

∣∣∣W−1/2〈W 〉1/2Q x
)〉

Q

=
〈(
W−1〈W 〉1/2Q x

∣∣∣〈W 〉1/2Q x
)〉

Q

=
(
〈W−1〉Q〈W 〉1/2Q x

∣∣∣〈W 〉1/2Q x
)

=
(
〈W−1〉1/2Q 〈W 〉

1/2
Q x

∣∣∣〈W−1〉1/2Q 〈W 〉
1/2
Q x

)
= ‖〈W−1〉1/2Q 〈W 〉

1/2
Q x‖2 ≤ ‖〈W−1〉1/2Q 〈W 〉

1/2
Q ‖

2
op

Combining the estimates, we have shown that

‖1Q〈f〉Q‖L2(W ) ≤ ‖〈W−1〉1/2Q 〈W 〉
1/2
Q ‖op‖f‖L2(W ).

II. Lower bound for the norm: Let us then assume that

‖1Q〈f〉Q‖L2(W ) ≤ K‖f‖L2(W ).

We test this estimate with the function

f := Σεx := (W + ε)−1x.

Thus

‖〈W 〉1/2Q 〈Σε〉Qx‖
2 = (〈W 〉Q〈Σε〉Qx|〈Σε〉Qx) ≤ K2

 
Q

(WΣεx|Σεx),

where

(WΣεx|Σεx) = ((W + ε− ε)Σεx|Σεx) = (x|Σεx)− ε(Σεx|Σεx)

≤ (x|Σεx) = (Σεx|x),

and hence

‖〈W 〉1/2Q 〈Σε〉Qx‖
2 ≤ K2

(
〈Σε〉Qx

∣∣∣x) = K2‖〈Σε〉1/2Q x‖2.

The matrix Σε is positive and integrable, hence its average 〈Σε〉Q is positive
and hence invertible. Choosing x = 〈Σε〉−1

Q y we deduce that

‖〈W 〉1/2Q 〈Σε〉
1/2
Q y‖ ≤ K‖y‖,

hence

‖〈Σε〉1/2Q 〈W 〉
1/2
Q ‖op = ‖(〈Σε〉1/2Q 〈W 〉

1/2
Q )∗‖op = ‖〈W 〉1/2Q 〈Σε〉

1/2
Q ‖op ≤ K,
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which can be further written as

‖〈Σε〉1/2Q 〈W 〉
1/2
Q x‖ ≤ K‖x‖

or (since 〈W 〉Q is positive and hence invertible)
 
Q

(Σεy|y) = (〈Σε〉Qy|y) = ‖〈Σε〉1/2Q y‖2 ≤ K2‖〈W 〉−1/2
Q y‖2.

Here

(Σεy|y) =
∑
i

(λi + ε)−1|(ei|y)|2 ↑
∑
i

λ−1
i |(ei|y)|2 = (W−1y|y),

so monotone convergence implies the integrability of the latter, and we finally
deduce that

‖〈W−1〉1/2Q y‖ ≤ K‖〈W 〉−1/2
Q y‖,

or
‖〈W−1〉1/2Q 〈W 〉

1/2
Q x‖ ≤ K‖x‖,

so that
‖〈W 〉1/2Q 〈W

−1〉1/2Q ‖op = ‖〈W−1〉1/2Q 〈W 〉
1/2
Q ‖op ≤ K.

2.2.2 Exercise. For self-adjoint matrices A,B, we introduce the partial order
≤ as follows:

A ≤ B def⇔ (Ax|x) ≤ (Bx|x) ∀x ∈ Cn.

For positive matrices A,B, show that

A ≤ B ⇔ ‖A1/2B−1/2‖op ≤ 1 ⇔ ‖B−1/2A1/2‖op ≤ 1 ⇔ B−1 ≤ A−1,

i.e., all four listed conditions are equivalent.

2.2.3 Exercise. Show that W ∈ A2 if and only if 〈W 〉Q ≤ C〈W−1〉−1
Q , if and

only if W−1 ∈ A2, and the optimal constant satisfies C = [W ]A2
= [W−1]A2

.

2.2.4 Exercise. Show that any matrix weight W satisfies the estimate

〈W−1〉−1
Q ≤ 〈W 〉Q.

Hint: (〈W−1〉−1
Q x|x) = 〈(W−1/2〈W−1〉−1

Q x|W 1/2x)〉Q.

2.2.5 Remark. The set-up and the results about matrix weights are from Treil
and Volberg [TV97].
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2.3 Convex body domination
Given a linear operator T acting on scalar-valued functions, we may define its
extension on vector-valued functions component-wise by

(2.3.1) Tf :=

n∑
i=1

eiT (ei|f),

where (ei)
n
i=1 is an orthonormal basis on Rn. For a linear operator, this def-

inition is independent of the chosen orthonormal basis (Exercise 2.3.19). One
can still make the same definition (2.3.1) for a non-linear operator, and this is
often done, but it is not as “canonical”, since it depends on the chosen basis.
Our analysis below will exploit changes of basis, and therefore we stick to linear
operators only.

We now state a version of the dyadic domination theorem for vector-valued
functions that is suitable for studying their estimation in the matrix-weighted
norms.

2.3.2 Theorem (Nazarov, Petermichl, Treil, Volberg 2017 [NPTV17]). Let
T : L1(Rd) → L1,∞(Rd) be a linear operator such that also MT : L1(Rd) →
L1,∞(Rd). We define the action of T on L1(Rd;Rn) component-wise. For com-
pactly supported f ∈ L1(Rd;Rn), there is a (1−ε)-sparse collection S of dyadic
cubes such that

(2.3.3) Tf(x) ∈ cd,ncT
ε

∑
S∈S

1S(x)〈〈f〉〉3S ,

where

〈〈f〉〉Q :=
{ 

Q

φf : φ ∈ BL∞(Q)

}
⊂ Rn,

BL∞(Q) := {φ ∈ L∞(Q) : ‖φ‖∞ ≤ 1}.

More precisely, there exist functions kS ∈ BL∞(S×3S) such that

(2.3.4) Tf(x) =
cd,ncT
ε

∑
S∈S

1S(x)

 
3S

kS(x, y)f(y) dy.

Note that 〈〈f〉〉Q is a subset, not an element, of Rn. Accordingly, the formula
(2.3.3) has an inclusion “∈” instead of “=”.

Theorem 2.3.2 will be used to prove the current record ‖T‖L2(W )→L2(W ) ≤
cd,ncT [W ]

3/2
A2

(also from [NPTV17]) for Calderón–Zygmund operators on matrix
weighted spaces.

Before starting the proof of the theorem, we provide various preparations.

2.3.5 Lemma. For f ∈ L1(Q;Rn), the set 〈〈f〉〉Q ⊂ Rn is symmetric, convex
and compact.
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Proof. Recall that a set E is symmetric if x ∈ E implies −x ∈ E and convex if
xi ∈ E for i = 1, 2 and λi ∈ [0, 1] with λ1 + λ2 = 1 imply that λ1x1 + λ2x2 ∈
E. So let x =

ffl
Q
φf , xi =

ffl
Q
φif ∈ 〈〈f〉〉Q, where φ, φi ∈ BL∞(Q). Then

−x1 =
ffl
Q

(−φ1)f ∈ 〈〈f〉〉Q, since also −φi ∈ BL∞(Q), and λ1x1 + λ2x2 =ffl
Q

(λ1φ1 + λ2φ2)f ∈ 〈〈f〉〉Q, since λ1φ1 + λ2φ2 ∈ BL∞ .
A subset of Rn is compact if and only if it is bounded and closed. For

boundedness, it is immediate that |x1| ≤
ffl
Q
|φ1||f | ≤

ffl
|f |, so that 〈〈f〉〉Q ⊂

B(0, 〈|f |〉Q).
The compactness follows easily from the functional analytic Proposition 2.3.8

below. Namely, let xk =
ffl
Q
φkf ∈ 〈f〉Q converge to some x ∈ Rn. Now there is

a subsequence (φkj )
∞
j=1 and a φ ∈ L∞(Q) such that

´
Q
φkjh→

´
Q
φh for every

h ∈ L1, in particular for each component function h = fi of f = (fi)
n
i=1, and

hence xkj =
ffl
Q
φkjf →

ffl
Q
φf . On the other hand, we also have xkj → x, and

thus x =
ffl
Q
φf ∈ 〈〈f〉〉Q.

We record the following facts from Functional Analysis. Let S ⊂ Rd be a
measurable subset. (The results would be valid much more abstractly, but we
will not need this here.)

2.3.6 Proposition. (L1(S))∗ = L∞(S), i.e., every g ∈ L∞(S) defines a
bounded linear functional Λ : L1(S) → R via Λf :=

´
S
gf , and every bounded

bounded linear functional Λ : L1(S) → R has this form for some g ∈ L∞(S)
such that ‖g‖S = ‖Λ‖L1(S)→R.

2.3.7 Proposition. L1(S) is separable, i.e., there is a countable dense subset.

Sketch of proof. All rational linear combinations of indicators of dyadic cubes is
an example of a countable dense subset of L1(Rd); their restrictions to S gives
a similar subset of L1(S).

2.3.8 Proposition (Weak∗ sequential compactness of the unit ball). For every
sequence (φk)∞k=1 in BL∞(S), there is a subsequence (φkj )

∞
j=1 and a further φ ∈

BL∞(S) such that
´
φkjh→

´
φh for every h ∈ L1(S).

Proof. Let (ψi)
∞
i=1 ⊂ L1(S) be a countable dense subset. Since the sequence

of real numbers
´
φkψ1 is bounded, there is an infinite subsequence K1 such

that
´
φkψ1 converges when K1 3 k →∞. By induction if an infinite sequence

Kj−1 is already chosen, since the sequence of real numbers
´
φkψj is bounded,

there is a further infinite subsequence Kj ⊂ Kj−1 such that
´
φkψj converges

when Kj 3 k →∞. Let us form the sequence K = {k1, k2, . . .} so that k1 ∈ K1

and, if kj−1 is already chosen, we pick kj ∈ Kj so that kj > kj−1. Now
´
φkψj

converges for every j as K 3 k → ∞, since the convergence only depends on
the tail (kj , kj+1, . . .) ⊂ Kj , and we know that convergence happens along the
sequence Kj .

We then show that
´
φkh converges as K ∈ k → ∞ for every h ∈ L1(S) by

verifying Cauchy’s criterion. Let ε > 0 be given. Choose k so that ‖h−ψk‖L1 <
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ε/3. Then∣∣∣ˆ φmh−
ˆ
φ`h
∣∣∣ =

∣∣∣ˆ (φm − φ`)(h− ψk) +

ˆ
(φm − φ`)ψk

∣∣∣
≤ ‖φm − φ`‖∞‖h− ψk‖1 +

∣∣∣ˆ φmψk −
ˆ
φ`ψk

∣∣∣ =: I + II.

Here I ≤ 2ε/3 for all m, `, and II < ε/3 as soon as K 3 m, ` ≥ Nε, since´
φmψk converges as m→∞.
Thus we have shown the existence of

Λh := lim
K3k→∞

ˆ
φkh

for every h ∈ L1(S), and clearly this defines a linear mapping Λ : L1(S) → R
of norm at most sup ‖φk‖∞ ≤ 1. By Proposition 2.3.6, there exists φ ∈ BL∞(S)

such that Λh =
´
φh.

2.3.9 Lemma. Let f ∈ L1(Q;Rn) and let g : Rd → Rn be a measurable function
such that g(x) ∈ 〈〈f〉〉Q for almost every x ∈ Rd. Then there is a function
k ∈ BL∞(Rd×Q) such, at almost every x ∈ Rd, we have

(2.3.10) g(x) =

 
Q

k(x, y)f(y) dy.

On the formal level, the conclusion (2.3.10) is obvious, since g(x) ∈ 〈〈f〉〉Q
means the existence of some k(x, ·) ∈ BL∞(Q) such that (2.3.10) holds; the point
of the lemma is that the function k(x, y) can be chosen to be jointly measurable.

Proof. I: Case of simple g. Suppose first that g =
∑J
j=1 aj1Aj is a simple

function, where the sets Ak is measurable and disjoint. Since aj ∈ 〈〈f〉〉Q, we
have aj =

ffl
Q
φj(y)f(y) dy for some φj ∈ BL∞(Q). But then

g(x) =

 
Q

J∑
j=1

1Aj (x)φj(y)f(y) dy,

where
∑J
j=1 1Aj (x)φj(y) ∈ BL∞(Rd×Q).

II: Approximation by simple functions. Let g be a general function as in
the assumptions. and ε > 0. Since 〈〈f〉〉Q is compact, we can find a finite ε-
net (yj)

J
j=1 in 〈〈f〉〉Q, namely, for every y ∈ 〈〈f〉〉Q there is some yj such that

|y − yj | ≤ ε. We then define the measurable sets

Aj := {x ∈ Rd : |g(x)− yj | ≤ ε and |g(x)− yi| > ε ∀i = 1, . . . , j − 1}

and let

gε :=

J∑
j=1

yj1Aj .
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Then ‖g − gε‖∞ ≤ ε and gε is a simple function with gε(x) ∈ 〈〈f〉〉Q for all
x ∈ Rd.

III: Conclusion. By the previous parts, for a general g as in the assump-
tions, we can find simple functions gj → g in L∞(Rd) and kernels kj(x, y) ∈
BL∞(Rd×Q) such that

(2.3.11) gj(x) =

 
Q

kj(x, y)f(y) dy.

By Proposition 2.3.8, there is a subsequence J and a function k ∈ BL∞(Rd×Q)

such that
´
Rd×Q kjh →

´
Rd×Q kh for all h ∈ L1(Rd × Q). Integrating (2.3.11)

against any ψ ∈ L1(Rd), we thus find that
ˆ
Rd
g(x)ψ(x) dx = lim

J3j→∞

ˆ
Rd
gj(x)ψ(x) dx

= lim
J3j→∞

ˆ
Rd

 
Q

kj(x, y)f(y) dyψ(x) dx

=

ˆ
Rd

 
Q

k(x, y)f(y) dyψ(x) dx =:

ˆ
Rd
G(x)ψ(x) dx.

When such an inequality holds for all ψ ∈ L1(Rd), it follows that g = G almost
everywhere. (For instance, given x ∈ Rd, consider ψ := |B(x, r)|−11B(x,r) and
let r → 0; then the left side converges to g(x) and the right side toG(x) at almost
every x.) But, looking at the formula of G, the identity g = G is precisely what
the lemma claimed.

In order to prove Theorem 2.3.2, we need a workable criterion to check the
membership of a vector in 〈〈f〉〉Q. A key tool in this respect is provided by the
following fundamental result about the shape of convex sets, which we prove in
the following section:

2.3.12 Theorem (John ellipsoid theorem [Joh48]). Let K ⊂ Rn be a compact
convex symmetric set. Then there is a closed ellipsoid E centred at the origin
such that E ⊂ K ⊂

√
nE.

Such an ellipsoid is referred to as the John ellipsoid of K.
By definition, a closed ellipsoid E centred at the origin is the image of the

unit ball B = {x ∈ Rn : |x| ≤ 1} under the action of a matrix A ∈ L (Rn), i.e.
E = AB. (An ellipsoid centred at x0 ∈ Rn is then a set of the form x0 + AB.)
To express this in another form, recall from Linear Algebra that every matrix
has a singular value decomposition

A =

n∑
i=1

σiei ⊗ fi, ei ⊗ fi(x) := ei(fi|x),

where (ei)
n
i=1 and (fi)

n
i=1 are two orthonormal bases of Rn, and σ1 ≥ σ2 ≥ . . . ≥

σn ≥ 0 are the singular values of A. The singular value decomposition leads to
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the polar decomposition

A =
( n∑
i=1

σiei ⊗ ei
)( n∑

j=1

ej ⊗ fj
)

=: RU,

where the first identity follows easily from the result of Exercise 2.3.20 below.
Since the matrix U maps B bijectively into itself, we find that

AB = RB =
{ n∑
i=1

σiei(ei|x) : x ∈ B
}

=
{ n∑
i=1

σixiei :

n∑
i=1

|xi|2 ≤ 1
}

=
{ n∑
i=1

yiei :

n∑
i=1

( |yi|
σi

)2

≤ 1
}
.

With the change of variable yi = σixi, the last formula is clearly valid in the
non-degenerate case when all σi > 0; in the degenerate case, it is still valid
provided that we interpret

|yi|
0

:=

{
0, if |yi| = 0,

∞, if |yi| > 0,

so that
n∑
i=1

( |yi|
σi

)2

≤ 1 ⇔
∑
i:σi>0

( |yi|
σi

)2

≤ 1 and yi = 0 if σi = 0.

The orthonormal vectors (ei)
n
i=1 are called the principal axes of the ellipsoid

E = AB = RB. They lead to a useful sufficient condition for membership in
〈〈f〉〉Q as follows:

2.3.13 Lemma. Let (ei)
n
i=1 be the principal axes of the John ellipsoid of 〈〈f〉〉Q.

If |(ei|x)| ≤ 1
n

ffl
Q
|(ei|f)| for every i = 1, . . . , n, then x ∈ 〈〈f〉〉Q.

Proof. For some numbers σ1 ≥ . . . ≥ σn ≥ 0, the John ellipsoid E consists of
all y ∈ Rn such that

n∑
i=1

( |(ei|y)|
σi

)2

≤ 1.

Since
y :=

 
Q

sgn((ej |f))f ∈ 〈〈f〉〉Q ⊂
√
nE,

and hence 1√
n
y ∈ E

1 ≥
n∑
i=1

( |(ei|y)|√
nσi

)2

≥
( |(ej |y)|√

nσj

)2

=
( 1√

nσj

 
Q

sgn((ej |f))(ej |f)
)2

=
( 1√

nσj

 
Q

|(ej |f)|
)2

.
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Thus  
Q

|(ej |f)| ≤
√
nσj

for each j = 1, . . . , n.
Now, if x ∈ Rn satisfies |(ei|x)| ≤ 1

n

ffl
Q
|(ei|f)| for each i, then

n∑
i=1

( |(ei|x)|
σi

)2

≤
n∑
i=1

( 1

nσi

 
Q

|(ei|f)|
)2

≤
n∑
i=1

( 1√
n

)2

=

n∑
i=1

1

n
= 1,

and hence x ∈ E ⊂ 〈〈f〉〉Q.

2.3.14 Lemma. Under the assumptions of Theorem 2.3.2, for any cube Q0 and
f ∈ L1(3Q0;Rn) and ε ∈ (0, 1), there are disjoint subcubes Qj ∈ D(Q0) such
that ∑

j

|Qj | ≤ ε|Q0|.

and
1Q0T (13Q0f)−

∑
j

1QjT (13Qjf) ∈ 1Q0

cd,ncT
ε
〈〈f〉〉3Q0 .

More precisely, there is a function kQ0
∈ BL∞(Q0×3Q0) such that

1Q0
(x)T (13Q0

f)(x)−
∑
j

1Qj (x)T (13Qjf)(x)

= 1Q0(x)
cd,ncT
ε

 
3Q0

kQ0(x, y)f(y) dy.

(2.3.15)

Proof. We apply the scalar-valued version of this result, Lemma 1.4.4, to each of
the n functions (ei|f), where (ei)

n
i=1 are the principal axes of the John ellipsoid

of 〈〈f〉〉Q. Thus, for each i = 1, . . . , n, we find disjoint cubes Qij ∈ D(Q0) such
that ∑

j

|Qij | ≤ ε|Q0|

and, if Qj ∈ D(Q0) are (possibly bigger) disjoint cubes such that
⋃
j Qj ⊃⋃

j Q
i
j , then

(2.3.16)
∣∣∣1Q0T (13Q0(ei|f))−

∑
j

1QjT (13Qj (ei|f))
∣∣∣ ≤ 1Q0

cdcT
ε

 
3Q0

|(ei|f)|

Let {Qj}j be the maximal cubes among all {Qij}i,j . Then, on the one hand,∑
j

|Q′j | ≤
∑
i,j

|Qij | ≤ nε|Q0|.

On the other hand, we clearly have
⋃
j Qj ⊃

⋃
j Q

i
j for each i, and hence (2.3.16)

holds for this particular choice of the cubes Qj .
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Let us abbreviate

F := 1Q0
T (13Q0

f)−
∑
j

1QjT (13Qjf).

Then the left side of (2.3.16) is simply |(ei|F )|, and we see that (2.3.16) holding
for all i = 1, . . . , n is exactly the sufficient condition, provided by Lemma 2.3.13,
for

F ∈ 1Q0n
cdcT
ε
〈〈f〉〉3Q0 .

Replacing ε by ε/n we obtain the first claim of the lemma with cd,n = cdn
2.

The second claim is then a direct consequence of this via Lemma 2.3.9.

Proof of the Convex Body Domination Theorem 2.3.2. (This is almost the same
as the proof of Lerner’s Theorem 1.4.2, replacing the use of Lemma 1.4.4 by
Lemma 2.3.14.) Iterating the conclusion of Lemma 2.3.14, we obtain disjoint
families {Qkj }j of dyadic subcubes of Q0 such that

⋃
j Q

k+1
j ⊂

⋃
iQ

k
i ,∑

j:Qk+1
j ⊂Qki

|Qk+1
j | ≤ ε|Qki |

and, with some kQkj ∈ BL∞(Qkj×3Qkj ),

1Q0
(x)T (13Q0

f)(x) =

K−1∑
k=0

∑
j

1Qkj (x)
cd,ncT
ε

 
3Qkj

kQkj (x, y)f(y) dy

+
∑
j

1QKj (x)T (13QKj
f)(x).

As K →∞, we conclude that (a.e.)

(2.3.17) 1Q0(x)T (13Q0f)(x) =

∞∑
k=0

∑
j

1Qkj (x)
cd,ncT
ε

 
3Qkj

kQkj (x, y)f(y) dy,

where {Qkj }k,j is (1−ε)-sparse, since the sets E(Qkj ) := Qkj \
⋃
iQ

k+1
i are disjoint

and |E(Qkj )| ≥ (1− ε)|Qkj |.
As in the proof of Theorem 1.4.2, we pick a partition S0 of Rd by dyadic

cubes Q0 such that 3Q0 ⊃ supp f . Then

Tf(x) =
∑

Q0∈S0

1Q0
(x)Tf(x) =

∑
Q0∈S0

1Q0
(x)T (13Q0

f)(x),

and we apply (2.3.17) to each Q0 ∈ S0. The resulting collection S that consists
of all Qkj related to each Q0 ∈ S0 is still (1− ε)-sparse.
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2.3.18 Corollary (to Theorem 2.3.2). Under the assumptions of Theorem
2.3.2, we can also write

Tf(x) =
cd,ncT
ε

3d∑
j=1

∑
S∈Sj

1S(x)

 
S

kS(x, y)f(y) dy

∈ cd,ncT
ε

3d∑
j=1

∑
S∈Sj

1S(x)〈〈f〉〉S

for 3−d(1 − ε)-sparse collections Sj ⊂ Dj of dyadic-type collections Dj and
functions kS ∈ BL∞(S×S).

Proof. Recall from Proposition 1.5.1 that {3Q : Q ∈ D} can be divided into
3d dyadic-type subcollections Dj . Thus, defining k3S(x, y) := 1S(x)kS(x, y) ∈
BL∞(3S×3S) (i.e., just extending kS by zero for x ∈ 3S \ S),

∑
S∈S

1S(x)

 
3S

kS(x, y)f(y) dy =
∑
S∈S

13S(x)

 
3S

k3S(x, y)f(y) dy

=

3d∑
j=1

∑
S∈S

3S∈Dj

13S(x)

 
3S

k3S(x, y)f(y) dy

=

3d∑
j=1

∑
S′∈Sj

1S′(x)

 
S′
kS′(x, y)f(y) dy,

where each Sj := {S′ = 3S ∈ Dj : S ∈ S } is 3−d(1 − ε)-sparse, since the
sets E(3S) := E(S) are still disjoint and |E(3S)| = |E(S)| ≥ (1 − ε)|S| =
(1− ε)3−d|3S|.

2.3.19 Exercise. Show that definition (2.3.1) is independent of the chosen
orthonormal basis (ei)

n
i=1 on the right, i.e., with another orthonormal basis

(e′i)
n
i=1, we get the same result. Check also that

(v|Tf(x)) = T (v|f)(x)

for any vector v ∈ Rn

2.3.20 Exercise. For any vectors e, f, g, h ∈ Rn, prove the operator identity

(e⊗ f)(g ⊗ h) = (f |g)e⊗ h.

(Warning: We defined e ⊗ f(x) := e(f |x), but some other texts may also use
the ‘wrapped’ definition “e⊗ f(x) := f(e|x)”.)
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2.4 The John ellipsoid
We now turn to the proof of the key geometric tool behind the Convex Body
Domination Theorem 2.3.2, which we restate for convenience:

2.4.1 Theorem (John ellipsoid theorem [Joh48]). Let K ⊂ Rn be a compact
convex symmetric set. Then there is a closed ellipsoid E centred at the origin
such that E ⊂ K ⊂

√
nE.

In fact, we will show that, in the non-degenerate case, the ellipsoid of maxi-
mal measure contained in K satisfies the requirements of the theorem. We begin
with the existence of such a maximiser:

2.4.2 Lemma. Let K ⊂ Rn be a compact non-empty set. Among all closed
origin-centred ellipsoids E ⊂ K, there is one of maximal measure.

Note that it may happen that K only contains degenerate ellipsoids of mea-
sure zero. In this case any of them has ‘maximal measure’, and the conclusion
is trivially true.

Proof. The ellipsoids in question are given by E = AB, where B is the closed
unit ball and the matrix A ∈ L (Rn) h Rn×n is subject to the condition AB ⊂
K. We claim that the set of such A is a compact subset of L (Rn). Boundedness
follows from the boundedness of K as follows: Ax ∈ K ⊂ B(0, R) for all x ∈ B
means that

‖A‖op = sup{|Ax| : x ∈ B} ≤ R.

To check closedness, suppose that AnB ⊂ K and ‖An − A‖op → 0 for some
matrix A. Then for all x ∈ B, we have |Anx − Ax| ≤ ‖An − A‖op → 0, and
thus K 3 Anx→ Ax. Since K is closed, we find that Ax ∈ K. Since this holds
for allăx ∈ B, we have AB ⊂ K. Thus the set of relevant A is a closed and
bounded subset of the finite-dimensional space L (Rn), and therefore compact.
On the other hand, the measure of the ellipsoid E = AB is |E| = |detA| is a
continuous function of A (as a polynomial in the coefficients of A with respect
to a fixed basis) and therefore reaches its maximum on a compact set.

The technical core of the proof is contained in the following lemma:

2.4.3 Lemma. Let B ⊂ Rn be the closed unit ball and p = (p1, 0) with p1 > 1.
Then the ellipsoid E consisting of all (x1, x⊥) ∈ R× Rn−1 such that( |x1|

a

)2

+
( |x⊥|

b

)2

≤ 1

is contained in the convex hull K of B ∪ {p,−p} for any b ∈ (0, 1) and a > 1
given by

a2 = p2
1 − (p2

1 − 1)b2 = p2
1(1− b2) + b2

Taking this for granted for a moment (we return to it soon), we prove the
following special case of Theorem 2.4.1
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2.4.4 Lemma. Let K ⊂ Rn be a convex symmetric body, and suppose that
the closed unit ball B has maximal volume among all origin-centred ellipsoids
E ⊂ K. Then K ⊂

√
nB.

Proof. Consider a point p ∈ K. SinceK is symmetric, also −p ∈ K, and sinceK
is convex and B ⊂ K, we know that the convex hull of B ∪{−p, p} is contained
in K. By Lemma 2.4.3, this convex hull, and hence K itself, contains for every
t ∈ (0, 1) the ellipsoid Et of all (x1, x⊥) ∈ R× Rn−1 such that

|x1|2

|p|2 − (|p|2 − 1)t
+
|x⊥|2

t
≤ 1.

By scaling properties of the Lebesgue measure,

|Et|2 = |B|2(|p|2 − (|p|2 − 1)t)tn−1 = |B|2(|p|2tn−1 − (|p|2 − 1)tn).

Since B = E1 ⊂ K has maximal volume among all ellipsoids E ⊂ K, we must
have |Et| ≤ |E1| for t ∈ (0, 1), so in particular

0 ≤ lim
t→1−

|E1|2 − |Et|2

1− t
=

d

dt
|Et|2

∣∣∣
t=1

= |B|2(|p|2(n− 1)tn−2 − (|p|2 − 1)ntn−1)
∣∣∣
t=1

= |B|2(|p|2(n− 1)− (|p|2 − 1)n) = |B|2(n− |p|2),

hence |p| ≤
√
n, and thus p ∈

√
nB.

From the special case, the general theorem follows quite easily:

Proof of the John Ellipsoid Theorem 2.4.1. Case I: K has non-empty interior.
Let E ⊂ K be an origin-centred ellipsoid of maximal measure, whose existence is
guaranteed by Lemma 2.4.2. Then E = AB for some non-degenerate matrix A,
and we find that B ⊂ A−1K is an origin-centred ellipsoid of maximal measure
in the convex symmetric set A−1K. By Lemma 2.4.4, we have A−1K ⊂

√
nB,

and thus K ⊂
√
nAB =

√
nE.

Case II: K has empty interior. Let v1, . . . , vk ∈ K be a maximal collection
of linearly independent vectors. Then K ⊂ span(v1, . . . , vk) =: V h Rk, and K
has a nonempty interior viewed as a subset of V , since it contains (by convexity
and symmetry) all vectors of the form

∑k
i=1 λivi with

∑k
i=1 |vi| ≤ 1. By Case

I, we find an ellipsoid E ⊂ K ⊂
√
kE ⊂

√
nE; this E is a proper ellipsoid in

the k-dimensional subspace V , and hence a degenerate ellipsoid in Rn.

To complete the proof, we still need to provide:

Proof of Lemma 2.4.3. Let us start by finding the tangent lines from p = (p1, 0⊥)
to B. Let z = (z1, z⊥) ∈ S = ∂B be a point where such a tangent touches B.
Thus z ⊥ (z − p), i.e., |z1|2 + |z⊥|2 = |z|2 = 1 = z · p = z1p1. Thus z1 = 1/p1

and |z⊥| =
√

1− 1/p2
1 = p−1

1

√
p2

1 − 1.
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Since z, p ∈ K, the line-segments connecting p and any such z are contained
in K. These lines consist of points of the form (x1, x⊥) with p−1

1 ≤ x1 ≤ p1

and |x⊥| = (p1− x1)/
√
p2

1 − 1. Since also the points (x1, 0⊥) (being on the line
from the origin to p) lie in K, we conclude that any point of the form (x1, x⊥)
with p−1

1 ≤ x1 ≤ p1 and |x⊥| ≤ (p1 − x1)/
√
p2

1 − 1 lies in K.
Let now x = (x1, x⊥) be a point of the ellipsoid, and assume by symmetry

that x1 ≥ 0. (Else, we would do similar considerations with −p in place of p;
note that otherwise the point −p is nowhere used in this proof.)

Case 0 ≤ x1 ≤ p−1
1 : We want to check that in this case x ∈ B. We have

|x⊥|2 ≤ b2(1− x2
1/a

2),

and this is ≤ 1 − x2
1 provided that (1 − b2/a2)x2

1 ≤ 1 − b2. For b < 1 < a, the
left side is largest at x1 = p−1

1 , leading to the constraint

(2.4.5) a2 ≤ b2

1− p2
1(1− b2)

if p2
1(1− b2) < 1, while any a is good in the complementary case.
Case p−1

1 ≤ x1 ≤ p1: We want to check that |x⊥| ≤ (p1 − x1)/
√
p2

1 − 1,
which we already checked to imply that x ∈ K for this range of x1. Letting |x⊥|
be as large as it can be within the ellipsoid, we are led to the constraint

b2(1− x2
1/a

2) ≤ (p1 − x1)2

p2
1 − 1

,

which can be written as

P (x1) := [(p2
1 − 1)b2/a2 + 1]x2

1 − 2p1x1 + [p2
1 − (p2

1 − 1)b2] ≥ 0.

For a polynomial P (x1) = Ax2
1 +2Bx1 +C with A > 0, the condition P (x1) ≥ 0

is equivalent to AC −B2 ≥ 0, which in this case reads as

0 ≤ [(p2
1 − 1)b2/a2 + 1][p2

1 − (p2
1 − 1)b2]− p2

1

= (p2
1 − 1)p2

1b
2/a2 − (p2

1 − 1)2b4/a2 − (p2
1 − 1)b2

= (p2
1 − 1)b2/a2 · [p2

1 − (p2
1 − 1)b2 − a2],

which is satisfies provided that

(2.4.6) a2 ≤ p2
1 − (p2

1 − 1)b2 = p2
1(1− b2) + b2.

We check that the second constraint (2.4.6) is always stronger than the first
constraint (2.4.5). Namely,

[p2
1(1− b2) + b2][1− p2

1(1− b2)]− b2 = p2
1(1− b2)− p4

1(1− b2)2 − b2p2
1(1− b2)

= p2
1(1− b2)[1− p2

1(1− b2)− b2]

= p2
1(1− b2)(1− b2)(1− p2

1) < 0.
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2.4.7 Remark. The John ellipsoid theorem is originally from [Joh48]. Our pre-
sentation using elementary geometry has been adapted from [How97]. There
is also a version of John’s theorem for compact convex sets that are not nec-
essarily symmetric. In this case, the factor

√
n must be replaced by n. The

ellipsoid theorem can be restated in terms of norms on an n-dimensional vec-
tor space as follows: For any norm ‖ ‖X , there is a Hilbertian norm ‖ ‖ (i.e.,
one induced by an inner product) such that ‖x‖ ≤ ‖x‖X ≤

√
n‖x‖ for all x.

(This restatement is based on the fact that there is a bijective correspondence
between norms and their closed unit balls {x : ‖x‖X ≤ 1}, and closed unit balls
are precisely the compact, convex and symmetric sets; an ellipsoidal unit ball
corresponds to a Hilbertian norm.) For a more functional analytic approach
from this perspective, see e.g. [Pis86].

2.4.8 Remark. The constant
√
n in the John ellipsoid theorem is optimal. In

fact, if Q is a cube of sidelength 2 centred at the origin, and E is a closed
ellipsoid centred at the origin such that E ⊂ Q ⊂ tE, then t ≥

√
n, where

the equality is reached if and only if E is the unit ball B. While it might be
intuitively “clear” that B is the “best” ellipsoid inside Q, this is perhaps not
entirely trivial to justify rigorously, and hints to do this are provided in the
following exercises:

2.4.9 Exercise. Let (ei)
n
i=1 and (fi)

n
i=1 be two orthonormal bases of Rn. Con-

sider the cube

Q :=
{
x =

n∑
i=1

xiei : max
i
|xi| ≤ 1

}
and the ellipsoid

E :=
{
y =

n∑
i=1

yifi :

n∑
i=1

( yi
σi

)2

≤ 1
}
.

Prove that E ⊂ Q if and only if

max
1≤i≤n

n∑
j=1

(ei|fj)2σ2
j ≤ 1,

and deduce that if E ⊂ Q, then

n∑
j=1

σ2
j ≤ n.

2.4.10 Exercise. Let E and Q be as in the previous exercise. Prove that if
Q ⊂ E, then

n∑
i=1

1

σ2
i

≤ 1.
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Hint: Write the condition that x ∈ E for each of the 2n corners x of Q, and take
the average of the obtained bound over all corners. You may find it helpful to
observe (and verify) that

E
( n∑
j=1

εjtj

)2

=

n∑
j=1

t2j ,

where εj are independent random variables taking the values ±1 with equal
probability, and E is the expectation (the average) over all possible values of
these random variables.

2.4.11 Exercise. Let E and Q be as above, and t ≥ 1. Prove that if E ⊂ Q ⊂
tE, then t ≥

√
n, and the equality holds if and only if E = B is the unit ball.

Hint: Use the conclusions of the previous exercises, the latter suitably scaled for
tE in place of E. Observe that E = B is equivalent to σi ≡ 1 for all i = 1, . . . , n.

2.4.12 Exercise. Let E and Q be as above. Prove that if E ⊂ Q, then
|E| ≤ |B|, and the equality holds if and only if E = B is the unit ball. Hint:
Express |E| in terms of the number σ1, . . . , σn, and use the inequality between
geometric and arithmetic means.

2.5 Calderón–Zygmund operators on L2(W )

Our goal is now to apply the Convex Body Domination Theorem 2.3.2 to esti-
mate the norm of Calderón–Zygmund operators on the matrix-weighted L2(W )
space. That is, we want to prove an inequality of the type

‖Tf‖L2(W ) ≤ K‖f‖L2(W ),

for W ∈ A2, with an estimate on K in terms of [W ]A2
.

Let us observe some reformulations. Since ‖f‖L2(W ) = ‖W 1/2f‖L2 , substi-
tuting h = W 1/2f and solving f = W−1/2h = Σ1/2h, where Σ := W−1 (note
that W ∈ A2 is almost everywhere invertible), we find that it is equivalent to
prove that

‖W 1/2T (Σ1/2h)‖L2 ≤ K‖h‖L2 ,

which is the boundedness of the operator h 7→W 1/2T (Σ1/2h) on the unweighted
space L2 = L2(Rd;Rn).

We also recall that W ∈ A2 implies Σ ∈ L1
loc, and hence Σ1/2 ∈ L2

loc. If
h ∈ L2

c (compactly supported L2 functions), then Σ1/2h ∈ L1
c is a function

to which the Convex Body Domination Theorem 2.3.2 applies, and we deduce
(more precisely from Corollary 2.3.18) that

T (Σ1/2h)(x) = cd,ncT

3d∑
j=1

∑
S∈Sj

1S(x)

 
S

kS(x, y)Σ(y)1/2h(y) dy
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for some kS ∈ BL∞(S × S). Hence

W (x)1/2T (Σ1/2h)(x)

= cd,ncT

3d∑
j=1

∑
S∈Sj

1S(x)

 
S

W (x)1/2kS(x, y)Σ(y)1/2h(y) dy,

and thus

|W (x)1/2T (Σ1/2h)(x)|

≤ cd,ncT
3d∑
j=1

∑
S∈Sj

1S(x)

 
S

|W (x)1/2kS(x, y)Σ(y)1/2h(y)|dy

≤ cd,ncT
3d∑
j=1

∑
S∈Sj

1S(x)

 
S

‖W (x)1/2Σ(y)1/2‖op|h(y)|dy,

(2.5.1)

where in the last step we used the fact that the kS(x, y) is a scalar of modulus
at most one, so it commutes with matrix multiplication and

|W (x)1/2kS(x, y)Σ(y)1/2h(y)| = |kS(x, y)W (x)1/2Σ(y)1/2h(y)|
≤ ‖W (x)1/2Σ(y)1/2‖op|h(y)|.

Notice that the vector-valued function h ∈ L2(Rd;Rn) and the scalar-valued
function |h| ∈ L2(Rd) have the same L2 norm. Hence, from the pointwise
inequality (2.5.1) we deduce:

2.5.2 Lemma. For any Calderón–Zygmund operator T , or more generally any
operator that satisfies the assumptions of Lerner’s Theorem 1.4.2, and any
matrix-weights W and Σ, we have

‖W 1/2TΣ1/2‖L2(Rd;Rn)→L2(Rd;Rn) ≤ cd,ncT sup
S
‖TW,ΣS ‖L2(Rd)→L2(Rd),

where the supremum is over all η-sparse collections S of dyadic cubes for a
fixed number η = ηd ∈ (0, 1), and

TW,ΣS φ(x) :=
∑
S∈S

1S(x)

 
S

‖W (x)1/2Σ(y)1/2‖opφ(y) dy.

Note that TW,ΣS is a scalar-valued operator, but its kernel is defined in terms
of norms of the matrix-valued functions W and Σ. We now turn to the analysis
of these operators.

We use the standard duality

‖TW,ΣS φ‖L2 = sup
{ ˆ

ψ(x)TW,ΣS φ(x) dx : ‖ψ‖L2 ≤ 1
}
,
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whereˆ
ψ(x)TW,ΣS φ(x) dx =

∑
S∈S

1

|S|

¨
S×S

ψ(x)‖W (x)1/2Σ(y)1/2‖opφ(y) dxdy,

and it suffices to consider the case φ, ψ ≥ 0, since replacing both functions by
their absolute values only increases the above expression.

We expand the matrix product by the identity

W (x)1/2Σ(y)1/2 = W (x)1/2〈W 〉−1/2
S 〈W 〉1/2S 〈Σ〉

1/2
S 〈Σ〉

−1/2
S Σ(y)1/2,

and hence

‖W (x)1/2Σ(y)1/2‖op
≤ ‖W (x)1/2〈W 〉−1/2

S ‖op · ‖〈W 〉1/2S 〈Σ〉
1/2
S ‖op · ‖〈Σ〉

−1/2
S Σ(y)1/2‖op

≤ ‖W (x)1/2〈W 〉−1/2
S ‖op · [W ]

1/2
A2
· ‖〈Σ〉−1/2

S Σ(y)1/2‖op.

This leads toˆ
ψ(x)TW,ΣS φ(x) dx

≤ [W ]
1/2
A2

∑
S∈S

1

|S|

ˆ
S

‖W (x)1/2〈W 〉−1/2
S ‖opψ(x) dx

×
ˆ
S

‖〈Σ〉−1/2
S Σ(y)1/2‖opφ(y) dy

≤ [W ]
1/2
A2

( ∑
S∈S

1

|S|

[ ˆ
S

‖W (x)1/2〈W 〉−1/2
S ‖opψ(x) dx

]2)1/2

×
( ∑
S∈S

1

|S|

[ ˆ
S

‖〈Σ〉−1/2
S Σ(y)1/2‖opφ(y) dy

]2)1/2

(2.5.3)

by Cauchy–Schwarz in the last step.
Noting that self-adjoint matrices A,B satisfy

‖AB‖op = ‖(AB)∗‖op = ‖B∗A∗‖op = ‖BA‖op,

the last two quadratic sums have exactly the same form. In the next section we
prove the following bound:

2.5.4 Lemma. For anyW ∈ A2 and any γ-sparse collection S of dyadic cubes,( ∑
S∈S

1

|S|

[ ˆ
S

‖W (x)1/2〈W 〉−1/2
S ‖opψ(x) dx

]2)1/2

≤ cd,n,γ [W ]
1/2
A2
‖ψ‖L2(Rd).

Taking this for granted for the moment, and applying this to the two quadratic
sums on the right of (2.5.3), both as written and with Σ and φ in place of W
and ψ, we deduce thatˆ

ψ(x)TW,ΣS φ(x) dx ≤ cd,n[W ]
1/2
A2
· [W ]

1/2
A2
· [Σ]

1/2
A2

= cd,n[W ]
3/2
A2
,
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using [Σ]A2 = [W ]A2 in the last step. (We also fix the sparseness parameter γ.)
In view of Lemma 2.5.2 and the reductions in the beginning of the section,

this implies:

2.5.5 Theorem (Nazarov, Petermichl, Treil, Volberg 2017 [NPTV17]). For any
Calderón–Zygmund operator T , or more generally any operator that satisfies the
assumptions of Lerner’s Theorem 1.4.2, we have

‖T‖L2(W )→L2(W ) ≤ cd,ncT [W ]
3/2
A2

for any matrix-weight W ∈ A2.

2.5.6 Remark. This is the best available bound at the time of writing, but it is
not known whether it is optimal. Rather, it is conjectured that a linear bound
cd,ncT [W ]A2

, as in the scalar-valued case, should remain valid even for matrix
weights W .

A qualitative form of the theorem, that T : L2(W )→ L2(W ) is bounded for
W ∈ A2, is essentially contained in the paper of Treil and Volberg [TV97], who
explicitly considered the Hilbert transform, but pointed out the applicability of
the argument to more general Calderón–Zygmund operators. A different proof
giving the slightly weaker quantitative bound than Theorem 2.5.5,

‖T‖L2(W )→L2(W ) ≤ cd,ncT [W ]
3/2
A2

(1 + log[W ]A2
),

is due to Bickel, Petermichl and Wick 2014 [BPW16].
The following exercises introduce some tools that will be needed in the proof

of Lemma 2.5.4:

2.5.7 Exercise. The trace of a matrix A is defined as

trA :=

n∑
i=1

(Aei|ei),

where (ei)
n
i=1 is any orthonormal basis. Show that this is well-defined, i.e., the

result is independent of the chosen orthonormal basis. If G is a matrix-valued
function, check that

´
S

trG(x) dx = tr
´
S
G(x) dx.

2.5.8 Exercise. Let A be a positive self-adjoint matrix. Show that ‖A‖op ≤
trA ≤ n‖A‖op. Hint: Write ‖A‖op and trA in terms of the eigenvalues of A.

2.5.9 Exercise. Prove that 
S

‖W (x)1/2〈W 〉−1/2
S ‖2op dx ≤ cn.

Hint: Recall that ‖A‖2op = ‖A∗A‖op and use the previous exercises.

2.5.10 Exercise. Suppose that S is disjoint (a stronger condition than sparse!)
and W is a general matrix weight (not necessarily in A2). Show that in this
case Lemma 2.5.4 holds with just a dimensional constant in place of cd,n[W ]

1/2
A2

.
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2.5.11 Exercise. Let W ∈ A2 be a L (Rn)-valued matrix weight, and x ∈ Rn
a non-zero vector. Prove that (Wx|x) ∈ A2 is a scalar-valued A2 weight and

[(Wx|x)]A2 ≤ [W ]A2 .

Hint: Consider functions of the form f(t) = φ(t)x in Proposition 2.2.1, where x
is the given vector and φ is a scalar-valued function.

2.5.12 Exercise. Let w ∈ A2 and σ = w−1 be scalar-valued weights. Prove the
linear bound ‖Tw,σS ‖L2→L2 ≤ cn[w]A2

in this case. Hint: With suitable changes
of variables, this can be reduced to Theorem 1.2.2. Why does your argument
not work for matrix weights? (Or, if it does, you have proved the matrix A2

conjecture!)

2.6 Sparse bounds with matrix A∞ weights
In order to complete the proof of Theorem 2.5.5, we still need to prove Lemma
2.5.4. The proof will exploit the following notion of matrix A∞ weights.

2.6.1 Definition. For a matrix weight W : Rd → L (Rn), we set

[W ]DA∞ := sup
e∈Rn\{0}

[(We|e)]DA∞ ,

and we say that W ∈ AD
∞ if this number is finite.

2.6.2 Lemma. We have AD
2 ⊂ AD

∞ and [W ]DA∞ ≤ e[W ]DA∞ .

Proof. This is immediate by

[(We|e)]DA∞ ≤ e[(We|e)]DA2
≤ e[W ]DA2

,

where the first step is the embedding A2 ⊂ A∞ for scalar weights from Propo-
sition 1.9.2, and the second step is Exercise 2.5.11. (The dyadic and the non-
dyadic versions are proved in exactly the same way.)

With Lemma 2.6.2 at hand, Lemma 2.5.4 will be a consequence of the fol-
lowing slightly sharper statement:

2.6.3 Proposition. For any γ-sparse collection S ⊂ D and any W ∈ AD
∞, we

have( ∑
S∈S

|S|
[  

S

‖W (x)1/2〈W 〉−1/2
S ‖opψ(x) dx

]2)1/2

≤ cd,n,γ [W ]
1/2

AD
∞
‖ψ‖L2(Rd).

Note that we have also rewritten the left side of the estimate in a different
but obviously equivalent way compared to Lemma 2.5.4. Using Proposition
2.6.3 instead of Lemma 2.5.4 in the proof of Theorem 2.5.5, we also deduce the
following sharper version:
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2.6.4 Corollary (Nazarov, Petermichl, Treil, Volberg 2017 [NPTV17]). For
any Calderón–Zygmund operator T , or more generally any operator that satisfies
the assumptions of Lerner’s Theorem 1.4.2, we have

‖T‖L2(W )→L2(W ) ≤ cd,ncT [W ]
1/2
A2

[W ]
1/2
A∞

[W−1]
1/2
A∞

for any matrix-weight W ∈ A2, where [W ]A∞ := supD [W ]DA∞ .

Proof of Proposition 2.6.3. Let us first consider the function

‖W (x)1/2〈W 〉−1/2
S ‖2op = ‖〈W 〉−1/2

S W (x)〈W 〉−1/2
S ‖op

≤ tr(〈W 〉−1/2
S W (x)〈W 〉−1/2

S ) by Exercise 2.5.8

=

n∑
i=1

(〈W 〉−1/2
S W (x)〈W 〉−1/2

S ei|ei)

=

n∑
i=1

(W (x)〈W 〉−1/2
S ei|〈W 〉−1/2

S ei) =:

n∑
i=1

wS,i(x),

where (ei)
n
i=1 is any fixed orthonormal basis of Rn. By definition of matrix A∞,

we have [wS,i]
D
A∞
≤ [W ]DA∞ .

By the subadditivity of the maximal function and the definition of scalar
A∞, we have

ˆ
Q

MQ

( n∑
i=1

wS,i

)
≤

n∑
i=1

ˆ
Q

MQ(wS,i)

≤
n∑
i=1

[wS,i]
D
A∞

ˆ
Q

wS,i ≤ [W ]DA∞

ˆ
Q

n∑
i=1

wS,i,

and hence

[wS ]DA∞ :=
[ n∑
i=1

wS,i

]
AD
∞

≤ [W ]DA∞ .

By Theorem 1.9.4, wS satisfies the reverse Hölder inequality

(2.6.5)
( 

S

w1+δ
S

)1/(1+δ)

≤ 2

 
S

wS , δ :=
εd

[W ]DA∞
.

Using Hölder’s inequality with exponents r = 2(1 + δ) > 2 and r′ < 2, we can
now estimate( 

S

‖W (x)1/2〈W 〉−1/2
S ‖opψ(x) dx

)2

≤
(  

S

w
1/2
S ψ

)2

≤
(  

S

w
r/2
S

)2/r( 
S

ψr
′
)2/r′

,

where, by (2.6.5)( 
S

w
r/2
S

)2/r

=
( 

S

w1+δ
S

)1/(1+δ)

≤ 2

 
S

wS ,
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and moreover, substituting the definition of wS and using the linearity of the
trace,

 
S

wS =

 
S

tr(〈W 〉−1/2
S W (x)〈W 〉−1/2

S ) dx

= tr
( 

S

〈W 〉−1/2
S W (x)〈W 〉−1/2

S dx
)

= tr
(
〈W 〉−1/2

S

 
S

W (x) dx〈W 〉−1/2
S

)
= tr

(
〈W 〉−1/2

S 〈W 〉S〈W 〉−1/2
S

)
= tr(I) = n,

where I is the n× n identity matrix.
Combining the previous estimates, we have checked that( 
S

‖W (x)1/2〈W 〉−1/2
S ‖opψ(x) dx

)2

≤ 2n
(  

S

ψr
′
)2/r′

≤ 2n inf
S

(MDψ
r′)2/r′ ,

and hence, using also the sparseness,( ∑
S∈S

|S|
[  

S

‖W (x)1/2〈W 〉−1/2
S ‖opψ(x) dx

]2)1/2

≤
( ∑
S∈S

|E(S)|
γ

2n inf
S

(MDψ
r′)2/r′

)1/2

≤ cn,γ
( ˆ

Rd
(MDψ

r′)2/r′
)1/2

.

Since r′ < 2, the maximal operator is bounded on L2/r′ with norm (2/r′)′, so
that ( ˆ

Rd
(MDψ

r′)2/r′
)1/2

≤
(( 2

r′
)′)1/r′(ˆ

Rd
(ψr

′
)2/r′

)1/2

,

and the last factor is the desired ‖ψ‖L2 .
It only remains to see the dependence of the factor ((2/r′)′)1/r′ on [W ]DA∞ .

Recall that r = 2(1 + δ), hence r′ = r/(r − 1) = 2(1 + δ)/(1 + 2δ) and 2/r′ =
(1 + 2δ)/(1 + δ) = 1 + δ/(1 + δ) ≤ 1 + δ. Then 1/r′ ≤ (1 + δ)/2 and (2/r′)′ =
1 + (1 + δ)/δ = 2 + 1/δ ≤ 3/δ. Thus(( 2

r′
)′)1/r′

≤
(3

δ

)(1+δ)/2

≤ 3δ−1/2δ−δ/2 = 3δ−1/2eδ log(1/δ)/2 ≤ cδ−1/2,

since the function δ log(1/δ) is continuous on (0, 1] and has a finite limit as
δ → 0. Recalling that δ = εd/[W ]DA∞ , we conclude that

δ−1/2 ≤ cd[W ]
1/2

AD
∞
,

completing the proof.

2.6.6 Remark. While we have reproduced Proposition 2.6.3 from [NPTV17], a
closely related statement and proof already appears in Isralowitz, Kwon and
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Pott 2015 [IKP15]. These authors also prove a predecessor of Theorem 2.5.5 for
the usual sparse operators TS f =

∑
S∈S 1S

ffl
S
f ; however, before the Convex

Body Domination Theorem 2.3.2, its relevance to Calderón–Zygmund operators
was unclear.

2.6.7 Remark. While the sharp matrix-weighted estimate for Calderón–Zygmund
operators (even individual special cases like the Hilbert transform, or its dyadic
models) remains open, the full matrix analogues of the sharp A2 theorems from
the scalar case have been achieved for the maximal operator M and the dyadic
square function

Sf(x) :=
(∑
I∈D

1I(x)

|I|
|〈hI , f〉|2

)1/2

,

where hI := |I|−1/2(1I` − 1Ir ) (with I`/r the left/right half of I) are the L2-
normalised Haar functions. Since M and S are nonlinear operators, their ex-
tension to the matrix-valued setting is not canonical, but requires a choice of
an interpretation. The following definitions incorporate the weight into the
operator itself:

(2.6.8) MW f(x) := sup
Q3x

 
Q

|W (x)1/2W (y)−1/2f(y)|dy,

(2.6.9) SW f(x) :=
(∑
I∈D

1I(x)

|I|
|〈W 〉1/2I 〈hI , f〉|

2
)1/2

,

where definition (2.6.8) was introduced by Christ and Goldberg [CG01] and
definition (2.6.9) by Petermichl and Pott [PP03].

Both these operators satisfy the linear bounds

(2.6.10) ‖MW ‖L2→L2 ≤ cd,n[W ]A2 ,

(2.6.11) ‖SW ‖L2(W )→L2 ≤ cn[W ]A2
,

where (2.6.10) was proved by Isralowitz, Kwon and Pott in 2015 [IKP15] and
(2.6.11) by Hytönen, Petermichl and Volberg in February 2017 [HPV17].

For scalar weights, it is easy to check that ‖Mw‖L2→L2 = ‖M‖L2(w)→L2(w)

and ‖Sw‖L2(w)→L2 = ‖S‖L2(w)→L2(w), so that (2.6.10) and (2.6.11) correspond
to the scalar-weighted results of Buckley [Buc93] for M and Hukovic, Treil and
Volberg [HTV00] for S. These are already known to be sharp, and hence so are
the matrix-weighted extensions (2.6.10) and (2.6.11).

The proofs of both (2.6.10) and (2.6.11) make use of Proposition 2.6.3, or
essentially equivalent considerations.
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