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PREREQUISITES

We will assume a prior knowledge of real and functional analysis, measure and integration
as well as some basic inequalities such us Holder and Minkowski. Previous knowledge of
the unweighted multilinear Calderén—Zygmund theory contained in [21] will be desirable
but not necessary to understand the course.

PURPOSE AND DESCRIPTION

The purpose of these notes is to give a short but detailed introduction to multilinear
weighted inequalities and the usual techniques of proof in the area.

On one hand, we start describing the main object in this area, the multilinear maximal
function, and how it controls the class of multilinear Calderén—Zygmund operators and
allow us to define the right class of multiple weights. We also prove the generalization of
Muckenhoupt’s one and two-weight problems for the multilinear maximal function M as
well as some multiple (sharp) weighted inequalities for multilinear maximal functions and
sparse operators.

On the other hand, we give a pointwise control of multilinear Calderon—Zygmund oper-
ators of Dini type by sparse operators. As a consequence of this result and using some
mixed weighted bounds for a general class of sparse operators, we will be able to show
similar bounds for several multilinear operators such us Calderén-Zygmund operators,
their commutators with BM O functions, square functions and Fourier multipliers.

1. INTRODUCTION

The origin of the modern theory of weighted inequalities can be traced back to the works
of R. Hunt, B. Muckenhoupt, R. Wheeden, R. Coifman, and C. Fefferman in the decade
of the 70’s. The basic problem concerning weighted inequalities consists in determining
under which conditions a given operator, initially bounded on LP(R™), is bounded on
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LP(R™, 1), where p is an absolutely continuous measure with respect to Lebesgue measure,
i.e. du = wdx. Here, w denotes a non-negative locally integrable function on R" that is
positive almost everywhere, that is called a weight.

A sustained research period was started with the groundbreaking work of Muckenhoupt
[45]. In this work he characterized the class of weights u, v for which the following weak
inequality for the Hardy—Littlewood maximal operator and for 1 < p < oo holds

(1.1) sup )\p/ u(z)dx < C |f(z)|Pv(x)dz, f € LP(v).
A>0  J{Mf>A} R”

(1.2) M () ppoowy < Clfprw)-

This condition on the weights is known as A, condition, namely

o, 0], - sup<‘Q|/ (a:)dx) (@/Qv(x)—pll)p_l <o p>1,

where the supremum is taken over all the cubes in R™. Note that when p = 1, the

term (JCQ v(x)_ril)p_l must be understood as (essinfgv)~!. Although weights in the A,
class are also known as Muckenhoupt weights, it is worth mentioning that variant of this
condition was previously introduced by Rosenblum in [50]. In the particular case u = v
and p > 1, Muckenhoupt also proved that the following strong estimate

L @iz < ¢ [ (@i, e D)

holds if and only if v satisfies the A, condition.

From that point on, the interest of harmonic analysts focused on studying weighted in-
equalities for the classical operators such as the Hilbert and Riesz transforms and other
singular integral operators leading to a wide literature on one-weight norm inequalities.
However, the problem of finding a condition on the weights w,v satisfying the strong
estimate above was much more complicated. It was not until 1982 that E. Sawyer [51]
characterized the two weight inequality, showing that M : LP(v) — LP(u) if and only
if the pair of weights (u, v) satisfies the following testing condition known as Sawyer’s S,
condition

_ Jo M(xqo)Pudz v
(1.3) [u,v]s, = sgp ( =) ) < 00,

where 0 = v'? and 1 < p < co. Observe that condition (1.3) involves the operator
under study itself and, for this reason, it is difficult either to check or use it to construct
examples of weights for applications. This difficulty together with the fact that these
conditions are just defined for particular operators motivated the development of different
sufficient conditions, close in form to the A, condition.

The classical results mentioned so far did not reflect the quantitative dependence of the
LP(w) operator norm in terms of the relevant constant involving the weights since they
were qualitative properties. Therefore, the relevant question then was to determine the
precise sharp bounds of a given operator in L”(w), whenever w € A,,.
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The first author who studied this problem for the Hardy-Littlewood maximal operator
was S. Buckley, a Ph.D. student of R. Fefferman, who proved in [5],

1
(1.4) 1M || owy < Cp' [w] 5"

where C' is a dimensional constant. We say that the above inequality is sharp in the sense
that we cannot replace the exponent on the weight constant by an smaller one. Buckley also
proved another quantitative result related to the weak estimate for the Hardy—Littlewood
maximal operator as an application of the classical covering lemmas. More precisely,

(1.5) |’M||Lp(w)—>LPv°°(w) < C{w]z/z)p?

where C'is a dimensional constant. In fact, it can be easily proved that the operator norm
and the weight constant in (1.5) are comparable, whereas in (1.4) this result is false (see
[25] for further details).

Following the spirit of Buckley’s results, a similar problem was studied by J. Wittwer,
another Ph.D. student of R. Fefferman, for the martingale operator and the square function
in [54] and [55], respectively. Later on, regarding the two-weight problem for the Hardy—
Littlewood maximal function, K. Moen found in [43] a quantitative form of E. Sawyer’s
result in terms of Sawyer’s .S, condition (1.3). Namely

(1.6) M| Lo (v)—s Lr(u) = [u,V]s,-
Although maximal functions are relevant operators in harmonic analysis, singular integrals

are probably the central operators in this field. The term singular integral refers to a wide
class of operators that are (formally) defined, as integral operators in the following way

Tf(z) = / K (2, y) f(y)dy,

where K is a singular kernel in the sense that it is not locally integrable.
The prototype or most representative example of this class of operators is the Hilbert
transform in the real line, namely

Hf(z)= %p.v. - (_yz/dy

In the light of the previous results, the relevant problem then was trying to determine the
sharp constant in the corresponding weighted inequality for Calderén—Zygmund singular
integral operators. Concerning this problem, the next relevant step in this direction was
given by K. Astala, T. Iwaniec and E. Saksman in [3]. They studied the Beurling transform
(also known as the Ahlfors-Beurling transform) defined as follows
f(w)

Bf(z) = p.v./(C (w — Z)Zdw.
This Calderéon—Zygmund operator is one of the most important singular integral operators
related to complex variables, quasi-conformal mappings and the regularity theory of the
Beltrami equation. In fact, in [3] the authors were interested in finding the smallest ¢ < 2
such that the solutions of the Beltrami equation
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Of = pof

that belong to the Sobolev space I/Vlig also belong to the better space I/Vlif (i.e. the
solutions are quasi-regular). Here p is a bounded function such that ||pllec = k < 1.
Lately, K. Astala [2] proved that ¢ > k + 1 is sufficient. On the other hand, T. Iwaniec
and G.J. Martin [27] found examples showing that, in general, the result does not hold
for ¢ < k4 1.

In [3] the authors also pointed out that in the case ¢ = k + 1, the quasi-regularity would
be a consequence of a linear bound of || B|[1r(y) for p > 2 in terms of the weight constant.
In fact, they conjectured the following bound for the Beurling operator

(1.7) IBllze(w) < eplwla,,  p=>2,

which was proved by S. Petermichl and A. Volberg in [49]. This conjecture revealed the
importance of finding a bound on the norm of a given operator in terms of the weight
constant. Another feature of the theory is the relevance of the case p = 2. It is due to the
fact that, as a consequence of Rubio de Francia’s extrapolation theorem obtained in [16],
it suffices to obtain a linear bound in the case p = 2 since it is the starting point to derive
sharp bounds for all p. We refer the interested reader to [13] for a simpler proof of the
precise extrapolation theorem, which was inspired by the work of Duoandikoetxea [17].
The next important advance in this area was due to S. Petermichl [47] who proved the
optimal bounds for the Hilbert transform. Shortly after, she extended this result to the
Riesz transforms in [48]. Lately, O. Beznosova proved the analogous linear bound for
discrete paraproduct operators in [4].

It was then that the so-called As conjecture gathered more importance. This conjecture
claimed that the dependence for a Calderén—Zygmund operator will be linear on the A,
constant, namely

(1.8) TN L2 (w) < Clw]a,.

As mentioned before, from (1.8) it is possible to extrapolate to get the A, dependence.
More precisely,

max (1,p%1>
(1.9) T 2ouy < Cluols. ,

where the dimensional constant C' depends also on p and T'.

In 2010, the sharp As bound for a large family of Haar shift operators that included dyadic
operators was obtained by M. Lacey, S. Petermichl and M.C. Reguera in [31]. After that,
D. Cruz-Uribe, J.M. Martell and C. Pérez proved a more flexible result in [13] that could
be applied to many different operators and whose proof avoids Bellman functions as well
as two-weight norm inequalities.

After many intermediate results by others, the A, conjecture was solved in full generality
by T. Hytonen in [24] using a very different and interesting probabilistic approach. Shortly
after, A.K. Lerner gave a simpler and beautiful proof in [35] based on the use of dyadic
sparse operators and the so-called local mean oscillation formula. Lately, K. Moen [44]
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derived sharp weighted bounds for sparse operators for all p, 1 < p < oo, avoiding the use
of extrapolation.

After the solution of the Ay conjecture, several improvements of this and other results
were obtained in [25] by T. Hytonen and C. Pérez. The underlying idea of this work was
to replace a portion of the As constant by another smaller constant defined in terms of
the A, constant given by

1
(1.10) ). = sup oo /Q M(wxq).

This functional was implicitly considered by N. Fujii in [18] to provide a characterization
of the A class of weights and later it was rediscovered by M. Wilson in [53]. It is smaller
than the more classical Ao, condition due to Hruséév

y (1 Na .
[w]f“w‘s‘ép<|@r/¢gw)e p(rQ\/ngw >

as it was shown in [25] for the particular case of weights of the form w = tx g + xr\ g With
t>3.

On the one hand, in [25] an improvement of Buckley’s estimate for the Hardy—Littlewood
maximal function is proved. Namely, for p > 1,

(1.11) 1M ]| o(w) < CP([w]a,[0)as) "7,

where C' is a dimensional constant and o = w!™". This result improves significantly
Buckley’s bound since

1

([w]a, [w)a) P < ([w]a, [w]5 )P S [waf :

On the other hand, in [25] the A theorem (as well as its LP counterpart) was improved
obtaining the following mixed sharp As — Ao estimate for singular integral operators

(1.12) T 2wy < Clolf2 (™ an + [w]a )2,

which is the starting point for proving analogous sharp bounds for other operators such
as commutators and their iterates as well.

2. PRELIMINARIES ON MULTILINEAR CALDERON-ZYGMUND THEORY

The multilinear Calderén-Zygmund theory can be traced back to the works of R. Coifman
and Y. Meyer [11] in the seventies. Their work was oriented towards the study of certain
singular integral operators, such us the commutator of Calderén. This theory, far from
being a mere generalization of the linear theory, appears naturally in harmonic analysis.
The boundedness results for the bilinear Hilbert transform obtained by M. Lacey and C.
Thiele [32, 33], motivated the development of a systematic treatment of general multilinear
Calder6n—Zygmund operators. In this respect, the work of L. Grafakos and R. Torres [21]
set the bases of the unweighted multilinear Calderén—Zygmund theory.

Here, we introduce the notion of Calderon—Zygmund operator in the multilinear scenario
as well as some (unweighted) boundedness properties that may be found in [21].
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Definition 2.1. Let T be a multilinear operator initially defined on the m-fold product
of Schwartz spaces and taking values into the space of tempered distributions,

T:S(R") x --- x S(R) — S'(R").

We say that T' is an m-linear Calderén-Zygmund operator if, for some 1 < ¢; < oo,

it extends to a bounded multilinear operator from L% x ... x LI to L9, where % =
q% +- 4 q%’ and if there exists a function K, defined off the diagonal t =y = -+ =y,

in (R")™*+! satisfying

(2.1) T(f1, s fm)(x) = / K(z,yi,. . ym) fi(y1) -« fon(Ym) dy1 - . . dYmm,

(Rn)m
for all x ¢ MLy supp fi
A
(2.2) ’K(yanla"wym)‘ < m mn’
( > luk — yz\)
k,I=0
and
Aly; =yl
(2.3) LK (Yor - Yo sYm) = K (Y0s oY ym)| < :

)anre )

m
( >y — ul
E,1=0

1
. /
for some € > 0 and all 0 < j < m, whenever |y; — y;| < 3 Orgr}gagxm 1Yj — Ykl
Some basic boundedness properties of multilinear Calderén—Zygmund operators are stated
in the following theorem.

Theorem 2.2. Let T' be a multilinear Calderén-Zygmund operator. Let p, p; numbers
satisfying % <p<oo,1<pj <oo, and p% + ...+ z% = %. Then, all the statements
below are valid:

(i): When all pj > 1, then T can be extended to a bounded operator from LP* x ... X
LPm into LP, where LP* should be replaced by LY if some py = 0.

(ii): When some p; = 1, then T can be extended to a bounded operator from LP* x
... X LPm qnto LP*° ) where again LP* should be replaced by L° if some pp = 00.
(iii): When all p; = oo, then T can be extended to a bounded operator from the

m-fold product LY x ... x L into BMO.

Observe that when all the indexes p; = 1, it is obtained the generalization to the multi-
linear setting of the weak type (1,1) boundedness for classical singular integral operators.
Namely, the corresponding endpoint space to bound singular integral operators in the

multilinear setting is now the m-fold product L' x ... x L' and, by homogeneity, it is
mapped into L/ je.,
(2.4) T:L'(R™) x ... x LY(R"™) —s LY™®(R™).

In Section 10, we will introduce a more general class of Calderén—Zygmund operators which
verifies weaker regularity conditions on the kernel. We extend the previous boundedness
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results to this wider class of operators as well as for their maximal truncation operator.
Those results can be found in Appendix A.

3. THE MULTILINEAR MAXIMAL FUNCTION

The question of the existence of an appropriate multilinear maximal function and a mul-
tiple weight theory was posed in [22]. Although the class of Calderén—Zygmund operators
was controlled by [[72; M f;, as shown in [46], it was not clear whether this control was
optimal and whether the conditions on the weights w; for which

T : LPY(wy) X ... x LP™(w,y,)

holds could be improved. In [37], it was introduced a multilinear maximal operator strictly
smaller than the m-fold product of M, which gives the right classes of multiple weights for
m-linear Calderon—Zygmund operators. In this section, we introduce this operator and a
pointwise control of Calderén—Zygmund operators which improves that in [46].

Given f = (f1,-.-, fm), we define the multi(sub)linear maximal operator M by

./\/l —SUP / fz yi)|dy;,
anH |Q| | ‘

where the supremum is taken over all cubes containing . With some abuse of the language,
we will refer to M as the multilinear maximal function, even though it is obvious that it
is only sublinear in each entry.

Since this operator is smaller than the m-fold product of Hardy-Littlewood maximal func-
tions, as a consequence of Holder’s inequality and the corresponding version for weak spaces
(see [20, p. 15]), it satisfies the corresponding natural unweighted estimates. Namely,

M LY x ox ot — pimee,

M LPYx o [P P

Whelre1<pl,...,pm<ooa1r1dpljL +7 l‘

The importance of this operator stems from the fact that it controls the class of multilinear
Calderén—Zygmund operators. The following result, which can be found in [37], was
originally proved by J. Alvarez and C. Pérez in the linear setting in [1].

(3.1)

Theorem 3.1. Let T be an m-Calderén—Zygmund operator and let 6 > 0 such that § <
1/m. Then for all f in any product of L% (R™), with 1 < g; < oo,

(3.2) M(T(F))(x) S M()(z).
Proof. Fix x € R™ and a cube @ containing x. To prove (3.2)it suffices to prove that for
any 0 <6 <1/m

) vs
(3.3) (@ /Q }IT(f)(Z)I5—|6Q|51d2> < M(F)(a).

for a certain constant cg to be determined later on. Having into account that ||a|"—|8|"| <
oo — B]", 0 < r < 1, we only need to show

e s N
(3.4) (|Q| /Q T(F)(z) - col dz) < M(F)(a).
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Let f; = f]0 + f°, where fJO = fixg=»7=1,...,m and Q" = 3Q. Then,
m

15w = I @) + £°w))
j=1

Jj=1

_ 3 () FE (Ym)

at,...,am€{0,00}
=TI/ +D /). £ (ym),
j=1

where each term of Y’ contains at least one a; # 0. We can write then

(3.5) T(f)(z) = T(f)(2) + DT far) (2)-

Applying Kolmogorov’s inequality to the term

T(fO(2) = T(f7, -, f2)(2)
with p =9y ¢ = 1/m, it follows that

1 5 1/6 .
(@ [ra®eraz) s ITEsno g

QI
U
< _— oYy )
S jHIBQ‘/BQv](yJMdyJ
S ME),

since T : L1 x -+ x Lt — LY/m>,
In order to estimate the other terms in (3.5), we set now

c=Y T fam)(@),

and we will show that, for any z € @), we also get an estimate of the form

(3.6) DT Fam)(2) = T - o) (@)] S M) ().
Consider first the case when a1 = ... = «,, = co and define

T(f*) =T(f7° s )
Using the regularity of the kernel of T', for any z € @), we obtain
IT(F*)(z) = T(f*)(@)]

< v =2 111517
. (e = wl -+ e = ylyre L1110
(R™\3Q)™ =1

3 o "o
: i(yi)|d
NZ / (’z_y1|+'-~+’z—ym’)nm+aH’f(y)‘ Y

k:1(3k+1Q)m\(3kQ)m il
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~ TaklNIL/mnmte (vi)|dy
k:l 31@’Q‘l/n)nm+s (3k+1Q)m i\Yi
— 1
= [T0A st £ M)
k=1 i=1
where F"™ = E x --- x EF and dy = dy; . .. dym.
What remains to be considered are the terms in (3.6) such that o, = -+ = a;, = 0 for
some {j1,...,51} € {1,...,m} and 1 <[ < m. Using again the regularity of the kernel,
T fm)(2) = T fm) (@)
T —z g | fildy;
< H / \f;]dy; / | © HJQ{JL---JZ} |fildy;
el (Iz =yl 4+ [z = ym|)"mte
VISHIRRN Y (Rn\gQ)m—l
S0V R ST oh [T 15l
~ 71%Yj 3k|Q|1/n nm+e i10Yj
]E{le 7]l} (3k+1Q)M7Z jg{jl?v]l}

Q" / A ,
< i(yi)|dy,
Z 3I<:|Q|1/n nm-+e (3k+1Q)mi1:11’f (y)‘ Yy

and we arrive at the expression considered in the previous case. This gives (3.6) and
concludes the proof of the theorem.
O

4. WEAK TYPE ESTIMATE FOR M

The previous pointwise control of multilinear Calderén—Zygmund operators by M opened
up the possibility of considering more general weights. In [37], the authors exploited
this possibility proving a natural extension to the multilinear setting of Muckenhoupt’s
two-weight theorem.

Theorem 4.1. Let 1 < p; < o00,j =1,...,m and % = pil+~~+ﬁ. Let v and w; be
weights. Then the inequality

m
(4.1) 1M zpoewy < CTT I 22

j=1
holds for any f if and only if

1/10 1-p/ 1/pj
(4.2) sup / / < 00,
9] 1 (@

Jj=
h ( I 1p])/p3' th . = 1 must be understood as (essinfow;) !
wnere |Q‘ Q m € case p] = mus € uUnaerstooa as (ess1n Q w]

Proof of Theorem 4.1. The proof is very similar to that in the linear situation (see, for
instance, [19, 20]). Let us consider first the case when p; > 1 for all j =1,...,m. Assume
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that M satisfies (4.1)), namely,

m

(4.3) IM()lreewy < CT] 151 225 (w;)
j=1

then we can write for every f: (f1,- s fm)s

1

(4.4) V<{$€RH2M(_;)( >t})1§fl7f[</ | f5(y;) ]wj>pja

where p is given as in the assumptions and ¢ > 0. Suppose without loss of generality that
f>0,ie f;>0,j=1,...,m. Since M(f)(x) > [[}L,(|fjl)q for all z € Q, it follows
from (4.4) that for all £ < [[7L,(|fj|)q, we have that

(4.5) UQ)7 < v(fe €R™ : M(fr,..., fu)(@) >t < Ct T £l o -

j=1
Taking f;1¢ instead of f;, j =1,...,m, in (4.5), we deduce that

m

H e < C T Ifixall s wy)-

7=1

‘@\'—‘

(4.6)

/

1-p’
Next, taking f; = w; p], we obtain

</Q”> IQ!/ wy ﬁ/ w | <o

Note that

Then, we have that

(4.7) (]é y>’1’ ﬁl <]{2 wjl,p9> o <,
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for every cube @, showing (4.2). To prove the converse, assume that (4.2) holds. Using
Holder’s inequality, we obtain

(Fo) T ) = (L) T

(4.8) =1 =1

/

P\ 7 L
pj p; Pj
W |3l w;
Q Q

The previous inequality applied to cubes Q(x,r) centred in z with radious r > 0, yields
to

m C m

[T awn € ——— [T I1fixown 7 w,):

Jj=1 v(Q(z,r))r j=1

Therefore,

where M¢ denotes the weighted centred maximal function. Now, using the fact that M is
weak (1,1) with respect to the weight v and using the Holder’s inequality for weak spaces,
it follows that

Ol TT MU £51P7w; /0) P | oo 0

HM(J?)HLPW(V) <

j=1

< CTTIME S Prws /)25 | o)
Jj=1
o c ; 1/p;

= CTT Iy I,
j=1
m

< CH”fjHij(wj)a
j=1

and the theorem is proved in the case p; > 1, for every j =1,...,

S 3

1-p’
In the case where some p; = 1, note that the condition <JEQ w; Pi > must be understood

as (essinfg wj)_l. Indeed, as in the linear case, taking limits we obtain

__1 pj—1
pj—1 -1 pj—1 -1
w . LUdZC = |[|W, 1 — ||W;; oo .
<iQ j () > H j ||ij71(Q,|Q|71dI) H j HL (@)
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Let us assume now that p; =1, j = 1,...,m. Using again (4.6) with p; = 1 and f; = xs,
for every j and S being a mesurable subset of ) with positive measure, we obtain

14 1 i
VQ)le_[lm/Sd:chjl_[l/swj.

Since m = 1/p, we can write

<]é y(x)dx)’l’ < cjﬁ';'/swj(xj)d%

for every arbitrary cube @ and S C ) measurable set with positive measure. Let a >
H’jn:l essinfg w;, and consider the set

m
Sa = mEQ:ij<a
j=1

It is clear that S, C @ and it has positive measure. Therefore,

(JQ”“)“); < (s /. wl(wl)d“) o ([ et
_C/Sa.../ 1;[

for every a > essinfg w;. Hence,

1 / )é L
— | v(z)dx) < C||essinfow;,

j=1

diL'l .dzr, <Ca,

for almost every x € Q). Since @ is arbitrary, we obtain
-1

1 m
(4.9) sup ( / > ’ H essinfg w; <,
Q] i
and we are done. Conversely, assume (4.9). It follows that
-1

sup ( >p w; <,
aly) (1
and, therefore,

u(@))i s
4.10 C i
10 (far) < e

Assume without loss of generality that f; > 0, for every j = 1,...,m. Then, using (4.10),

we have that
()11 ()Tt (49 <t f e
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for every cube @, obtaining that we have proved (4.8) in the case p; = 1, for all j =
1,...,m. From this point on, the argument is similar as in the case when all the indexes
pj > 1, so that we can conclude that this condition is also sufficient in this case. In the
case when p; =1, =1,...,l[,and p; > 1, j =1[,...,m, with 1 <[ < m it suffices to
combine the previous estimates to get the result and we are done. U

Remark 4.2. By a close inspection of the previous proof if we denote

[0 Wz = sup rcz|/ IQ!/ )

then the best constant appearing in (4.3) is comparable to [v, E?]X ;. Also observe that con-

dition (4.4) combined with Lebesgue differentiation theorem implies that v/(z) < ¢ [[}L, w;(z z)P/Ps
a.e. This suggests a way to define an analogue of the Muckenhoupt A, classes in the mul-
tiple setting.

5. THE Aﬁ CLASS OF WEIGHTS

Let us now introduce the multiple classes of weights as well as their relationship with the
Muckenhoupt’s A, classes of weights and other interesting properties.

Definition 5.1. For m exponents pi, -, Pm, We will often write p for the number given
by%:p%—i— —i—— and P for the vector P = (p1,- s Dm)-

Definition 5.2. Let 1 < pq,...,pm < 00. Given @ = (w1, ..., wy,), set

m
_ p/Dj
W= H“’j :
Jj=1

We say that « satisfies the A5 condition if

. 1 1-p/\ P/P}
(5.1) [W]a, = sup |Q!/ E[@/ij > < 00.

1fp;.)p/p;

1 . _
When p; =1, <@ fQ w must be understood as (essinfgw;) 7.
We will refer to (5.1) as the multilinear Az constant.
It is not difficult to prove by using Holder’s inequality, that vz € A,,, and

114, c 45
j=1

These results are left as exercises for the reader.

The multiple weight classes can be characterized in terms of the linear A, classes. Observe
that the following theorem also shows that as the index m increases, the A5 condition
gets weaker. It is also possible to show that the two conditions below are independent of
each other.
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Proposition 5.3. Let W = (w1, - ,wm) and 1 < p1,...,pm < 00.
Then @ € Ap if and only if

1y -
(5.2) w; EAmp;a j=1,....m
Vg € Amp,
1—p’
where the condition w; P S Ampg_ in the case pj = 1 is understood as wjl-/m c A

Proof of Proposition 5.3. Consider first the case when there exists at least one p; > 1.
Without loss of generality we can assume that pi,...,p; = 1,0 <1 < m, and p; > 1 for
j=l+1,...,m.

Suppose that @ satisfies the multilinear A 5 condition.

Fix 5 > 1+ 1 and define the numbers

1 . .
qj=p(m_1+*) and g =B >4,
Dj pi—1lp
1-p/,
We first prove that w; P e Amp;_ for j >1+1,ie.,
P 95Pj mpj
o (o) [y < e
Q Q
Since
m m
1 1 (1
Sl (e S aeum) =t
o M L+1/p;\p =14 1,i#]
applying the Holder’s inequality, we obtain
_b m _pP m __pP
Pjq45 Piq4 Ppidqy
/wjjj _ /(le J)( H w, J>
Q Q "i=it1 i=l+1,i#]
- N\Na o 1 (pi—1)\ /T
< (/ 11 wf/pz) "] </ w 1>) _
Q141 i=lt1,i4; 7@

From this inequality and the Az condition we easily get (5.3).
Next we show that vz € Apyp. Setting s; = (m—1/p)pf, j > 1+ 1, we have 3771, ., é =1
and, therefore, by Holder’s inequality,

(5.4) [T w, 7" ImI( o)
5.4 / w, T < / w, "M .
j = j
Q@ j=1+1 j=l+1 Y@

Hence,
__ 1 l 2 —1/(p;—1)\ 1/$i
/(mﬁ) pm-l < H(QSSian'UJj) pm—1 H (/ w; ) .
Q j=1 j=l+1 7@

Combining this inequality with the Az condition gives vg € Apyp.
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Suppose now that [ > 0, and let us show that wjl./m eA,j=1,...,0. Fix 1 <ig<lI. By
Holder’s inequality and (5.4),

wil/m < / ! p/p 1/pm / ‘pj(pm 0\ 1-1/pm
1/pm m . #
< / w? H p/p) p H (/ijl pj> o

=I+1 =Il+1

L/m o Aq. Thus we have proved

This inequality combined with the A condition proves w;/
that w € Az = (5.2).

To prove that (5.2) is sufficient for @ € A, we first observe that for any weight w;,

1 — 1_ m— 1/p 7 (m DFT\ M~ 1Jr1/pJ
(5.5) 1< / Vu_jpm / j
(!Ql Q IQI )
Indeed, let a = m and o = %. Then > 7, 1/a; = 1, and by Hélder’s

inequality,

op )1/aj _ ﬁ (/ w;j@nll)ﬂ)ap(m—lﬂ/m).

fpe=TI( =) =11/,

Using again the Holder’s inequality, we have

< (i /) (i f,="

This inequality along with the previous one yields (5.5). Finally, (5.5) combined with (5.2)
easily gives that w € Ap.

a(pm 1)

It remains to consider the case when p; = 1forall j = 1,--- ,m. Assume that @ € A ... 1,
ie.,
m
(5 6) / < H >l/m ﬁ ¢
. w; <ec essinfp w;.
’Q‘ J o QWj

It is clear that (5.6) implies that wjl-/m € Ay, j=1,...,m and vg € A;. Conversely,
combining these last conditions with Holder’s inequality we obtain

m 1/m m 1/m? "

< cessinf ( w)<c /( )

[Ql / @ ) ¢ H ’ Q| 1]
ﬁ 1 1/m .
< w; § cHessme wj.
1l Jo 11
J

This proves that @ € A(j,... 1) is equivalent to w; Lm ¢ Ay, j=1,....,mand vz € A;.

The theorem is proved. |
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Remark 5.4. As a consequence of Proposition 5.3, observe that if 1 < p; < o00,j =

1,....m and pll +. + = and W E Aﬂ then

o5 < Clai””.

Remark 5.5. Observe that A .. 1) is contained in Az for each f’, however the classes
A are not increasing with the natural partial order. Indeed, consider the partial order

relation between vectors P = (p1,---,pm) and Q= (q1,---,qm) given by
]35(5 sio pj<q Vi=1,...,m

Then, since the A, classes are increasing, we can write
m m
[14, < T4
7j=1 7j=1

However Az is not contained in AQ. To see this, consider n = 1, m = 2, P = (2,2) and

the vector of weights W = (wy,w2) = (|x\7g, 1). We now need to check that

L) (L)
i <|@| / Q) / =00
1/2

Since w;’” € A; since it is a power weight of the form |z|* such that —n < a < n(p — 1),
we can write

1 1/2) < 1 _1>1/2 < o 1/2( 1 —1>1/2
<|@/ @ fyur) S tesmiou (g fv
1/2
= (@/ w ! essinfg w1>
Q
1 1/2
< (M/le_luq) < 00.

Therefore, W € A(; ). However, w; raised to an appropriate large power becomes non-

locally integrable and, it is easy to show that @ & AQ when, for instance, Cj = (2,6). In
fact, if @ € A(y6) we would need to verify that the following condition holds

i (@ / 3/4> : (réz\ / >/

3/% i not locally integrable, the quantity above is not finite and @ ¢ Ay ).

Since w)

Remark 5.6. The condition @ € A5 does not imply in general w; € Ll for any j.

Take, for instance,

loc

_ X[0,2] (z)
= W + Xr/[0,2] (T)
and w; (z) = ﬁ for j = 2,...,m. Then, using the definition, it is not difficult to check that

p/ pj

v € A1, We also have essinfg vy ~ HJ 1 essinfg w;". These last two facts together

easily imply that W € Ap.
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6. SHARP MIXED BOUNDS FOR THE MULTILINEAR MAXIMAL FUNCTION

In [37, Thm. 3.7] was proved that Az is a necessary and sufficient condition for the
boundedness of the multilinear maximal function from an appropriate product of weighted
Lebesgue spaces into LP(vg). Here we are also going to prove the sharp bounds for M
which extend the linear results contained in [25] and [5].

It is clear that the Az condition is necessary for the strong boundedness of M as a
consequence of Theorem 4.1. Now, we are going to prove that this condition is also
sufficient and, by the way, we obtain a sharp mixed bound whose original proof can be
found in [15].

Theorem 6.1. Let 1 <p; < oo,t=1,...,m and % = p% + ...+ z%m' Then the inequality
1 m
(6.1) MG rg) < Copr [, [T (100100 IDWWWL
i=1
holds if W € Ag, where o; = wil_pi, i =1,...,m. Furthermore the exponents are sharp in

the sense that they cannot be replaced by smaller ones.
Recall that the standard dyadic grid in R™ consists of the cubes
o, )" +4), keZjez
Denote the standard grid by D. By a general dyadic grid 2 we mean a collection of cubes

with the following properties:

(i): For any Q € 2 its sidelength (g is of the form 2%,k € Z.
(ii): QN R e {Q,R,0} for any Q,R € 2.
(iii): The cubes of a fixed sidelength 2* form a partition of R™.

We say that {Qf} is a sparse family of cubes if:
(i): the cubes Qf are disjoint in j, with % fixed;
(ii): if Q = U;QF, then Q1 C Qs
(iii): Q1N QY| < 5|Q)I.
With each sparse family {Qf} we associate the sets E]k = Q;? \ Q+1. Observe that the
sets Ef are pointwise disjoint and \Qﬂ < Q\E]k\
First, we will need two lemmas. The first one can be found in [25].

Proposition 6.2. There are 2" dyadic grids YD, such that for any cube Q) C R™ there
exists a cube Qo € Do such that Q C Qn and lg, < 64g.

Lemma 6.3. For any non-negative integrable f;,i = 1,...,m, there exist sparse families
Sa € Do such that for all x € R™,

M@x>2wlzhm?z

where 7 = (f1,..., fm) and given a sparse family S = {Qf} of cubes from a dyadic grid
2, the operator Ag s is given by
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Ass(f) = > (H(fi)@?) XQk-

3k \i=1

Proof of Lemma 6.3. First, by Proposition 6.2,

on

(6.2) M(f)(w) <6™ > M7 (f)(x),

a=1
where M7= denotes the multilinear maximal function defined with respect to Z,. Consider
M f ) taken with respect to the standard dyadic grid. We will use exactly the same
argument as in the Calderén-Zygmund decomposition. For ¢, which will be specified
below and for k € Z consider the sets

Q= {z e R" : MU f) () > k).
Then we have that Q = U]Q;‘? , where the cubes Q;‘? are pairwise disjoint with & fixed, and

m
o < H(f’i)Q;? <2mnck
i=1
From this and from Holder’s inequality,
k k
RENu| = > QY

k+1 — Ak
1 CQj

_kt1 ° 1/m
< o II( [ 8) < zaml

Hence, taking ¢, = 2" we obtain that the family {Qf} is sparse, and
MA(F) (@) < 2m0HD Ap () ().

Applying the same argument to each M7 ( f ) and using (6.3), we get the statement of
the lemma. O

Next we proceed to the proof of Theorem 6.1.
Proof of Theorem 6.1. By Proposition 6.2, it follows

on
(6.3) M(f) (@) 6™ M7 (f)(x),

a=1
where M7= denotes the multilinear maximal function defined with respect to Z,. Then,
it suffices to prove the theorem for the dyadic maximal operators M?=. Since the proof
is independent of the particular dyadic grid, without loss of generality we consider M?
taken with respect to the standard dyadic grid D.
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Let a = 2D and Q, = {z € R" : M%(f)(z) > aF}. We have scen in the proof of
Lemma 6.3 that Q, = UjQ;?, where the family {Qf} is sparse and a* < [, \Q%I ka Ifil <
j J

onmak Tt follows that
X[ MU v
Qk\ﬂk+1

v
< apz (H‘Qﬂ/Q |fz|dyz> Vu')‘(Q;C)

kg \i=1 J
m 1 11 p
<ad” =5 filw!w Pdy | va(QF)
A LT Jo
kj \i=1!%jl/Q;j
» , »
7 1 20 i 1 —oi o k
<a’ / | fil “iw dy; / w; "dy; | ve(QF),
%E(m o @k e T

where o; = (pir;)’ and r; is the exponent in the sharp reverse Holder inequality (see [25,
Thm. 2.3 (a)]) for the weights o; which are in A for i = 1,...,m. Applying the sharp
Reverse Holder inequality for each o;, we obtain

P

MA(FP apZHQQk,/ |f¢|afw;’5dyz~> i

R" kg e

P

1 P;
2—— ; K
( o ) S

k] i= 1

Let EJk be the sets associated with the family {Qf} Using the properties of E]k and
Holder’s inequality with the exponents p;/p, we get

PP v Clw]a 1 i\Yi az i " K
[ M vado < [w]APijEQQk,/ iyl dy> 5]
< 20w Z/ HM<fZ‘azw )
JZ 1
<2C’[w]Ad/RnﬁM(]f]alwzl>da:
i=1

m 4 % I
< 2C[uw]a, H </ M (’fi’aiwipi> da:) :
; R
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From this and by the boundedness of M,

T P

g

MU vgda < Clala, [T (/o)) |1l w)”
=1
< Ol 1@ 1l e
=1

< C[w]A}; H([UZ] )pl HfZHLm

i=1

pi
R" L% (Rn)

where in next to last inequality we have used that (p;/a;)" < pir! and in the last inequality
we have used that r; ~ [0;]4., for i =1,...,m. This completes the proof of (6.1). O

Let us show now the sharpness of the exponents in (6.1). Assume thatn =1and 0 <e < 1.
Let

wile) = e[ and fi(2) =2 Hoxon (@), i=1,...,m.

On one hand, it is easy to check that vz = |z|(1=5)Pm=1) and

(64) [QE]Aﬁ = [Uw]Apm ~ (1/E)mp—1'
We also need to estimate [0;]4,, for i = 1,...,m. We have that
o =w V= |z|~1 = 0.

7

Since o is a power weight belonging to the A; class of weights, we obtain

(65) ol < lola, ~ <.
Hence

(6:6) [T, = i - (4
Besides, }

(6.7 ﬁlnfium(wﬁ = (1/2)'

On the other hand, we need to estimate ||./\/l(f)||Lp(Vw). First, let f =27 'x(01)(x) and
observe that

MU Lr ) = M om0
and if we pick 0 < z < 1, we obtain

f(a)

3

1 xT
Mf(z) > / y tedy =
z Jo
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Then the left-hand side of (6.1) can be bounded from below as follows:
P m 1 " mp %
Ml = 1Moy = (2) ([ £ v
1\" m
= (2) 1Al

()"
SO

1
mp ~ _
1y = =

Q

since

and vg € App,. By (6.4), (6.6) and (6.7) the right-hand side of (6.1) is at most (1/g)™1/P.
Since ¢ is arbitrary, this shows that the exponents 1/p and 1/p; on the right-hand side of
(6.1) cannot be replaced by smaller ones.

7. MULTILINEAR SAWYER’S THEOREM

In this section, we introduce a multilinear nonstandard formulation of the (dyadic) Car-
leson embedding theorem originally proved in [25]. This result was the key lemma to
prove in [9] a generalization of Sawyer’s two weight theorem for the multisublinear maxi-
mal function M. Some remarks as well as some recent advances in this problem are listed
within the section.

Lemma 7.1. Suppose that the nonnegative numbers {ag}q satisfy

o p
(7.1) Y ag < A/ [[o/ide,vRe 2
Ri=1

QCR

where o; are weights for i =1,...,m. Then for all 1 < p; < oo and p € (1,00) satisfying

L=t Loand for all f; € LP(0y),
m 1/p
1 P
Z aQ(H ) / fi(yz‘)di(yi)dyi> SAHM%(?)HU:(V?)
-1 0i(Q) Q
(7.2) Qeg i=1

SAHngfz‘HLm(ai)’

i=1

wnere d = su 1 i i\Yi ) 10i\Y; i
rere M () = T1 o | Vol

Qez ™
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Proof of Lemma 7.1. Let us see the sum

([l

p
yz Uz yz)dyz>
QeD

as an integral on a measure space (2,27, ) built over the set of dyadic cubes 2, assigning
to each Q € & the measure ag. Thus

1 p
a fz yz o yz)dyz> =
2 0 ( (@) /

Qe

= p)\p 'niQe2 i(lQ)/in(yi)Ui(yi)d?/i>)\}

:;/0 PP 1 w(Dy)d\

Let us denote by 25 the set of maximal dyadic cubes R with the property that [, P o)) f r filyi)oi(yi)dy; >

A. Then the cubes R € &5 are disjoint and their union is equal to the set {./\/l%( ) > )\}.
Thus

=D < Y ) aq

QED\ ReZ5 QCR
<Ay / Ham da
Re7;

—A/ Jplda:
M ( >A}H

Then we obtain

p o
yz 0; yl)dyl < A/ p)\p_l/ CJ'pz dxd\
) 0 (ML (F)>ay 5 H

2ol

Qe
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where we have used that M%(?) < TI7%, M2 (fi), Holder’s inequality and the bounded-
ness properties of MUdZ( fi) in LPi(o;). O

Next we establish the following generalization of Sawyer’s theorem for which it is necessary
to define the Sawyer’s condition in the multilinear setting.

Definition 7.2. We say that the pair (v, w) satisfies the S5 condition if

1

[v, s, = sgp (/QM(J%Q)pvdx);(}njlai(Q)m>l < 00,

where oXg = (01XQ;---,0mXqQ) and o; = wil_p" for all = 1,...,m and all the suprema
in the above definitions are taken over all cubes @) in R™.

Very recently it was shown in [41] a multilinear version of Sawyer’s theorem using a kind
of monotone property on the weights. The condition that we establish here is a sort of
reverse Holder inequality in the multilinear setting.

Definition 7.3. We say that the vector w satisfies the RH 5 condition if there exists a
positive constant C' such that

(7.3) :ﬁ(/

i-1 Y@

P m.o p
Jida:) Pi< C/ Haip" dx,
Q@i=1

where o; = wil_pi fori=1,...,m. We denote by [W|rpm, the smallest constant C' in (7.3).

Observe that when m = 1 this reverse Holder condition is superfluous and we recover the
linear result of Moen in [43].

Theorem 7.4. Let 1 < p; <oo,i=1,...,m and%: p%"""'"";i'

weights. If we suppose that W e RH3 then there exists a positive constant C such that

Let v and w; be

— o _
(7.4) IM(fo)lrowy < C T illerin, fi € LPi(o0),

i=1

where o; = wilfpg, if and only if (v, ﬁ) € Sp. Moreover, if we denote the smallest constant
C in (7.4) by ||M||, we obtain

(@K

(7.5) [0, Bls, < IMI S [v, Bs s (BT

5B
Here we make some remarks related to the previous theorem.

Remark 7.5. In the particular case when v = v, the following statements are equivalent:
(1) W e A3
(2) 0; = wil_p; € Ay, fori=1,...,m and vy € Apy.
(3) (v, W) € S5



24 W. DAMIAN AND K. LI

(4) There exists a positive constant C' such that

m
(7.6) M r) < CTT g i € L7 ()

i=1
Indeed, the equivalence between 1., 2. and 4. was proved in [37, Th. 3.6, Th. 3.7]. It
can be easily seen that in this particular case [V, E?} < [|M]| where || M|| denotes the
smallest constant in (7.6) and [] Ax S lva, E?] S Therefore we have that 4. implies 3.

and 3. implies 1.. So we have obtained that all the statements are equivalent.
1

Additionally, following Theorem 6.1 we also have that [|[M|| < | ]}4/ ; [12[oil&. So, we
have obtained

(7.7) @I S b, Bls, S IMI S @137 [0

Remark 7.6. As we have observed in the previous remark, RHI—g condition is not neces-
sary when v = v in Theorem 7.4. We are not sure if this condition can be removed in
the general case.

Proof of Theorem 7.4. 1t is clear that (7.4) implies the Sz condition without using that
(v, W) € RH-. Thus, it remains to prove that (v, w) € S+ implies (7.4) to complete the
proof of the theorem.

As we did before it suffices to prove the theorem for the dyadic maximal operators M7=,
Since the proof is independent of the particular dyadic grid, without loss of generality we
consider M9 taken with respect to the standard dyadic grid D. Next we proceed as in the
proof of Lemma 6.3. Let a = 2™("*t1) and for k € Z consider the following sets

—>
Q. = {z e R" : M%(fo) > a*}).
Then we have that 0, = UjQ;? , where the cubes Q? are pairwise disjoint with k fixed, and

' <HIQ’“!/ i)y < 2

It follows that

/\/ld fa Pyodx = Z/ fa)pvda:
e\ Qo1
< aP / a*Pydx
zk: e\ Q41
=aP Zakpv(Ef),
k7j

since Q. \ Qgy1 = UJ-EJ]?C where the sets Ejk are the sets associated with the family {Qf}
Then, we obtain
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m p
Md(fa)pvda: < apz (H C;k/ fozdyz> U(Ef)
jl

7] l:

=2 v (ﬁ o ) (ﬁ (ém/ 'fl'”zdyz)p

R

— Y g (ﬁ / rf@ald%)p,

where ag = v(E(Q)) (H:L Ufgf)>p, if Q = Qg’? for some (k,j) where E(Q) denotes the

corresponding set E]k associated to Qf, and ag = 0 otherwise. If we apply the Carleson
embedding to these ag, we will find the desired result provided that

ZaQ<A/Ha“dx ReD.

QCR
For R € D, we obtain

o= e (1157)

QCR QkcR i=1 J
Uz Qk ?
Z /Ek ( ok ) v(z)dz
chR i=1 J
<> / (oXE))Po(x)da
QECR Ef

w Hal-(R z
< [v,ﬁ]” RH?/ HO’pld(L'

where in the next to last inequality we have used the Sl—g condition and in the last
inequality we have used the RH condition. Thus, by Lemma 7.1 we get the desired
result and the proof is complete.

O

Remark 7.7. In [39], the authors studied the characterization of the two-weight inequality
for the fractional version of the multilinear maximal function

supl_[|Q‘1 a/mn/‘fz yi)|dyi, 0<a<mn,

anz 1
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in terms of the multilinear S5  condition. However, the result proved in [39, Thm. 1.1]
does not hold in the case a = O which corresponds to the case of the multilinear maximal
function.

In the general case, they gave two testing conditions (see [39, Thm. 4.1] for further details)
which are equivalent to M, to be bounded from LP'(w) x LP2(ws) to L4(v), for weights
v, wi,we, 0 <a<2n, 1 <p,p2<oo,l/p=1/p1+1/p2 and 1/g=1/p — a/n.

8. SHARP BOUNDS FOR MULTILINEAR SPARSE OPERATORS

In this section, we prove some useful results that we are going to use in the second part of
this course. More precisely, we determine the sharp bound for multilinear sparse operators
as it was shown in [38]. These operators, as we will see in the following, control pointwisely
multilinear Calderéon—Zygmund operators. We refer the interested reader to Section 9 for
a detailed description on the chronological advances this problem.
Firstly, we prove the following symmetry property of Az weights.

Lemma 8.1. Suppose that W = (w1, -+ ,wn) € Ap and that 1 < p, p1, -+, pm < 00 with
1/pr+-+1/pm = 1/p. Then @ = (w1, -+, wi_1, v}{p/, Wit1, ~++, Wm) € Ap; with
Pi = (pla"' 7pi717p,7pi+1,"' apm) and
i _api/p
5.1) [ = (T4,
where
i/p m P;/D;
; 1—p; 1 1-p'\1— P 1 / 1=pl \ 7'
W4, =su ¢ p .
s s = (g L) (g Les™) 1l (rczw
J#Z

Proof. Without loss of generality we will only prove the conclusion for ¢ = 1. Notice that

1/p +1/py+ -+ 1/pm = 1/p}

and

1= /o' ’ , 1
”1(17 p)pL/p -wgl/m ) ‘_wg%/pm _— —Pi

By the definition of multiple A5 constant, we have

(@4, = Sup<‘Q’/ 1- p1> . <£2|/Q(Ui7_p/)l_p>p’1/p

X — | w, '
H (’Q\ o

O
Let us state and prove the main theorem in this section.

Theorem 8.2. Suppose that 1 < p1, - ,pm < 00 with 1/p1 + -+ + 1/pym = 1/p and
we Apg. Then

1495 ()l o) S [@] 4, H 1fill Lo () -
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Proof. Without loss of generality we may assume that f; > 0. We first consider the case
when % < p < 1. It suffices to prove that

maxz

1A42.5(fo) | Loug) < C,,.pli0] H 1£ill oo,

where o; = w bi Aj g(fO') Ags(fior, -, fmom). Without loss of generality, we can
assume that p; = mln{pl,- - ,Pm}. We have

St |Q|/ ’fl’o-l Uw )

ua(QV TIL, 0u(Q)h
- Z |Q|nipp1 < /|fl|az>

Qes

/ Ag.s fUprS

‘Q|mp(p’1*1)
1ol @ I, QAT

ot omp(p}— ]E ’mp(pl—l
= [w]iﬁz QP 5 o5 (Q)PPi /P ( /'f”(j’)'

QGS

By Holder’s inequality, we have

1 L 1
(8.3) |Eg|l = / uzwa{””l- o,
Eq

1 1

< Uw(EQ)mpdl(EQ) pl---0m<EQ)m.

Therefore,
p(p} —1) P} —1)

|Eq|™" =Y < vn(Bg)Pi'o1(Eg) "1 - om(Eg)

and

P =1
b; Di pi -

Since Fg C @, we have

and hence
p1-D _ p 23

oi(Bg) " <@

-
|
\‘P—‘
3

It follows that

@ gt (I i)
ZH( /lﬂlm) oi(Eg)P'P

QEeS i=1
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P/pi

1 |le01> oi(Eq)

IN

P E
i=1 \Q€eS
< TTIMZ N Gwi o,

=1

S./ H||f7/||LPZ 0'1)

=1

Now consider the case p > max; p}. It is sufficient to prove that

|A.s(fo)l Loy S (@ HHszLm (o)

By duality, it suffices to estimate the (m + 1)—l1near form

/ Ags(fo) ng—Z/ng ﬁé/(gfio'i

QES
for g > 0 belonging to L¥ (vg). We have

Z/ng : gé,/@fi%

QeS
5 @I n@r o
Ges @ va(@Q) [T 0 (QP
| 9V - / fioi
Jymee 1L,
= Q™) / m /
< [olag m R fio
PQEG‘:SUw(Q)Hizlai(Q)p/pi Q ]‘;[1 Q
y om(p=1)| B, |m(p—1) m
< [w]ag, Z lﬂQ‘ — _/ng.H/ 04
QeS vg(Q) 1L, 0i(@)PP Jq 1/Q
By (8.3),
L o 1
(84) |Eql < va(EQ)™ 01(EQ) ™ -+ on(Eq) b
Since p > max;{p,} and Eg C @, we have ("i(Q)lip7 < Ui(EQ)lipi; for any i =1,--- ,m.
Therefore,
Z/ng ﬁwl‘/fmi
Qes i=1 Q
m 1 .
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gV i0i
Q ai(
1 1]
< 2m=Drg), vg(E » oi(E b /ng
[J€;<Q>H<Q>W@Q
/fzaz
1= 10—Z
, 1/p'
-1z Z(l " (o)
< 2PV 4 /ng> v (EQ
P\ 5t \va(@) Jo
1/pi
P /f ) o
: i0i | oi(EQ
i=1 \QeS oi(@) Q
< 27V | MY (9)]] HH (filllLpi (o)

< 2"l gl o, HMWw»

where we have used the boundedness of the weighted maximal function in the last step.
For the other cases we use duality. Notice that the operator Ay s is self adjoint as a
multilinear operator, in the sense that for any 7, i = 1,...,m, we have

/nA@,S(flv"'afm)g:/nA@,S(fb'"afi1ag7fi+17"'fm)fi-

Without loss of generality suppose p} > max(p,ph,...,p),). Hence, by duality and self
adjointness we have

HA/ S”Lpl(wl)x X LPm (wim )= LP (vg) — HA/S”LP'(U}{I)/)X---prm(wm)aLp/l(wiipll)
/
Pl
< (@' = ).

3

9. RECENT ADVANCES ON THE CONTROL OF MULTILINEAR CALDERON-ZYGMUND
OPERATORS

Below is a partial list of important contributions to find the sharp bounds for multilinear
Calderon—Zygmund operators.

e Control in norm from above by sparse operators of classical m-CZOs using the
local mean oscillation formula and generalization of the As theorem (W.D., A.K.
Lerner and C. Pérez, [15]).

e Sharp bounds for sparse operators in the general case avoiding the use of extrap-
olation and A, theorem for m-CZOs for the case 1 < p < oo (K.L., K. Moen and
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W. Sun [38]). The case when 1/m < p < 1 was still open since their result relied
on the domination theorem in [15] which only holds for Banach function spaces.

e Pointwise control of log-Dini continuous m-CZOs by sparse operators (A.K. Lerner
and F. Nazarov [36] and J.M. Conde-Alonso and G. Rey [12]).

e Pointwise control of Dini continuous CZOs by sparse operators (M.T. Lacey [30]);
tracking the precise constants (T. Hytonen, L. Roncal and O. Tapiola [26]); and
further simplifications of the proof (A.K. Lerner [34]).

e Pointwise control of Dini continuous m-CZOs by sparse operators taking care of
the precise constants and applications to several multilinear operators (W.D., M.
Hormozi and K.L. [14]).

10. DOMINATION THEOREM FOR MULTILINEAR CALDERON-ZYGMUND OPERATORS

In Section 2 we have introduced the standard multilinear Calderén-Zygmund operators.
Now we shall relax the kernel estimates slightly. We say that T is a w-bilinear Calderdn—
Zygmund operator if it is a bilinear operator originally defined on the product of Schwartz
spaces and taking values into the space of tempered distributions,

(10.1) T:S(R") x S(R™) — S'(R™),

and for some 1 < g1, g2 < o0 it extends to a bounded bilinear operator from L% x L% to
L%, where 1/q1 + 1/q2 = 1/q, and if there exists a function K, defined off the diagonal
r =1y =z in (R")3, satisfying

(10.2) T(f1, fo)( / K (2,3, 2) f1(y) fa(2)dyd,

for all = ¢ supp f1 Nsupp fo. The kernel K must also satisfy, for some constants C'x > 0
and 7 € (0,1), the following size condition

(10.3) K (z,y,2)| < (
and, the smoothness estimate
|K($+hzy72) —K(QS‘,y,Z)|+‘K({E,y—|—h,2)—K([L‘,y,Z)’
+’K(‘T’yvz+h)_K(m’yzz)|

Ck
2 —y| + |z — 2[)?

< ! w ( i >

Tl —yltle =2 Nz —y[+ |z —2])
whenever |h| < 7max (|z — y|, |z — z]).
If w:[0,00) = [0,00) is a modulus of continuity (i.e. it is increasing, subadditive (w(t +
s) < w(t) +w(s)) and w(0) = 0), the kernel K is said to be a log-Dini-continuous kernel
if w satisfies the following condition

(10.4) R ot (1105 (7)) % < o0

We are mostly interested in the weaker case when K is a Dini(a)-conti-nuous kernel.
Namely, when w satisfies the following condition:

1
(10.5) ol = [ wF <.
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In the case a = 1, we will denote ||w||pinj(a) Simply as ||w||Dini-
Given a bilinear Calderén-Zygmund operator T', the maximal truncation of T' is defined
as the operator T} given by

(10.6) Ty(fi. ) () = sup [T-(fr. f2) ()]

where T is the e-truncation of T

(10.7) L.(f1. f)la) = [ K (2, , ) fu () ol =) dyd.
|z—y|2+|z—2]|2>€2

Our goal in this section is showing that, for bilinear CZO T, whose kernel satisfies the
Dini(1) condition, then 7' can be controlled by a finite summation of sparse operators
introduced in Section 6. Recall that the dyadic systems are defined by

(10.8) D= {2750, )" + m+ (-1)Fiu) : k € Z,m € Z"}, we{0,1,2}".

Our main result in this section states as follows

Theorem 10.1. Let T be a bilinear w-Calderon—Zygmund operator with w satisfying the
Dini condition. Then for any pair of compactly supported functions fi, fo € L*(R™), there
exist sparse collections S* C D%, u=1,2,...,3™, such that

gn
(10.9) T(f1, f2)(@) < en(ITllonxzo 10 + Cr + |wllpini) D Ase(f1, fo) (@),

u=1
for almost every x € R™, where the constant c, depends only on the dimension and
IT||Lar x a2 —ra denotes the norm of the operator.

Theorem 10.1 has been proved in [14] (actually for T}) using a similar arguments with [26].
However, in this lecture note, we shall introduce a new proof follows from Lerner’s recent
idea [34]. With Hanninen’s arguments [23] in hand, it suffices to prove the following

Theorem 10.2. Let T be a bilinear w-Calderon—Zygmund operator with w satisfying the
Dini condition. Then for any pair of compactly supported functions fi, fo € L*(R™), there
exists a sparse collection S, such that for a.e. x € R"

(1010) T(fl,fg)(df) < Cn(HTHqu «L92La + CK + ||U-)”Dini) Z<f1>3Q<f2>3Q1Q(‘T)
QES

As that in [34], we define the bilinear grand maximal truncated operator My by
Mz (f1, f2) (@) = Zupesgsélp(!T(fhh)(f) — T(fix3Q: fax3Q)(E)]) -
o>z S

Given a cube @, for x € Q¢ we define a local version of M7 by

Mr1.qgo(f1, f2)(x) :=  sup  esssup (|T(f1x3Q0: f2X3Q0) (&) — T(f1x3Q, f2x30)(§)]) -
Q3z,QCQo &€

We have the following lemma.

Lemma 10.3. The following pointwise estimate holds
(1) for a.e. z € Qo,

T(f1x3Q0> fax3Qo)(#) < eall Tl 1o lf1(2) f2(@) | + M1, (f1, f2)(2);

xL1—L
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(2) for all z € R™,

Mr(f1, f2)(@) < en(||wllpimi + Cr)M(f1, f2)(z) + Ti(f1, f2)(z).

Proof. Suppose that x € Q° and let  be a point of approximate continuity of T'( f1x30,, f2X3Q)-
Then for every € > 0, the sets

ES(.CIZ) = {y € B(:U, 3) : |T(f1X3Q07 f2X3Q0)(y) - T(le?)Qm f2X3Q0)(x)‘ < 5}

satisfy limg_q \‘gé?)” = 1. Denote by Q(x, s) the smallest cube centered at = and contain-

ing B(z,s). Let s > 0 be so small that Q(z,s) C Qo. Then for a.e. y € Fq(x),

T(f1X3Q0> f2X300) (%) < T(f1X3Q0, f2X3Q0)(¥) + €
< T(f1X3Q(w,5)s f2X3Q(2,5)) (¥) + M1, (f1, f2)(2) + €.

It follows that

T(f1X300, foX30,)(x) < es %f) T(f1X30Q(x,5)s f2X30(2,)) (Y) + M1.Qo (f1, f2)(2) + €

1
1 / S L
<| = T(f1X30(z.5)> [2X30(z.5)) ()| dy
(IEs(fv)l Es(ac)| (fiXsq(.s) f2X3Q(.5) (V)] )
+ M7, (f1, f2)(x) + €
< HT(fl)CSQ(x,s)? f2X3Q(:c7s))HL%,oo

+ M7, (f1, f2)(x) + €

1
Tl e he TG |, o B / .
+ Mrgo(fi, f2)(2) + &

Assuming additionally that x is a Lebesgue point of f; and fo and letting subsequently
s — 0 and € — 0, we obtain (i).

Now we turn to prove (ii). Let z,£ € Q. Denote by B, the closed ball centered at x of
radius 2diam@), then 3Q) C B,. Set

T f)le) = [ K (w,y, 2) o (y) fol2)dydz.

max{|z—ylJe—2[} >e

(Es (@:%)

: | f2(y)|dy

)

We have

IT(f1, f2)(§) = T(fix3q fax30)(§)]
= T(f1, f2)(€) — T(fixs0, F2x30)(€) — Todiamq (f1, f2)(€)]

+ [ Todiam@ (f1, £2)(€) — Todiam@ (f1, f2)(€)]

+ [ Todiam@ (f1, 2)(§) — Tadiam@ (f1, f2) ()] + [Todiam@ (f1, f2)(£)]
=1+ 1T+ 11T+ 1V.

By size condition,

I = |T(fixp,\30: foxB.) + T(fi1x3Q, [ixs.\30)| < cnCx M(f1, f2)(2);
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= /nax{xy|v|xz}<2diam62 K(z,y,2) f1(y) f2(2)dydz| < enCx M(f1, fo)(2).
|z —y|2+|z—2]2>(2diamQ)>2

By definition, IV < Ty(f1, f2)(x). Finally, by smoothness condition,

101 < / K (2,y,2) — K€ 9.2)] - 1f1(0)] - |fa(2)]dydz
Ifﬂ y|2+|z—z|2>(2diamQ)?

- Z /. K (,,2) = K(€,2)| - [i(w)] - |fa() dydz
(2kdiamQ)2<|z—y|2+|z—2z|2 < (2F+1diamQ)?2

e / 1 (9)ldy / fa(2)|dz
—1 (2kdla‘mQ)2n B(z,2k+1diamQ) ' B(z,2k+1diamQ) ?

oo
< enM(f1, f2) () Y w(2”
1

e
SanwHDini (f17 2)( )

IN
>~

Now we are ready to prove Theorem 10.2. Denote

Cr =T + T4l + lwllpini + Cre

1 1
LixLt'—L2%° LixLt'—L2*°

Proof of Theorem 10.2. Fix a cube Q9 C R"™. We shall prove the following recursive
inequality,

(10.11)  [T(f1x3Q0s f2X3Q0)(T)IXQo < cnCr(f)300 + Z IT(fixsp;, faxap;) ()X P,
J
where P; are disjoint dyadic subcubes of Qo, say D(Qp) and moreover, ) j |P;| < %|Q0‘.

Once (10.11) is verified, then Theorem 10.2 follows immediately.
Next, observe that for arbitrary pairwise disjoint cubes P; € D(Qy),

IT(f1X3005 f2X300) (%) X Q0

= |T(f1x3Q0> f2X300) () [XQo\us Py + > IT(F1x30, F2X30) (@)X,
J
< T (f1x3Q0 f2X300)(T)|XQo\u; P; + Z T (fix3p;, foxse;) (@) |xp;
J
+ Z 1T (f1x3Q0> f2X3Q0) () — T(fixsp;, foxsp;) ()| xp;
Hence, in order ]to prove the recursive claim, it suffices to show that one can select pairwise
disjoint cubes P; € D(Qo) with >, [P;j| < £|Qo| and such that for a.e. = € Qo,

> T (fixsqo: f2x300) (@) — T(fixap,, f2xsp,) (@) xp,
i

+ T (f1X3Q0, f2X3Q0) () [XQo\u; P; < nCT(f)3Q0-
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By Lemma 10.3 we have || Mor||
that the set

[ . < a,Cp. Therefore, one can choose ¢, such

E:={z € Qo : [fi(x)f2(z)] > cullf1])3q0 (] f2])300 }
U{r € Qo : Mr,g,(f1, f2) () > cnCr (| f11)300 (|f21)300 }

will satisfy |E| < ﬁ |Qo|. The Calderén-Zygmund decomposition applied to the function
XE on Qo at height A = 271% produces pairwise disjoint cubes P; € D(Qq) such that

1 1
g1 1Bl S 1P N E] < S|Pyl
and |E'\ U;P;j| = 0. It follows that },[P;| < $1Qo| and P; N E° # . Therefore,

esssup IT(f1X3Q0 f2X3Q0) (®) — T(fixap;, faxar,)(2)| < cnCr{| f1])3q0 (|.f2])3Q0-

On the other hand, by Lemma 10.3, for a.e. z € Qo \ U;P;, we have

1T (f1x3Q0> f2X3Q0) ()| < cnCr{| f11)3q0 {|f2])3q0 -

Therefore, combining the estimates we arrive at (10.11).

Now with (10.11), suppose that supp f1 U supp fo C Qo € D" for some ug € {0,1,2}".
Without loss of generality we can assume that ug = 0 and Q¢ = [0,1)". Then we construct
a partition of R™ in the following way, which is slight different with that in Lerner’s paper

[34]. Denote bro(Qp) :={Q C @\0 Q) =4(Qo),Q # Qo}, where @B is the dyadic parent
of (Qg. Denote

P(Qo) = {Qo} U U bro(@Qf”),

where Q%) denotes the k-th ancestor of @. Then P(Qo) is a partition of the quadrant
which contains QQg. Let Q);, 7 =1,--- ,2" —1 be the mirroring of ()¢ in the other quadrants.
Then our partition of R” is

n—1

P= i P@)-

It is easy to check that, for any P € P, Qo C 3P. Then apply (10.11) to each P € P, we
obtain

T(f1, f2) ()| = D 1T (fr, fo) (@) IxP

pep

= Z IT(fixsp, faxse)(@)|xp

pPepP

<aCry Y (fself)sele().

PeP QeSp

This completes the proof of Theorem 10.2. O



MULTILINEAR WEIGHTED INEQUALITIES 35

11. A,-As BOUND OF BILINEAR SPARSE OPERATORS

In this section, we study the A,-A,, bound of bilinear Calderén-Zygmund operators.
With the domination theorem in hand, it suffices to study the corresponding estimates for
bilinear sparse operators. Indeed, we shall study a more general class of sparse operators.
To be precise, we consider the following type of sparse operators

/v

2 Y
Apoy,s(f)(z) == Z [H<fi>Q,po] 1o(z) )

Qes Li=1

where for any cube @,

am = (51 /. f<:c>rp°dx)"l°.

Our main result can be stated as follows.

Theorem 11.1. Let v > 0. Suppose that pg < p1,p2 < 00 with % = pil + p%. Let w and &
be weights satisfying that [w, E]Aﬁ/p < oo and w,0; € Aso fori=1,2. If v > pg, then
0

[ Apo 7,5 (01, 02) || L1 (01) x LP2 (09) = L ()

L (- ¢ ”
~ [w,o}ﬁﬁ/p (H[UZ]ZZOO +[w], " Z [l % )’
0 ti=1 G=1i#j

where

<1 1> {1 1 }
- — = i=max<4———,0,.
v P/ 7D
If v < pg, then the above result still holds for all p > 7.

Remark 11.2. If pg = v = 1, then by the domination theorem, the A,-A bound for
bilinear Calderén-Zygmund operators follows immediately (see [40]). Indeed, the above
result actually provided the A,-A., bound for a large class of operators. For example, one
can also use it to bound the bilinear square functions and bilinear Fourier multipliers.

To prove Theorem 11.1, we need the following formula.

Proposition 11.3. Let 1 < s < 00, 0 be a positive Borel measure and

6= agle, do= ) agly.
QeD QcQ

Then
1/s

[6l2-0) < Cs( Y aa(60)2)'0(Q))

QeD

Indeed, the reverse inequality also holds. See [8, 52| for details. However, to prove Theorem
11.1, Proposition 11.3 suffices.

Proof. We use the following elementary inequality
1

(11.1) (Zcu) SsZai Zaj ,

Ji
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where {a;};cz is a sequence of non-negative summable numbers. To see (11.1), notice that
b —a® < s(b— a)bs_l, for 0 < a <b.
Then we have, for any j,

S S
Zai — Zai < sa; Zai

i<j i<j i<j

s—1

Then sum over j, we arrive at (11.1). Now consider the case 1 < s < 2 first. We have

S

Jolli = [ | 3 o] do

QeD
s—1
f;Su/njgz O(ng z{: (XQ/lQ/ do
QeD Q'cQ
=35 Z aQ/ ngSQ*ldU
QeD @
<s Y ago(Q)((60)d) "
QED

It remains to study the case s > 2. Denote k = [s — 2], then apply (11.1) k times we get

S

18150 ) = / S agl | do

QeD
s—1
< 8/ Z aglg Z ag, 19, do
QeD Q1CQ
s—k—1
s8<s—1>'~<s—k>/2ac21@ Yoagle | Y el do
QeD Q1CQ Qr+1CQk
s—k—1
—) Y a0 > ag 3 ag [ | X coulan ] do
QeD Q1CQ QrCQr-1 Qr+1CQk
k—
< c(s) Z aqQ Z QQy Z O‘Qk(<¢Qk>an)s IU(QR)
Q€eD Q1CQ QrCQr—1
—k—1
—C(S)/ZanQ Y agle - Y, a((60)d) g, do
Q€eD Q1CQ QrCQr-1

IN

(o) [ (3 a0ta) (X aallda)d) ™ 110)do

QeD QeD
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—k—1

5) / < > anQ)HS’“l( > O‘Q(<¢Q>€2)S_11Q)55Td‘7
QeD QeD

)6l (3 aaliea)dy~e(@) = .

QeD

where ¢(s) = s(s —1)---(s — k). Then the desired estimates follows provided that
10| s (o) < oo O

We also need the following proposition.

Proposition 11.4. Let S be a sparse family and 0 < v,n < 1 satisfying v +n < 1. Then
(11.2) D @hWBIRI S (w)h(v)hIRI.

QeS
QCR

Proof. Indeed, set 1/r :=~v+mn,1/s:=v+(1—1/r)/2 and 1/s' :==1—1/s. By sparseness
and Kolmogorov’s inequality, we have

D WH BRI <2 > (u)g ()| Eql

Qes Qes
QCR QCR

< 2/ M(ulgr)"M(vlg)"dx

/s
<2 /M’LLIR SV /leR)5ﬂ> ’

S (WRIRIV ) RIRIY = () (v)§IR].
O

To prove Theorem 11.1, we make the following two observations.
Observation 1. Our first observation is that we can reduce the problem to study the
case of pg = 1. Indeed, consider the two weight norm inequality

(11.3) [ Apo, s (1o f2) |l Loy < N (P, o, v, w0, &) f1ll Lot ) | 2]l 292 (n)
where we use NV (P, po, v, w, &) to denote the best constant such that (11.3) holds. Rewrite
(11.3) as

1 1

[ Apo,,s (2 FEOES < N (P, po, 7y, w, 0)p°Hf 1701 gy 112 Hmw ;
1) (w2)

which is equivalent to the followmg
”-’41,%,8@017 fQ)HLP/Po(w) < N(P,po,’y,w, &)poHfIHLpl/Po(wl)Hf2HLP2/P0(w2)'

Therefore, if we denote by N(]S,’y,w,o) the best constant for the case pg = 1, then the
best constant for general py would be N (P/po,~/po, w, o) /Po. Therefore, it suffices to
study the case of pg = 1.

Our second observation is the following
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Observation 2. Consider the case p > . Let A/ denote the best constant such that the
following inequality holds

(11.4) A1 .5(f101, fao2)ll Lo w) < N fillzes o) f2l ez (00)-
Then (11.4) is equivalent to the following inequality with N/ ~ N7

1) (g g enhiedite)

QES
Indeed, on one hand, if (11.5) holds, we have

[ A1.5(f101, f202) || 1o (w)
< ||( S ez (g ez g e enigla) |

QeS
S NIME ) oy |5 (2 )

Lm/v (01) LPQ/’Y (02)
<N fllzer o 121l 2p2 (005

where M7 denotes the dyadic weighted maximal function, namely

SN

Lr(w)

LP(w)

(11.6) M2 (f) = sup

/yf Vodz,
EDU

which is bounded from LP(c) into itself for every p > 1. On the other hand, if (11.4)
holds, we have

H( ﬁmh><>u%my

LP(w)

SM%;M“N%>MWMGM$mmam@@W

LP(w)

< NIMES A o o) 1M (£ o2 (02)
SN o ool fa” Nl o2 (00)s

where M7 1(f) = (ME(f7))"/7 and we have used in the last step that p > ~, which implies
p1,p2 > v and consequently, the boundedness of the maximal functions.
Now we are ready to prove Theorem 11.1.

Proof of Theorem 11.1. First we consider the case p > 7. With Observation 2, it suffices
to estimate

(> ﬁﬂﬁ><><mwfmw

Qes

= sup > ()G ()G o) (02) /hdw

171l Lo () =1 Qes
= sup Y (GGG 0L {o)hw(Q),
”h”qu(w>:1 Qes

where ¢ = p/v. For each i = 1,2, let F; be the stopping family starting at Qo and defined
by the stopping condition
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chz, (F;) :== {F/ € D: F/ maximal such that <f2> > 2(fi) 7 -

Each collection F; is o;-sparse, since

, 1 ZF{ech}-‘(Fi) Jp: fdo 1
E (F < = i i (FY < Zg:(E).
oi(F;) < 2 fFZ fdo Uz(Fz) > 2Uz(Fz)

Flechz, (Fi)

The F;-stopping parent 7wz, (Q) of a cube @ is defined by
77 (Q) := {F; € F; : F; minimal such that F; O Q}.

By the stopping condition, for every cube @ we have <fz>UQZ < 2(fz>z; Q) Let ‘H be the

analogue stopping family associated with h and the weight w, verifying the corresponding
properties. By rearranging the summation according to the stopping parents and removing
the supremum, we obtain

YIS G (MG lon (e hw(@)

(xry ¥ ~¥xys ¥

FeF1 FoeFa HEH Qes FeFy FieF HEH
FCF HCF, m(Q)=(F1,F2,H) FCF HCF r(Q)= (F17F2aH)
LD DD DD DN DD
Fi1eF, HEH FreFs QES FoeFo HEH FLeF QES
CF F2CH n(Q)=(F1,F2,H) HCFy FiCH n(Q)=(F1,F2,H)
IO VD VLD DI DD D )
HeH FreF, FoeFs QeS HeH FoeFs F1€F, QeS
FiCH FoCly n(Q)=(F1,F»,H) F>oCH F1CF n(Q)=(F1,F»,H)
x (fg (f205 (M GAQ
=1+ +IT+1I'+1IT+11T,

where 7(Q) = (F1, F», H) means that 7x,(Q) = F;, for all i = 1,2 and 74 (Q) = H and

Aq = (01)p(02) yu(@Q).

First, we estimate I. We have

EDID VD VD SR

Fi1eF1 FoeFo HEH
F,CFy HCF2 r(Q)= (F1,F2,H)

S8 (R D RBE D WE > X

Fer FreFo HeH QEeS

FChy HCE TI'(Q):(Fl,F2,H)
S Snm Y wn (s )
FeF FhyeFs Hen

FoCFy Try (H)=F2
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AQ
>~ X gl

FieF FreFs HeH QES
wF (Fo)=F1 7 ry (H)=F2 n(Q)=(F1,Fs,H)
XH sup hyg ]|
Sup (Melm|,, )
71'_7:2(H’):F2
o o A 1/q
<(X Summrwpe| X > vt )
FieF FreFo HeH QEeS
wF, (F2)=F1 7Fy (H)=F2 n(Q)=(Fy,F»,H)

(X Xz () w(e)

FieF1  FeF
nr (F2)=F1 WIQ(H) Fy

A
(Y Sumame X > e |
FeF, FaeFo HeH QeS
7r (F2)=F1 7y (H)=F2 71(Q)=(F1,F»,H)

q )1/q
L4(w) )
Now it remains to estimate the following testing condition

| ¥ C G, T X e

HeH Qes HeH Qes w)
7y (H)=F2 n1(Q)=(F1,Fs,H) mry (H)=F2 n(Q)=(F1,F»,H)
/v p
Y Y
<|( X ondieante) T,
QeS
WfQ(Q):FZ

By the monotonicity of £7 norm on -, it suffices to estimate it for small . Therefore,
without loss of generality, we can assume that v < 1 with (p/7)" < p1 = max{p1,p2}.
Then it is easy to check that

/ /
(11.7) 0<y— oy o<1 o
V%) b
and
/
(11.8) S S
p2 b

By Proposition 11.3, we have

I3 oeiie) = (X ey X tenbieniu@) )’
QeSS Gk

TFy (Q):FZ TFy (Q):FQ
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(p—7)p} _P phy p
mitf L X 1 04 Sebad BN P 4 -
< g p2 - Py P '\
Stodl,” ( > AQ(w(Q)Q;Q<a2>Q, Wy 7 1Q1)" )
7T]~'2(Q):F2
(11.2) =0} 1 e S R L TN A
- » Py P ¥ P
S 0,3, QZS Ya(yigriode "o TIR)T)
71']:2(Q):F2
=mry (1= (p—y) g rhe) 1/p
=, (X 0dleg P wlg 7 IRl
QesS
WFQ(Q):FQ
(r—7)P} 41 (r—7)P} P P 1/p
S 77 (01)5 (020 1Q))
Qes
7r.7:2(Q):F2
1 . D /p
=i (Y end g1l
QES
WFQ(Q):FZ
Then
—‘1 ag o 2 L 1/(]
Iswdi (S WmmT Y WRRT Y @nd @)§ 1)
FreF FoeFo QES
7F, (F2)=F1 Try (Q)=F2
—»1 (o o oy AR
< (X wmr Y wRr (X ) (Y (eal@l)™)
FieF FreFo QES €S
nr (F2)=F TF, (Q)=F2 TF, (Q)=F2
—*l g g 22 s
clwdi, (X s X mnt X eelel)®
FreF FoeFs QeS8
mr (F2)=F1 T, (Q)=F2
2\ 1/q
(XX (eela)”)

FoeFo QES
7 r (F2)=F1 75, (Q)=F2

<wali (Xt XX (eele)”

Fer FreFs QeS
7 (Fo)=F1 7, (Q)=F;

v

(XY T Y (ealel)™

FieF FoeFo QES
mr (F2)=F Try (Q)=F2
z a2 a
< [w, 1% ol & o2l 22 11l o oy 1 f2ll Loz )
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By symmetry, 11 and I1] can be reduced to the following testing condition

AQ (p2/7)'
H > > o2(Q QHL@z/W (02)

FeFy QEeS
TH (FQ):H W(Q):(FLFQvH)

and
(p2/7)

L(pz/v)’(gz)

Ao 1
PREE
7r (F2)=F1 7(Q)=(F1,F2,H)

respectively. It suffices to prove the first one. Now let us consider the case (p/v) >
max{p1,p2} and (p/v) < max{pi,p2} separately. For the case (p/7) < max{pi,p2},
without loss of generality, we may assume that p; > ps. Again, having into account (11.7)
and (11.8) and using Proposition 11.3, we obtain

-1
| > ongiony whola| ey
QeS
mn(Q)=H

(02)

Z )‘Q( Q)

Qes Q'CQ
T (Q)=H
v(1-21) _or (B2y 1\ b
< w ”2( > dolsig X e g T1Q1) )
Qes Q'CQ
T (Q)=H
(11.2) ki 1 (_Pil) _ v (B2) 1\ —&
-1 PP2 2 D ¥ (7)/
S AL (X rlGgire Tie TS
3 (Q)=H
/2 /
WY =GN =1) 2y z2y_y) N
=[w,d17 (S (bl (w)g' Q)
QeS
7w (Q)=H
5 (B2 (2
<lwdlh (X tong” g " IQl)
QeS
w(Q)=H

In this case,

D p
Y7 -
1 2

Moreover, since we are considering the case p > ~,

M AN A N PR I
V41 V%)
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Applying Proposition 11.3 again, we have

| 5 iy watal,ar,

QeS
mn(Q)=H
A gl i Ve
(X Na(sg T eblenpu@) )
QeS Q'ce
T (Q)=H
Py 1 Y L’ (Q)/_ D2y
<wd7 (> eof @ 2 (e L
Qes 2 acq
™ (Q)=H
(11.2) ol 1 ¥ 7% (PQ )/_1 pé -
w,am A o P Py v ()
< a7 ( > oyl "Holg Rl) )
T (Q)=H
rs (=) s (e (=)= 57)
—wdz (Y eng T Mg (whel@l)
QesS
m(Q)=H
5 ’Y(p72)/ (Q)’(l— ) P
<l dh, (D (o™ g Il
QesS
7 (Q)=H

where again \g = <01>22<02>221U(Q). The proof of the case p > + is completed by combining

the above estimates. It still remains to consider the case p < . In this case, we have

H( B UG, <z>221Q)i\;(w)
(S S ¥ ieste) I,
FeF FheF; Qes
m(Q)=(F1,F2)
<( S X awpr| X g, )’
Fer FReFs QesS

m(Q)=(F1,F2)

s(Tunmr S wmwr| 2 <”1>Zz<f’2>zz o)
FieF FyeFs QeS
FoCFy WFQ(Q)

(X e X wmny| X e0gledief,,, )"
faer PR .

Then by the same calculation as that in the above, we can get the conclusion as desired. [
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Theorem 11.5. Let v > 0. Suppose that pg < p1,p2 < 00 with % = p% + p% and set
q=p/v. Let w and & be weights satisfying that [w,&|a,, < oco. If ¥ > po, then

P/o
[ Apo.~.5(-015-02) | Lp1 (o) x LP2 () = LP ()

11.9 Pi)
( ) < [w O_}AIA/{? 1/p + Z - 1/’7(

where [&i]W,%‘E =1 if p <~ and otherwise,

L (p; /«,) <pi_//v)’
[U]Wg; —sup /M low) ¢ HM 1goj) Pil? d:v)
J#i
@i/
(pz/w) L 1
</ HO’ Pil d:n) .
JF#i

and
1

[7]1/1/}2; :sgp(/QﬂM(ailQ);dx>(/Qf[10;dx>_ < 0.

If v < pg, then the above result still holds for all p > .

Proof. We can do the same analysis as that in Theorem 11.1. The main difference is, for
example, when we estimate I, we have
— z o o o oy 1/q
Iswai, (X (R Y (R Y e0d 23 10)

FieF FreFs QES

nr (F2)=F T, (Q)=F2
L2 B » 1/q
<fwals (3 (g / M(Lp,00) % M(Lpy02) P da
Per F2€]-—2
7F (F2)=F
2 ol " > 2 2 1/q
<l @hs (S (R Y (mpy [ oftol)
Fer FreFs F
mr (Fo)=Fy
k1 7 " 2 o/p; 1/q
<[w, 51 i / Z (SR )R Z ((f2) %) 1R, H‘Tz' Zd@")
Fer FeFs =1
7TJfl(F2)=F1
I I / 1/q
< w314, ([ M2 (0 (1) q]‘[ap )
z 2z o1 g2
< [w, G4 [0 [Mp (F) | Lor (o)« 1M (F2] 1277 (o)
P P
x ol
S [wa&]25[5]%§“f1”LP1/W(U1) : Hf2HLp2/7(o—2)~
The other terms can be estimated similarly, this completes the proof. (I

We also have the following type of bound.
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Theorem 11.6. Let v > 0. Suppose that pg < p1,p2 < 00 with % = p% + p% and set
q=p/v. Let w and & be weights satisfying that [w,&|a,, < oco. If ¥ > po, then

P/pg
0y oF tar
(1110) ||"4p01“{as(.0—17 '0—2)”[/1)1 (o1)x LP2(02)—LP(w) < ['LU, O_]Z /o /p + Z /p

where [& ]Hoo =1 if p <~ and otherwise,

i(E-1)+

i pé(l*l)+ 1 Pily
], = sup(w)y " 7" exp (f w
B Q 0

// . p;/pj
x [[(o0g" exp (][ Uf) »
LL Q

J#i

and
m P L P
i — A\ Pi —1)Pi
[w]H%o = sgp H<wZ>Q exp (][ log w; ) .
i=1 Q
If v < po, then the above result still holds for all p > 7.

Proof. Likewise, we only study the estimate of I. Again,

| > ondeiel

Qes Low)
7I']:2(Q):F2
a2 £ L v/p
<wdi( Y (ong gl
QES
7T]?2(Q):F2
1 2 2 \y/p
<fw, s (X Lo (f 1oge) 1))
r Qes  i=1 Q@
WfQ(Q):FQ
7 L v/pi
< [w,a]iﬁ[a]ﬁg@n< Z exp <][ logai>]Q|)
R QeS Q@
7'(']:2(Q):F2
R v/p1 X
Sl The (Y exw(f lozen) i) Mo (1m0 I
r Qes Q
7T_F2(Q):F2
_,% _,% 2 ’Y/pl
< [waU]Aﬁ[U]HEOO-Q(F)pQ( Z €xp (][ log01)|Q\)
r Qes
ng(Q):FZ

where

(1111) () = supes  f 1) 10
Q Q
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is the logarithmic maximal function. Here we have used the fact that this maximal function
is bounded from L? into itself for p € (0, 00) with bound independent of the dimension in
the dyadic case as proved in [25, Lemma 2.1]. Hence,

1< lwdls BHE (3 (R Y (R)ear)n

Fher FeFs
mF (F2)=F
X ( Z exp (][ 10g01>\Q|)p/p1>%
Qes Q
FQ(Q) Fy
bt P
<lw. s FHE( S (R (X (BB e)”
r FerR FreFs
7F (F2)=F
X2
(X X eo(fwen)ie)™)
FeFs QEeS Q

71']:1 (FQ):Fl TFy (Q)ZF?
s

S[wﬂi[ﬂ%}%( Z ((f1)3) Pl/V( Z Z exp (][Qlog01>Q|))P1

FreF FoeFo
7nr (F2)=F1 7rJTQ(Q) Fy

(3 (R 0a(F)) ™
FeF 7r]:1( ]):

X
< [w, U]z [_’] 1%;Hf1||Lp1/v(01)||f2HLpz/v(02)-

12. APPLICATIONS

12.1. Mixed Ap-A,, estimate for commutators of multilinear Calderén-Zygmund
operators. Throughout this section, we will work with commutators of multilinear Calderén-
Zygmund operators with symbols in BMO. Recall that BM O consists of all locally inte-
grable functions b with ||b||pamo < oo, where

blso = sup / Ib(y) — (Bholdy,
Q| ?

and the supremum in the above definition is taken over all cubes () C R"™ with sides

parallel to the axes.
Given a multilinear Calderén-Zygmund operator 7" and b € BMO™, we consider the

following commutators with b,
b,T]=> [b,T},

where

— —

0, T)(f) == bT(F) = T(fry-- -, fic1,bifi, firt, -+ s fm)-
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Our aim in this section is to prove the following mixed estimate for commutators of
multilinear Calderén-Zygmund operators following the same spirit as in [10].

Theorem 12.1. Let T be a multilinear Calderdon-Zygmund operator and be BMO™. If
we assume that [w, 5], < oo, then

118, T 221 (a5 Lo ) L (a0

< fw.a)y ([T, + i S [Tl
i=1 =1 i#j

x ([wlaw + Y _loila) (Z Hbz’HBMO> :
=1 i=1

1-p}

where oy =w; "', i=1,...,m.

Before proving our main result in this section we need to recall some basic properties
about BM O functions and A, weights that we are going to use in the sequel. Recall that
a key property of BMO functions is the celebrated John-Nirenberg inequality [28].

Proposition 12.2. [29, pp. 31-32] There are dimensional constants 0 < o, < 1 < B, <
oo such that

1 o’
(12.1) sgpw/CQexp (s b(w) = (o) du < .

In fact, we can take oy, = 72n1+2‘

It is well-known that if w € Ay, then logw € BMO. Using the John-Nirenberg inequality,
Chung, Pereyra, and Pérez [10] proved the following bound.

Proposition 12.3. Let b € BMO and let 0 < oy, < 1 < B, < o0 be the dimensional
constants from (12.1). Then

1
seR, |s| < min{1, F} = e e A, and [eSb]AP < pP.

n
1bll Baro
In [25], Hytonen and Pérez also showed the following bound for the Fujii-Wilson A
constant of a particular family of weights.

Proposition 12.4. There are dimensional constants €, and c, such that

. £
[eRe*Pw] A, < eplw]an, if |2 < m-

For our purpose, we need to show the following variation of the previous lemmas.

Lemma 12.5. Suppose that [w,&’]AI3 < oo and w,0; € Ao, i =1,2--- ,m. Then for any
1<j<m,
[weprcz7 o1, ’O.je—pjbRe27 e ’o'm]AI5 < cn,];[w7o-]A"’
provided that
o min{l,%,-u ,%}

o T ma A oalan, s lomlas DIolza0”
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To prove the previous lemma, we need to recall this sharp version of the reverse Holder’s
inequality proved in [25].

Proposition 12.6. Let w € Ay. Then for any 0 <r <1+ m, we have

yr 1
\Q!/ dx 2\@] Qw(x)dx.

Proof of Lemma 12.5. Set
1

cp max{[w|a,,[oj]la}

By definition of the A5 constant, Holder’s inequality and Proposition 12.6, we have

r=1+

[wepreZ’ o1, 7Uje—p3bReZ’ . 70m}A};
5z
_ 5up(wepreZ>Q<a e pjbRez>;j H<JZ>8
@ i#j
r % pbr'Rez % r % —p’.br'Rez ij Pli
< sup(w")ge )o (oh)g (e [[iong
i#]
N T - z,
' j - R " P
< 4sup(w)o(e” ) g (07) g (7)o" [[lo0)g
Q oy
L
< pbr'Rez1 77
Ao, A
Pj
< CnJB'[w:&]Aﬁa
where Proposition 12.3 is used in the last step. O

Now we are ready to prove the main result in this section.

Proof of Theorem 12.1. It suffices to study the boundedness of [l;, T);. Without loss of
generality, we just consider the case i = 1. Using the same trick as that in [10, Thm. 3.1],
for any complex number z, we define

TXHf) = T (e f1, far -+ s fom)-

Then by using the Cauchy integral theorem, we get for “nice” functions,

2 1 T!(f)
—Tl = — d > 0.
[ ] < ) (f) 2=0 27TZ ‘Z|:€ Z2 Z €
Next, using Minkowski’s inequality, for p > 1,
. 1 .
(12.2) 16, Th ()l o) < 2/ T2 () e ()]
2me |z|:5

Notice that
(12.3) T2 Ergwy = 1T (€ f1, for -, Fon) | o (werbries)-
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Therefore, applying the boundedness properties for Calderén—Zygmund operators in The-

orem 11.1 for weights (weprez,wlepleez,wg, cey W) with pg =y =1, we get
_ ! 1
1T (e f1, far- - Fon) Lo enmesy S [ w, e pleeZO-1702a--~aO'm]A/§
m , m
« ([efpleezo_l]z/il H[UZ]}LX/OI: + [eprezw]}q/i <H[UZ].1A/£Z +
(12.4) =2 i=2
m
—p 1 1/p;
+ Z[O'le pleez]A/il H[ Ay /pi )) || fre” zb HLpl(ebleezwl) H 1 fill Loi i)
i'=2 it
i>1

Combining (12.2), (12.3) and (12.4) and using Proposition 12.4 and Lemma 12.5, we arrive
at

(12.5) 1 i

< ool Al | [Tl + | 1/pZH 147 HHszLpz(w»

i=1 i'=14'#1i

Now taking
Cn, P
([wlan + X% [oi]ac ) b1l Baro
where ¢ . is sufficiently small such that it satisfies the hypotheses in Proposition 12.4
and Lemma 12.5. Then,we obtain

E =

. om ;/
1, Tl S 15 ([Tl + w1 S TTowl%
=1 j=11i#j
x ([wlaw + ol a)llbllsao [T Fillriw,)-
=1 i=1

The general result follows immediately combining the estimates for all the commutators
in the different variables. [l

12.2. Mixed A,-A., estimates for multilinear square functions and multilinear
Fourier multipliers. The results obtained in Section 11 can be applied to different in-
stances of operators which can be reduced to the simpler dyadic operators Ay, - s.
Firstly, observe that the mixed weighted bounds obtained in the main theorems in Sec-
tion 11 can be extended to the case of multilinear square functions taking into account [7,
Prop. 4.2] and choosing py = 1 and v = 2.

These mixed bounds can also be extended to multilinear Fourier multipliers, which are a
particular example of a general class of operators whose kernels satisfy weaker regularity
conditions than the usual Holder continuity. To obtain the corresponding mixed bounds,
it is sufficient to consider the results in [6] together with the main theorems in Section 11
for v = 1. It is worth mentioning that these mixed bounds for Fourier multipliers seem to
be new in the multilinear scenario.
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APPENDIX A. UNWEIGTHED BOUNDS

In this appendix we state and prove some well-known boundedness results for bilinear
Calderon—Zygmund operators and their maximal truncations defined in Section 10, which
also hold in the multilinear setting. It is worth mentioning that the novelty of these results
is not only that they are stated in a quantitative way that will be useful for our purposes,
but also that some of these results are proved under weaker regularity conditions on the
kernels than those results in the literature.

Lemma A.1. Let T be a bilinear Dini-continuous Calderon-Zygmund operator. Then T
1
is bounded from L' x L' to L2"*° and

(A1) 1T g 1o pirzoe ST Lo xpa2— 20 + [|lwl|Dini,

where ||T||pa1 xLe2—1a denotes the norm of the operator as in its definition.

This result was proved under the Dini(3) condition in [42]. Observe that Dini(1/2)
condition is an stronger condition than Dini condition, which is also referred to as Dini(1).
In [46], Pérez and Torres studied the problem under the BGHC' condition. Namely, we say
that a bilinear operator with kernel K satisfies the bilinear geometric Hérmander condition
(BGHC) if there exists a fixed constant C' such that and for any family of disjoint dyadic
cubes Dy and Do,

(A.2) / sup/ |K(z,y,2) — K(x,yg, z)|dxdz < C,
nyeQ R\Q*
(43) [osw [ K2 - Ko p)ldody < €,
Rn zeP JR\ P*
and

> IPIQI sup

(A.4) (P,Q)ED1x Dy (y,2)€P%Q /R"\(UReDl)U(USeDQ)
< C(|Upep, P|+|Uqep, Q).

Here Q* is the cube with the same center as @ and sidelength 10,/nf(Q).This condition,
which is actually stated here in an equivalent way, was shown to be weaker than the Dini
condition in [46, Prop. 2.3]). Thus, Lemma A.1 follows immediately from the mentioned
result. Here we give the proof with the precise constants.

|K(:Ea Y, Z) - K(ZL‘,yp, ZQ)|d$

Proof of Lemma A.1. Suppose that T is initially bounded from L% x L% to L4, where
Lyl %. We shall dominate the bound ||7'|| 1y 71, 71/2,00 BY | T|| L1 x 9214 + ||| Dini-
Indeed, fix A > 0 and consider without loss of generality functions f; > 0, ¢« = 1,2. Let
a; > 0 be numbers to be determined later. Apply the Calderén-Zygmund decomposition
to f; at height ;A\, to obtain its good and bad parts g; and b;, respectively, and families
of cubes {Q%}; with disjoint interiors such that f; = g; + b; and b; = Y, b} verifying the
properties in [20, Thm. 4.3.1].

Next, set ; = U;AnQZ. We have

{z  IT(f1, f2)(@)] > A}| <[] + |

+lire U Tl g)@)] > 3}



MULTILINEAR, WEIGHTED INEQUALITIES 51
. A
+ [z € (U UD): [T(g1,b2) ()] > 7}
A
+[{z € (@ U T g2) (@) > S}
A
+ [{z € (9 UQ)°: |T(by, b2) ()] > Z}"
It is easy to see that

0]+ 1] < Co(S il + =Sl

For the third term, using Chebychev’s inequality and the boundedness properties of T" and
gi, we have

. A
[z € (M UQ)°: [T(g1,92)(2)] > T}
< E||T(91792)||Lq

< EHT”%H szﬁLqul”%m HQQH%qQ

449
<
= \a

For the fourth term, if ¢; denotes the center of the cube Qi, we have

Cn,q,qw]z ”TH%% x L9214 (al)‘)q/ql (aQ)‘)q/q2 Hfl ||qL/q1 Hf2 ||q/q2~

o€ (@ U) : [T(a1, b)) > )]

3 ] 2] [, = Ko iz
X[ [ [, ) - Kl o] e
Y NIECE ) T e
e[ [ [<(mie ) G b et
<X [ ] ]« (=) s v

ﬂ(@?) b5(2)|
=C “Z/ /| @) 2|x—z| )|x—z\nd””d'z

< G ar||lwllpimill f2ll 11

| /\

where we have used the cancelation properties of b’g, the regularity condition on the third
variable of K (since |z — ¢x| < Tmax (|Jz — y|, |x — z|) for x ¢ Q1 U Qa), the fact that w is
increasing, the Dini condition, ||g1||r~ < cparA and Y, |65 21 < cnl|follpr-
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Since the estimate of the fifth term is symmetric to the previous estimate, it remains to
estimate the last term. If we denote as ¢; and ¢ the center of the cubes Q} and Qz,
respectively, proceeding similarly as in the previous estimate, we obtain

[{z € (U Q)" |T(b1,b2)(x)| > }‘

/ !Z / / K@,z ) = K (2,9, c0))bh (1) () dzdy| da

=X Z /(M) /Qll / V@ y.2) = K@y, ) A ) I() ddyda
A,y o S A
- A%:/ / / e V22 —gﬁ?— ) <||Zl1(—y)c|z’|b%2’ixj$l;

2 1 .
<C, ZQIHQMOQOQ/\/ w(ﬂ (Q3) +4(Q})) )( d

@uay)e \2(|z —al + [z —ck))/ (|2 — al + [ — cxl)*"

Qk) + E(Ql ) dxdydz
<c’ Zalag)\/g/l/mugs’c( |x_y|+\m—z|))(\x—y!+|x—2|)2n

= C’ 10\ / +/
Z e ( HR>(Q}) Z(Q})Zf(Qi)>

§I+II.

By symmetry, it suffices to estimate I. We have

I<Cza1a2)\/2/ /n \Fer )( dydzdz

(Q1UQ,)° [z —z[ /(lz =yl + |z —z[)>"

_ fﬁ(Q ) 1
=C), Zam@)\/2/ﬂlu92 a:—zk| >|x—z|"d$dz

< Choq||w||pinill fol 1 -

Combining the arguments above, we have

{a T (f1, f2)(z)] > A}
1 1
N m”leLl + @Hﬁ”Ll

TN or s s o (01) 7% () VNI 1| 90| fol| 222

+ o ||w||pinil f2ll 2 + 2 ||w|Dinill f1] 22

\ /\

Take
1 Hfl”Ll 1

A_7 1
HfQHZI (1T ar x Loz —za + [|w[|Dini) 2
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_ sl i

10
2

12, (1T o seron 2o+ ol
we get

2
Mz T (f1, f2) ()| > A} < (1T por xza2—za + [lwllDimi) 11z [ 2]l 21
]

We also need to show that the maximal truncated operator T} is bounded from L' x L'

to L3 Therefore, we need to check first that Cotlar’s inequality holds for this class of
operators.

Theorem A.2. Let T be a bilinear Dini-continuous Calderdn-Zygmund operator with
kernel K. Then, for all n € (0, %), there exists a constant C such that

(A.5) Ti(f) < enn(Cr + |wllpini + ||| Lo x 2925 £a)M(f) + My(IT(F)]).-

In this proof we combine the strategies used in [42, Thm 6.4] and [26, Lemma 5.3] to
determine the precise constants involved in the inequality.

Proof of Theorem A.2. Let us begin defining the following maximal truncation

fﬁ(f1,f2)( )—SUP T.(f1, f2)(2)|,

>0
where
T.(f1, f2)(z) = / o KAL)
maxy (T y r—=z I
Since
A oo K RO R S CMf o)),

2=y +]z—z|*>e?

it suffices to show (A.5) with T} replaced by TZN’ﬁ Notice that we can write for 2’ € B(z,e/2),
L= [ K@) - K@) i) e
maxq |T—Y|,|T—2|}>€
+ T(fb fQ)(xl) - T(f{)a fg)(x,)v

where fzQ = filp(a,)- For the first term in (A.7), using the regularity assumptions on the
kernel, we get

/ (K(2..2) — K(/9,2) u(0) fo( )y
max{|z—y|,|z—z[}>e

< / ( |z — | ) [f1 () f2(2)|dyd=
N max{|z—yl|,|x—z|}>¢ |$ - y| + |‘T - Z‘ (|.CU - y| + |‘T - Z‘)Zn

> |z — /| 1
dyd
/Mmaxm_m,x_z|}<2k+1a“’( ) g () s

(A7)

k=0
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M(f1, f2) (@) iw( 372;;;/‘)

k=0
— d
M(f1, f2) (= 2/2 |£U fU| tt
0o |o—a|
=T d
:M(f17f2)(x)2/11:/ w(u)gu
k=0 2
2lz—a’]

— M1, f2) (@) /0 O L
< |lw||piniM(f1, f2)(x),

where the last step holds since |x — 2’| < €/2. Next, taking the L7 average over z’ €
B(x,e/2), we arrive at

ITo(f1, f2)(@)] S lwllpimiM(f1, f2)(x) + My(IT(f1, £2)]) (@)

1/
('Bxsm/ze/z) f17f2)(96)|"dq;) |

For the last term, using Kolmogorov’s inequality to relate the L" and L'/%° norms and
the boundedness of T from L' x L' to LY/2°, we obtain for any n € (0, %),

(ere/2|/ms/z b pas)

:||T(f1uf2)|‘m(]gg(m,%)7ir
B(z,5)]
S CT]HT(f{)?f3)||L1/2,oo(B(z7%)7 dzs )
Bz, 5)]

< CyllTl prpr s p1/20e M(f15 f2) ().

Combining all the terms, we finally arrive at

T2 (f1, f2) ()] < cnll|wlDini + Coll T 11 p1 s 12,00 )M (f1, f2) ()
+ My(|IT(f1, f2)|)(z),

which taking into account (A.6) and (A.1) leads to the desired result. O

As a corollary of the previous result follows the weak boundedness of the maximal trun-
cation of T

Corollary A.3. Let T be a bilinear Calderéon—Zygmund operator with Dini-continuous
kernel K. Then

(A.8) T Lo pizee S (O + l[@llpini + [T 201 92 1)

Proof. Fix n € (0,1/2) and use the previous result together with the weak boundedness of
the multilinear maximal function and bilinear Calderén—Zygmund operators and the fact
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that M, oT : L' x L' — LY2%_ To prove the latter, notice that for the Hardy-Littlewood
maximal function using [26, Lemma 2.2], we can write

i
M(f) =Y Mu(f),
u=1
where )
U - e d
M(f) = s oo /Q F()ldy
QeDY
Therefore,
{o: MOT(f, f2))(@)7 > N €3 o s MuT (s o)) @) > A/3")].
u=1
Denote

1
By :={x € R": Mu(|T(f1, f2)[")(2)7 > A/3"}.
We can find a collection of maximal dyadic cubes {Q;}; such that E, = U;Q; and

1 o
“Qj’/gjfjxfl,féﬂn > NT(3")7,

which means that

|Ey| < (3")")\_’7/ IT(f1, f2)", w=1,...,3".

u

Now using Kolmogorov’s inequality and the fact that 7' : L' x L' — LY/2°° and assuming
that n < 1/2, we get

n < n
[ TG S TG B

Combining both estimates, it follows that

Bl < X7"GY) AT 0T 1B,

|Eul < ANl 1B 2"

which is exactly,
NEul? < cngllfillill f2ll1-
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