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W. Damián, M. Hormozi and K. Li.

Prerequisites

We will assume a prior knowledge of real and functional analysis, measure and integration
as well as some basic inequalities such us Hölder and Minkowski. Previous knowledge of
the unweighted multilinear Calderón–Zygmund theory contained in [21] will be desirable
but not necessary to understand the course.

Purpose and description

The purpose of these notes is to give a short but detailed introduction to multilinear
weighted inequalities and the usual techniques of proof in the area.
On one hand, we start describing the main object in this area, the multilinear maximal
function, and how it controls the class of multilinear Calderón–Zygmund operators and
allow us to define the right class of multiple weights. We also prove the generalization of
Muckenhoupt’s one and two-weight problems for the multilinear maximal function M as
well as some multiple (sharp) weighted inequalities for multilinear maximal functions and
sparse operators.
On the other hand, we give a pointwise control of multilinear Calderón–Zygmund oper-
ators of Dini type by sparse operators. As a consequence of this result and using some
mixed weighted bounds for a general class of sparse operators, we will be able to show
similar bounds for several multilinear operators such us Calderón–Zygmund operators,
their commutators with BMO functions, square functions and Fourier multipliers.

1. Introduction

The origin of the modern theory of weighted inequalities can be traced back to the works
of R. Hunt, B. Muckenhoupt, R. Wheeden, R. Coifman, and C. Fefferman in the decade
of the 70’s. The basic problem concerning weighted inequalities consists in determining
under which conditions a given operator, initially bounded on Lp(Rn), is bounded on
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operators.
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Lp(Rn, µ), where µ is an absolutely continuous measure with respect to Lebesgue measure,
i.e. dµ = wdx. Here, w denotes a non-negative locally integrable function on Rn that is
positive almost everywhere, that is called a weight.
A sustained research period was started with the groundbreaking work of Muckenhoupt
[45]. In this work he characterized the class of weights u, v for which the following weak
inequality for the Hardy–Littlewood maximal operator and for 1 ≤ p < ∞ holds

(1.1) sup
λ>0

λp

ˆ
{Mf>λ}

u(x)dx ≤ C

ˆ
Rn

|f(x)|pv(x)dx, f ∈ Lp(v).

(1.2) ||M(f)||Lp,∞(u) ≤ C||f ||Lp(v).

This condition on the weights is known as Ap condition, namely

[u, v]Ap := sup
Q

(
1

|Q|

ˆ
Q
u(x)dx

)(
1

|Q|

ˆ
Q
v(x)

− 1
p−1

)p−1

< ∞, p > 1,

where the supremum is taken over all the cubes in Rn. Note that when p = 1, the

term (−́Q v(x)
− 1

p−1 )p−1 must be understood as (ess infQ v)−1. Although weights in the Ap

class are also known as Muckenhoupt weights, it is worth mentioning that variant of this
condition was previously introduced by Rosenblum in [50]. In the particular case u = v
and p > 1, Muckenhoupt also proved that the following strong estimate

ˆ
Rn

(Mf(x))pv(x)dx ≤ C

ˆ
Rn

|f(x)|pv(x)dx, f ∈ Lp(v),

holds if and only if v satisfies the Ap condition.
From that point on, the interest of harmonic analysts focused on studying weighted in-
equalities for the classical operators such as the Hilbert and Riesz transforms and other
singular integral operators leading to a wide literature on one-weight norm inequalities.
However, the problem of finding a condition on the weights u, v satisfying the strong
estimate above was much more complicated. It was not until 1982 that E. Sawyer [51]
characterized the two weight inequality, showing that M : Lp(v) −→ Lp(u) if and only
if the pair of weights (u, v) satisfies the following testing condition known as Sawyer’s Sp

condition

(1.3) [u, v]Sp = sup
Q

(´
QM(χQσ)

pudx

σ(Q)

)1/p

< ∞,

where σ = v1−p′ and 1 < p < ∞. Observe that condition (1.3) involves the operator
under study itself and, for this reason, it is difficult either to check or use it to construct
examples of weights for applications. This difficulty together with the fact that these
conditions are just defined for particular operators motivated the development of different
sufficient conditions, close in form to the Ap condition.
The classical results mentioned so far did not reflect the quantitative dependence of the
Lp(w) operator norm in terms of the relevant constant involving the weights since they
were qualitative properties. Therefore, the relevant question then was to determine the
precise sharp bounds of a given operator in Lp(w), whenever w ∈ Ap.
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The first author who studied this problem for the Hardy–Littlewood maximal operator
was S. Buckley, a Ph.D. student of R. Fefferman, who proved in [5],

(1.4) ||M ||Lp(w) ≤ C p′ [w]
1

p−1

Ap
,

where C is a dimensional constant. We say that the above inequality is sharp in the sense
that we cannot replace the exponent on the weight constant by an smaller one. Buckley also
proved another quantitative result related to the weak estimate for the Hardy–Littlewood
maximal operator as an application of the classical covering lemmas. More precisely,

(1.5) ||M ||Lp(w)→Lp,∞(w) ≤ C[w]
1/p
Ap

,

where C is a dimensional constant. In fact, it can be easily proved that the operator norm
and the weight constant in (1.5) are comparable, whereas in (1.4) this result is false (see
[25] for further details).
Following the spirit of Buckley’s results, a similar problem was studied by J. Wittwer,
another Ph.D. student of R. Fefferman, for the martingale operator and the square function
in [54] and [55], respectively. Later on, regarding the two-weight problem for the Hardy–
Littlewood maximal function, K. Moen found in [43] a quantitative form of E. Sawyer’s
result in terms of Sawyer’s Sp condition (1.3). Namely

(1.6) ||M ||Lp(v)−→Lp(u) ≈ [u, v]Sp .

Although maximal functions are relevant operators in harmonic analysis, singular integrals
are probably the central operators in this field. The term singular integral refers to a wide
class of operators that are (formally) defined, as integral operators in the following way

Tf(x) =

ˆ
K(x, y)f(y)dy,

where K is a singular kernel in the sense that it is not locally integrable.
The prototype or most representative example of this class of operators is the Hilbert
transform in the real line, namely

Hf(x) =
1

π
p.v.

ˆ
R

f(y)

x− y
dy.

In the light of the previous results, the relevant problem then was trying to determine the
sharp constant in the corresponding weighted inequality for Calderón–Zygmund singular
integral operators. Concerning this problem, the next relevant step in this direction was
given by K. Astala, T. Iwaniec and E. Saksman in [3]. They studied the Beurling transform
(also known as the Ahlfors-Beurling transform) defined as follows

Bf(z) = p.v.

ˆ
C

f(w)

(w − z)2
dw.

This Calderón–Zygmund operator is one of the most important singular integral operators
related to complex variables, quasi-conformal mappings and the regularity theory of the
Beltrami equation. In fact, in [3] the authors were interested in finding the smallest q < 2
such that the solutions of the Beltrami equation
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∂̄f = µ∂f

that belong to the Sobolev space W 1,q
loc also belong to the better space W 1,2

loc (i.e. the
solutions are quasi-regular). Here µ is a bounded function such that ||µ||∞ = k < 1.
Lately, K. Astala [2] proved that q > k + 1 is sufficient. On the other hand, T. Iwaniec
and G.J. Martin [27] found examples showing that, in general, the result does not hold
for q < k + 1.
In [3] the authors also pointed out that in the case q = k + 1, the quasi-regularity would
be a consequence of a linear bound of ||B||Lp(w) for p ≥ 2 in terms of the weight constant.
In fact, they conjectured the following bound for the Beurling operator

(1.7) ||B||Lp(w) ≤ cp[w]Ap , p ≥ 2,

which was proved by S. Petermichl and A. Volberg in [49]. This conjecture revealed the
importance of finding a bound on the norm of a given operator in terms of the weight
constant. Another feature of the theory is the relevance of the case p = 2. It is due to the
fact that, as a consequence of Rubio de Francia’s extrapolation theorem obtained in [16],
it suffices to obtain a linear bound in the case p = 2 since it is the starting point to derive
sharp bounds for all p. We refer the interested reader to [13] for a simpler proof of the
precise extrapolation theorem, which was inspired by the work of Duoandikoetxea [17].
The next important advance in this area was due to S. Petermichl [47] who proved the
optimal bounds for the Hilbert transform. Shortly after, she extended this result to the
Riesz transforms in [48]. Lately, O. Beznosova proved the analogous linear bound for
discrete paraproduct operators in [4].
It was then that the so-called A2 conjecture gathered more importance. This conjecture
claimed that the dependence for a Calderón–Zygmund operator will be linear on the A2

constant, namely

(1.8) ||T ||L2(w) ≤ C[w]A2 .

As mentioned before, from (1.8) it is possible to extrapolate to get the Ap dependence.
More precisely,

(1.9) ||T ||Lp(w) ≤ C[w]
max

(
1, 1

p−1

)
Ap

,

where the dimensional constant C depends also on p and T .
In 2010, the sharp A2 bound for a large family of Haar shift operators that included dyadic
operators was obtained by M. Lacey, S. Petermichl and M.C. Reguera in [31]. After that,
D. Cruz-Uribe, J.M. Martell and C. Pérez proved a more flexible result in [13] that could
be applied to many different operators and whose proof avoids Bellman functions as well
as two-weight norm inequalities.
After many intermediate results by others, the A2 conjecture was solved in full generality
by T. Hytönen in [24] using a very different and interesting probabilistic approach. Shortly
after, A.K. Lerner gave a simpler and beautiful proof in [35] based on the use of dyadic
sparse operators and the so-called local mean oscillation formula. Lately, K. Moen [44]
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derived sharp weighted bounds for sparse operators for all p, 1 < p < ∞, avoiding the use
of extrapolation.
After the solution of the A2 conjecture, several improvements of this and other results
were obtained in [25] by T. Hytönen and C. Pérez. The underlying idea of this work was
to replace a portion of the A2 constant by another smaller constant defined in terms of
the A∞ constant given by

(1.10) [w]A∞ = sup
Q

1

w(Q)

ˆ
Q
M(wχQ).

This functional was implicitly considered by N. Fujii in [18] to provide a characterization
of the A∞ class of weights and later it was rediscovered by M. Wilson in [53]. It is smaller
than the more classical A∞ condition due to Hrusčěv

[w]HA∞ = sup
Q

(
1

|Q|

ˆ
Q
w

)
exp

(
1

|Q|

ˆ
Q
logw−1

)
,

as it was shown in [25] for the particular case of weights of the form w = tχE +χR\E with
t ≥ 3.
On the one hand, in [25] an improvement of Buckley’s estimate for the Hardy–Littlewood
maximal function is proved. Namely, for p > 1,

(1.11) ||M ||Lp(w) ≤ Cp′([w]Ap [σ]A∞)1/p,

where C is a dimensional constant and σ = w1−p′ . This result improves significantly
Buckley’s bound since

([w]Ap [w]A∞)1/p . ([w]Ap [w]
1

p−1

Ap
)1/p . [w]

1
p−1

Ap
.

On the other hand, in [25] the A2 theorem (as well as its Lp counterpart) was improved
obtaining the following mixed sharp A2 −A∞ estimate for singular integral operators

(1.12) ||T ||L2(w) ≤ C[w]
1/2
A2

([w−1]A∞ + [w]A∞)1/2,

which is the starting point for proving analogous sharp bounds for other operators such
as commutators and their iterates as well.

2. Preliminaries on multilinear Calderón–Zygmund theory

The multilinear Calderón–Zygmund theory can be traced back to the works of R. Coifman
and Y. Meyer [11] in the seventies. Their work was oriented towards the study of certain
singular integral operators, such us the commutator of Calderón. This theory, far from
being a mere generalization of the linear theory, appears naturally in harmonic analysis.
The boundedness results for the bilinear Hilbert transform obtained by M. Lacey and C.
Thiele [32, 33], motivated the development of a systematic treatment of general multilinear
Calderón–Zygmund operators. In this respect, the work of L. Grafakos and R. Torres [21]
set the bases of the unweighted multilinear Calderón–Zygmund theory.
Here, we introduce the notion of Calderón–Zygmund operator in the multilinear scenario
as well as some (unweighted) boundedness properties that may be found in [21].
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Definition 2.1. Let T be a multilinear operator initially defined on the m-fold product
of Schwartz spaces and taking values into the space of tempered distributions,

T : S(Rn)× · · · × S(Rn) → S′(Rn).

We say that T is an m-linear Calderón-Zygmund operator if, for some 1 ≤ qj < ∞,
it extends to a bounded multilinear operator from Lq1 × · · · × Lqm to Lq, where 1

q =
1
q1

+ · · ·+ 1
qm

, and if there exists a function K, defined off the diagonal x = y1 = · · · = ym

in (Rn)m+1, satisfying

(2.1) T (f1, . . . , fm)(x) =

ˆ

(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym,

for all x ̸∈ ∩m
j=1 supp fj ,

(2.2) |K(y0, y1, . . . , ym)| ≤ A( m∑
k,l=0

|yk − yl|
)mn

,

and

(2.3) |K(y0, . . . , yj , . . . , ym)−K(y0, . . . , y
′
j , . . . , ym)| ≤

A|yj − y′j |ϵ( m∑
k,l=0

|yk − yl|
)mn+ϵ

,

for some ϵ > 0 and all 0 ≤ j ≤ m, whenever |yj − y′j | ≤
1

2
max

0≤k≤m
|yj − yk|.

Some basic boundedness properties of multilinear Calderón–Zygmund operators are stated
in the following theorem.

Theorem 2.2. Let T be a multilinear Calderón–Zygmund operator. Let p, pj numbers
satisfying 1

m ≤ p < ∞, 1 ≤ pj ≤ ∞, and 1
p1

+ . . . + 1
pm

= 1
p . Then, all the statements

below are valid:

(i): When all pj > 1, then T can be extended to a bounded operator from Lp1 × . . .×
Lpm into Lp, where Lpk should be replaced by L∞

c if some pk = ∞.
(ii): When some pj = 1, then T can be extended to a bounded operator from Lp1 ×

. . .× Lpm into Lp,∞, where again Lpk should be replaced by L∞
c if some pk = ∞.

(iii): When all pj = ∞, then T can be extended to a bounded operator from the
m-fold product L∞

c × . . .× L∞
c into BMO.

Observe that when all the indexes pj = 1, it is obtained the generalization to the multi-
linear setting of the weak type (1, 1) boundedness for classical singular integral operators.
Namely, the corresponding endpoint space to bound singular integral operators in the
multilinear setting is now the m-fold product L1 × . . . × L1 and, by homogeneity, it is
mapped into L1/m,∞, i.e.,

(2.4) T : L1(Rn)× . . .× L1(Rn) −→ L1/m,∞(Rn).

In Section 10, we will introduce a more general class of Calderón–Zygmund operators which
verifies weaker regularity conditions on the kernel. We extend the previous boundedness
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results to this wider class of operators as well as for their maximal truncation operator.
Those results can be found in Appendix A.

3. The multilinear maximal function

The question of the existence of an appropriate multilinear maximal function and a mul-
tiple weight theory was posed in [22]. Although the class of Calderón–Zygmund operators
was controlled by

∏m
j=1Mfj , as shown in [46], it was not clear whether this control was

optimal and whether the conditions on the weights wj for which

T : Lp1(w1)× . . .× Lpm(wm)

holds could be improved. In [37], it was introduced a multilinear maximal operator strictly
smaller than the m-fold product of M , which gives the right classes of multiple weights for
m-linear Calderón–Zygmund operators. In this section, we introduce this operator and a
pointwise control of Calderón–Zygmund operators which improves that in [46].

Given f⃗ = (f1, . . . , fm), we define the multi(sub)linear maximal operator M by

M(f⃗ )(x) = sup
Q∋x

m∏
i=1

1

|Q|

ˆ
Q
|fi(yi)|dyi,

where the supremum is taken over all cubes containing x. With some abuse of the language,
we will refer to M as the multilinear maximal function, even though it is obvious that it
is only sublinear in each entry.
Since this operator is smaller than the m-fold product of Hardy–Littlewood maximal func-
tions, as a consequence of Hölder’s inequality and the corresponding version for weak spaces
(see [20, p. 15]), it satisfies the corresponding natural unweighted estimates. Namely,

M : L1 × m· · · × L1 → L1/m,∞,

M : Lp1 × m· · · × Lpm → Lp,
(3.1)

where 1 < p1, . . . , pm < ∞ and 1
p1

+ · · ·+ 1
pm

= 1
p .

The importance of this operator stems from the fact that it controls the class of multilinear
Calderón–Zygmund operators. The following result, which can be found in [37], was

originally proved by J. Álvarez and C. Pérez in the linear setting in [1].

Theorem 3.1. Let T be an m-Calderón–Zygmund operator and let δ > 0 such that δ <

1/m. Then for all f⃗ in any product of Lqj (Rn), with 1 ≤ qj < ∞,

(3.2) M ♯
δ(T (f⃗))(x) . M(f⃗ )(x).

Proof. Fix x ∈ Rn and a cube Q containing x. To prove (3.2)it suffices to prove that for
any 0 < δ < 1/m

(3.3)

(
1

|Q|

ˆ
Q

∣∣|T (f⃗)(z)|δ − |cQ|δ
∣∣ dz)1/δ

. M(f⃗)(x),

for a certain constant cQ to be determined later on. Having into account that ||α|r−|β|r| ≤
|α− β|r, 0 < r < 1, we only need to show

(3.4)

(
1

|Q|

ˆ
Q
|T (f⃗)(z)− cQ|δdz

)1/δ

. M(f⃗)(x).



8 W. DAMIÁN AND K. LI

Let fj = f0
j + f∞

j , where f0
j = fjχQ∗ , j = 1, . . . ,m and Q∗ = 3Q. Then,

m∏
j=1

fj(yj) =

m∏
j=1

(
f0
j (yj) + f∞

j (yj)
)

=
∑

α1,...,αm∈{0,∞}

fα1
1 (y1) . . . f

αm
m (ym)

=

m∏
j=1

f0
j +

∑′
fα1
1 (y1) . . . f

αm
m (ym),

where each term of
∑′ contains at least one αj ̸= 0. We can write then

(3.5) T (f⃗)(z) = T (f⃗ 0)(z) +
∑′

T (fα1
1 , . . . , fαm

m )(z).

Applying Kolmogorov’s inequality to the term

T (f⃗0(z)) = T (f0
1 , . . . , f

0
m)(z)

with p = δ y q = 1/m, it follows that(
1

|Q|

ˆ
Q
|T (f⃗0)(z)|δdz

)1/δ

.m,δ ∥T (f⃗0)(z)∥L1/m,∞(Q, dx|Q| )

.
m∏
j=1

1

|3Q|

ˆ
3Q

|fj(yj)| dyj

. M(f⃗)(x),

since T : L1 × · · · × L1 → L1/m,∞.
In order to estimate the other terms in (3.5), we set now

c =
∑′

T (fα1
1 , . . . , fαm

m )(x),

and we will show that, for any z ∈ Q, we also get an estimate of the form

(3.6)
∑′ |T (fα1

1 , . . . , fαm
m )(z)− T (fα1

1 , . . . , fαm
m )(x)| . M(f⃗)(x).

Consider first the case when α1 = . . . = αm = ∞ and define

T (f⃗∞) = T (f∞
1 , . . . , f∞

m ).

Using the regularity of the kernel of T , for any z ∈ Q, we obtain

|T (f⃗∞)(z)− T (f⃗∞)(x)|

.
ˆ

(Rn\3Q)m

|x− z|ε

(|z − y1|+ · · ·+ |z − ym|)nm+ε

m∏
i=1

|fi(yi)|dy⃗

.
∞∑
k=1

ˆ

(3k+1Q)m\(3kQ)m

|x− z|ε

(|z − y1|+ · · ·+ |z − ym|)nm+ε

m∏
i=1

|fi(yi)|dy⃗



MULTILINEAR WEIGHTED INEQUALITIES 9

.
∞∑
k=1

|Q|ε/n

(3k|Q|1/n)nm+ε

ˆ
(3k+1Q)m

m∏
i=1

|fi(yi)|dy⃗

.
∞∑
k=1

1

3kε

m∏
i=1

⟨|fi|⟩3k+1Q . M(f⃗ )(x),

where Em = E × · · · × E and dy⃗ = dy1 . . . dym.
What remains to be considered are the terms in (3.6) such that αj1 = · · · = αjl = 0 for
some {j1, . . . , jl} ⊂ {1, . . . ,m} and 1 ≤ l < m. Using again the regularity of the kernel,

|T (fα1
1 , . . . , fαm

m )(z)− T (fα1
1 , . . . , fαm

m )(x)|

.
∏

j∈{j1,...,jl}

ˆ
3Q

|fj |dyj
ˆ

(Rn\3Q)m−l

|x− z|ε
∏

j ̸∈{j1,...,jl} |fj |dyj
(|z − y1|+ · · ·+ |z − ym|)nm+ε

.
∏

j∈{j1,...,jl}

ˆ
3Q

|fj |dyj
∞∑
k=1

|Q|ε/n

(3k|Q|1/n)nm+ε

ˆ

(3k+1Q)m−l

∏
j ̸∈{j1,...,jl}

|fj |dyj

.
∞∑
k=1

|Q|ε/n

(3k|Q|1/n)nm+ε

ˆ
(3k+1Q)m

m∏
i=1

|fi(yi)|dy⃗,

and we arrive at the expression considered in the previous case. This gives (3.6) and
concludes the proof of the theorem.

�

4. Weak type estimate for M

The previous pointwise control of multilinear Calderón–Zygmund operators by M opened
up the possibility of considering more general weights. In [37], the authors exploited
this possibility proving a natural extension to the multilinear setting of Muckenhoupt’s
two-weight theorem.

Theorem 4.1. Let 1 ≤ pj < ∞, j = 1, . . . ,m and 1
p = 1

p1
+ · · · + 1

pm
. Let ν and wj be

weights. Then the inequality

(4.1) ∥M(f⃗ )∥Lp,∞(ν) ≤ C
m∏
j=1

∥fj∥Lpj (wj)

holds for any f⃗ if and only if

(4.2) sup
Q

( 1

|Q|

ˆ
Q
ν
)1/p m∏

j=1

( 1

|Q|

ˆ
Q
w

1−p′j
j

)1/p′j
< ∞,

where
(

1
|Q|
´
Qw

1−p′j
j

)1/p′j
in the case pj = 1 must be understood as (ess infQwj)

−1.

Proof of Theorem 4.1. The proof is very similar to that in the linear situation (see, for
instance, [19, 20]). Let us consider first the case when pj > 1 for all j = 1, . . . ,m. Assume
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that M satisfies (4.1)), namely,

(4.3) ∥M(f⃗ )∥Lp,∞(ν) ≤ C

m∏
j=1

∥fj∥Lpj (wj)

then we can write for every f⃗ = (f1, . . . , fm),

(4.4) ν
(
{x ∈ Rn : M(f⃗)(x) > t}

) 1
p ≤ C

t

m∏
j=1

(ˆ
Rn

|fj(yj)|pjwj

) 1
pj

,

where p is given as in the assumptions and t > 0. Suppose without loss of generality that

f⃗ ≥ 0, i.e. fj ≥ 0, j = 1, . . . ,m. Since M(f⃗)(x) ≥
∏m

j=1⟨|fj |⟩Q for all x ∈ Q, it follows

from (4.4) that for all t <
∏m

j=1⟨|fj |⟩Q, we have that

ν(Q)
1
p ≤ ν({x ∈ Rn : M(f1, . . . , fm)(x) > t})1/p ≤ Ct−1

m∏
j=1

||fj ||Lpj (wj).(4.5)

Taking fj1Q instead of fj , j = 1, . . . ,m, in (4.5), we deduce that

(4.6) ν(Q)
1
p

m∏
j=1

⟨fj⟩Q ≤ C
m∏
j=1

||fjχQ||Lpj (wj).

Next, taking fj = w
1−p′j
j , we obtain

(ˆ
Q
ν

) 1
p

 m∏
j=1

1

|Q|

ˆ
Q
w

1−p′j
j

 m∏
j=1

ˆ
Q
w

(1−p′j)pj
j wj

− 1
pj

< C.

Note that  m∏
j=1

1

|Q|

ˆ
Q
w

1−p′j
j

 m∏
j=1

ˆ
Q
w

(1−p′j)pj
j wj

− 1
pj

=
1

|Q|m
m∏
j=1

(ˆ
Q
w

1−p′j
j

) 1
p′
j
.

Then, we have that

(4.7)

(
−
ˆ
Q
ν

) 1
p

m∏
j=1

(
−
ˆ
Q
w

1−p′j
j

) 1
p′
j
< C,
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for every cube Q, showing (4.2). To prove the converse, assume that (4.2) holds. Using
Hölder’s inequality, we obtain

(
−
ˆ
Q
ν

) 1
p

m∏
j=1

(
−
ˆ
Q
|fj |
)

≤
(
−
ˆ
Q
ν

) 1
p

m∏
j=1

−
ˆ
Q
w

−
p′j
pj

j

 1
p′
j
(
−
ˆ
Q
|fj |pjwj

) 1
pj

≤ C
m∏
j=1

(
−
ˆ
Q
|fj |pjwj

) 1
pj

.

(4.8)

The previous inequality applied to cubes Q(x, r) centred in x with radious r > 0, yields
to

m∏
j=1

⟨|fj |⟩Q(x,r) ≤
C

ν(Q(x, r))
1
p

m∏
j=1

||fjχQ(x,r)||Lpj (wj).

Therefore,

M(f⃗)(x) ≤ C
m∏
j=1

(
1

ν(Q(x, r))

ˆ
Q(x,r)

|fj |pjwj
ν

ν
dyj

) 1
pj

≤ C
m∏
j=1

M c
ν

(
|fj |pj

wj

ν

)
(x)

1
pj ,

where M c
ν denotes the weighted centred maximal function. Now, using the fact that M c

ν is
weak (1, 1) with respect to the weight ν and using the Hölder’s inequality for weak spaces,
it follows that

∥M(f⃗ )∥Lp,∞(ν) ≤ C∥
m∏
j=1

M c
ν(|fj |pjwj/ν)

1/pj∥Lp,∞(ν)

≤ C
m∏
j=1

∥M c
ν(|fj |pjwj/ν)

1/pj∥Lpj,∞(ν)

= C
m∏
j=1

∥M c
ν(|fj |pjwj/ν)∥

1/pj
L1,∞(ν)

≤ C
m∏
j=1

∥fj∥Lpj (wj),

and the theorem is proved in the case pj > 1, for every j = 1, . . . ,m.

In the case where some pj = 1, note that the condition

(
−́
Qw

1−p′j
j

) 1
p′
j
must be understood

as (ess infQwj)
−1. Indeed, as in the linear case, taking limits we obtain(

−
ˆ
Q
w

− 1
pj−1

j (x)dx

)pj−1

= ||w−1
j ||

L
1

pj−1 (Q,|Q|−1dx)

pj→1
−−−→ ||w−1

j ||L∞(Q).
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Let us assume now that pj = 1, j = 1, . . . ,m. Using again (4.6) with pj = 1 and fj = χS ,
for every j and S being a mesurable subset of Q with positive measure, we obtain

ν(Q)
1
p

m∏
j=1

1

|Q|

ˆ
S
dx ≤ C

m∏
j=1

ˆ
S
wj .

Since m = 1/p, we can write(
−
ˆ
Q
ν(x)dx

) 1
p

≤ C
m∏
j=1

1

|S|

ˆ
S
wj(xj)dxj ,

for every arbitrary cube Q and S ⊂ Q measurable set with positive measure. Let a >∏m
j=1 ess infQwj , and consider the set

Sa =

x ∈ Q :
m∏
j=1

wj < a

 .

It is clear that Sa ⊂ Q and it has positive measure. Therefore,(
−
ˆ
Q
ν(x)dx

) 1
p

≤ C

(
1

|Sa|

ˆ
Sa

w1(x1)dx1

)
· . . . ·

(
1

|Sa|

ˆ
Sa

wm(xm)dxm

)
= C

ˆ
Sa

. . .

ˆ
Sa

m∏
j=1

wj(xj)

|Sa|
dx1 . . . dxm ≤ Ca,

for every a > ess infQwj . Hence,(
1

|Q|

ˆ
Q
ν(x)dx

) 1
p

≤ C

m∏
j=1

ess infQwj ,

for almost every x ∈ Q. Since Q is arbitrary, we obtain

(4.9) sup
Q

(
1

|Q|

ˆ
Q
ν

) 1
p

 m∏
j=1

ess infQwj

−1

≤ C,

and we are done. Conversely, assume (4.9). It follows that

sup
Q

(
1

|Q|

ˆ
Q
ν

) 1
p

 m∏
j=1

wj

−1

≤ C,

and, therefore,

(4.10)

(
ν(Q)

|Q|

) 1
p

≤ C
m∏
j=1

wj .

Assume without loss of generality that fj ≥ 0, for every j = 1, . . . ,m. Then, using (4.10),
we have that (

−
ˆ
Q
ν

) 1
p

m∏
j=1

(
−
ˆ
Q
fj

)
=

m∏
j=1

−
ˆ
Q
fj

(
ν(Q)

|Q|

) 1
p

≤ C
m∏
j=1

−
ˆ
Q
fjwj ,
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for every cube Q, obtaining that we have proved (4.8) in the case pj = 1, for all j =
1, . . . ,m. From this point on, the argument is similar as in the case when all the indexes
pj > 1, so that we can conclude that this condition is also sufficient in this case. In the
case when pj = 1, j = 1, . . . , l, and pj > 1, j = l, . . . ,m, with 1 < l < m it suffices to
combine the previous estimates to get the result and we are done. �

Remark 4.2. By a close inspection of the previous proof if we denote

[v,−→w ]A−→
P
:= sup

Q

( 1

|Q|

ˆ
Q
ν
) m∏

j=1

( 1

|Q|

ˆ
Q
w

1−p′j
j

)p/p′j
,

then the best constant appearing in (4.3) is comparable to [v,−→w ]
1/p
A−→

P
. Also observe that con-

dition (4.4) combined with Lebesgue differentiation theorem implies that ν(x) ≤ c
∏m

j=1wj(x)
p/pj

a.e. This suggests a way to define an analogue of the Muckenhoupt Ap classes in the mul-
tiple setting.

5. The AP⃗ class of weights

Let us now introduce the multiple classes of weights as well as their relationship with the
Muckenhoupt’s Ap classes of weights and other interesting properties.

Definition 5.1. For m exponents p1, · · · , pm, we will often write p for the number given

by 1
p = 1

p1
+ · · ·+ 1

pm
, and P⃗ for the vector P⃗ = (p1, · · · , pm).

Definition 5.2. Let 1 ≤ p1, . . . , pm < ∞. Given w⃗ = (w1, . . . , wm), set

νw⃗ =
m∏
j=1

w
p/pj
j .

We say that w⃗ satisfies the AP⃗ condition if

(5.1) [w⃗]A
P⃗
:= sup

Q

( 1

|Q|

ˆ
Q
νw⃗

) m∏
j=1

( 1

|Q|

ˆ
Q
w

1−p′j
j

)p/p′j
< ∞.

When pj = 1,
(

1
|Q|
´
Qw

1−p′j
j

)p/p′j
must be understood as (ess infQwj)

−p.

We will refer to (5.1) as the multilinear AP⃗ constant.
It is not difficult to prove by using Hölder’s inequality, that νw⃗ ∈ Amp and

m∏
j=1

Apj ⊂ AP⃗ .

These results are left as exercises for the reader.
The multiple weight classes can be characterized in terms of the linear Ap classes. Observe
that the following theorem also shows that as the index m increases, the AP⃗ condition
gets weaker. It is also possible to show that the two conditions below are independent of
each other.



14 W. DAMIÁN AND K. LI

Proposition 5.3. Let w⃗ = (w1, · · · , wm) and 1 ≤ p1, . . . , pm < ∞.
Then w⃗ ∈ AP⃗ if and only if

(5.2)

{
w

1−p′j
j ∈ Amp′j

, j = 1, . . . ,m

νw⃗ ∈ Amp,

where the condition w
1−p′j
j ∈ Amp′j

in the case pj = 1 is understood as w
1/m
j ∈ A1.

Proof of Proposition 5.3. Consider first the case when there exists at least one pj > 1.
Without loss of generality we can assume that p1, . . . , pl = 1, 0 ≤ l < m, and pj > 1 for
j = l + 1, . . . ,m.
Suppose that w⃗ satisfies the multilinear AP⃗ condition.
Fix j ≥ l + 1 and define the numbers

qj = p
(
m− 1 +

1

pj

)
and qi =

pi
pi − 1

qj
p
, i ̸= j, i ≥ l + 1.

We first prove that w
1−p′j
j ∈ Amp′j

for j ≥ l + 1, i.e.,

(5.3)
(ˆ

Q
w

−1/(pj−1)
j

)( ˆ
Q
w

p
pjqj

j

) qjpj
p(pj−1) ≤ c|Q|

mpj
pj−1 .

Since
m∑

i=l+1

1

qi
=

1

m− 1 + 1/pj

(1
p
+

m∑
i=l+1,i̸=j

(1− 1/pi)
)
= 1,

applying the Hölder’s inequality, we obtain

ˆ
Q
w

p
pjqj

j =

ˆ
Q

( m∏
i=l+1

w

p
piqj

i

)( m∏
i=l+1,i̸=j

w
− p

piqj

i

)
≤

(ˆ
Q

m∏
i=l+1

w
p/pi
i

)1/qj m∏
i=l+1,i̸=j

(ˆ
Q
w

−1/(pi−1)
i

)1/qi
.

From this inequality and the AP⃗ condition we easily get (5.3).

Next we show that νw⃗ ∈ Amp. Setting sj = (m− 1/p)p′j , j ≥ l+1, we have
∑m

j=l+1
1
sj

= 1

and, therefore, by Hölder’s inequality,

(5.4)

ˆ
Q

m∏
j=l+1

w
− p

pj(pm−1)

j ≤
m∏

j=l+1

(ˆ
Q
w

−1/(pj−1)
j

)1/sj
.

Hence,
ˆ
Q
(νw⃗)

− 1
pm−1 ≤

l∏
j=1

(ess infQwj)
− p

pm−1

m∏
j=l+1

( ˆ
Q
w

−1/(pj−1)
j

)1/sj
.

Combining this inequality with the AP⃗ condition gives νw⃗ ∈ Amp.
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Suppose now that l > 0, and let us show that w
1/m
j ∈ A1, j = 1, . . . , l. Fix 1 ≤ i0 ≤ l. By

Hölder’s inequality and (5.4),

ˆ
Q
w

1/m
i0

≤
(ˆ

Q
wp
i0

m∏
j=l+1

w
p/pj
j

)1/pm(ˆ
Q

m∏
j=l+1

w
− p

pj(pm−1)

j

)1−1/pm

≤
(ˆ

Q
wp
i0

m∏
j=l+1

w
p/pj
j

)1/pm m∏
j=l+1

(ˆ
Q
w

1−p′j
j

) 1
mp′

j

This inequality combined with the AP⃗ condition proves w
1/m
i0

∈ A1. Thus we have proved
that w⃗ ∈ AP⃗ ⇒ (5.2).
To prove that (5.2) is sufficient for w⃗ ∈ AP⃗ , we first observe that for any weight wj ,

(5.5) 1 ≤
( 1

|Q|

ˆ
Q
ν
− 1

pm−1

w⃗

)m−1/p
m∏
j=1

( 1

|Q|

ˆ
Q
w

1
pj(m−1)+1

j

)m−1+1/pj
.

Indeed, let α = 1
1+pm(m−1) and αj =

1/p+m(m−1)
1/pj+m−1 . Then

∑m
j=1 1/αj = 1, and by Hölder’s

inequality,
ˆ
Q
ναw⃗ ≤

m∏
j=1

( ˆ
Q
w

αpαj
pj

j

)1/αj

=
m∏
j=1

(ˆ
Q
w

1
pj(m−1)+1

j

)αp(m−1+1/pj)
.

Using again the Hölder’s inequality, we have

1 ≤
( 1

|Q|

ˆ
Q
ναw⃗

)( 1

|Q|

ˆ
Q
ν
− 1

pm−1

w⃗

)α(pm−1)
.

This inequality along with the previous one yields (5.5). Finally, (5.5) combined with (5.2)
easily gives that w⃗ ∈ AP⃗ .
It remains to consider the case when pj = 1 for all j = 1, · · · ,m. Assume that w⃗ ∈ A(1,··· ,1),
i.e.,

(5.6)

 1

|Q|

ˆ
Q

( m∏
j=1

wj

)1/mm

≤ c

m∏
j=1

ess infQwj .

It is clear that (5.6) implies that w
1/m
j ∈ A1, j = 1, . . . ,m and νw⃗ ∈ A1. Conversely,

combining these last conditions with Hölder’s inequality we obtain 1

|Q|

ˆ
Q

( m∏
j=1

wj

)1/mm

≤ c ess infQ

( m∏
j=1

wj

)
≤ c

 1

|Q|

ˆ
Q

( m∏
j=1

wj

)1/m2

m2

.

≤ c
m∏
j=1

(
1

|Q|

ˆ
Q
w

1/m
j

)m

≤ c
m∏
j=1

ess infQwj .

This proves that w⃗ ∈ A(1,··· ,1) is equivalent to w
1/m
j ∈ A1, j = 1, . . . ,m and νw⃗ ∈ A1.

The theorem is proved. �
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Remark 5.4. As a consequence of Proposition 5.3, observe that if 1 < pj < ∞, j =
1, . . . ,m and 1

p = 1
p1

+ . . .+ 1
pm

and w⃗ ∈ AP⃗ , then

[σj ]A∞ ≤ C[w⃗]
p′j/p

A
P⃗
.

Remark 5.5. Observe that A(1,··· ,1) is contained in AP⃗ for each P⃗ , however the classes
AP⃗ are not increasing with the natural partial order. Indeed, consider the partial order

relation between vectors P⃗ = (p1, . . . , pm) and Q⃗ = (q1, . . . , qm) given by

P⃗ . Q⃗ si pj ≤ qj ∀j = 1, . . . ,m.

Then, since the Ap classes are increasing, we can write
m∏
j=1

Apj ⊆
m∏
j=1

Aqj .

However AP⃗ is not contained in AQ⃗. To see this, consider n = 1, m = 2, P⃗ = (2, 2) and

the vector of weights w⃗ = (w1, w2) = (|x|−
5
3 , 1). We now need to check that

sup
Q

(
1

|Q|

ˆ
Q
w

1/2
1

)(
1

|Q|

ˆ
Q
w−1
1

)1/2

< ∞.

Since w
1/2
1 ∈ A1 since it is a power weight of the form |x|α such that −n < α < n(p− 1),

we can write(
1

|Q|

ˆ
Q
w

1/2
1

)(
1

|Q|

ˆ
Q
w−1
1

)1/2

. (ess infQw1)
1/2

(
1

|Q|

ˆ
Q
w−1
1

)1/2

=

(
1

|Q|

ˆ
Q
w−1
1 ess infQw1

)1/2

≤
(

1

|Q|

ˆ
Q
w−1
1 w1

)1/2

< ∞.

Therefore, w⃗ ∈ A(2,2). However, w1 raised to an appropriate large power becomes non-

locally integrable and, it is easy to show that w⃗ ̸∈ AQ⃗ when, for instance, Q⃗ = (2, 6). In

fact, if w⃗ ∈ A(2,6) we would need to verify that the following condition holds

sup
Q

(
1

|Q|

ˆ
Q
w

3/4
1

)2/3( 1

|Q|

ˆ
Q
w−1
1

)1/2

.

Since w
3/4
1 is not locally integrable, the quantity above is not finite and w⃗ ̸∈ A(2,6).

Remark 5.6. The condition w⃗ ∈ AP⃗ does not imply in general wj ∈ L1
loc for any j.

Take, for instance,

w1 =
χ[0,2](x)

|x− 1|
+ χR/[0,2](x)

and wj (x) =
1
|x| for j = 2, ...,m. Then, using the definition, it is not difficult to check that

νw⃗ ∈ A1. We also have ess infQ νw⃗ ∼
∏m

j=1 ess infQw
p/pj
j . These last two facts together

easily imply that w⃗ ∈ AP⃗ .
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6. Sharp mixed bounds for the multilinear maximal function

In [37, Thm. 3.7] was proved that AP⃗ is a necessary and sufficient condition for the
boundedness of the multilinear maximal function from an appropriate product of weighted
Lebesgue spaces into Lp(νw⃗). Here we are also going to prove the sharp bounds for M
which extend the linear results contained in [25] and [5].
It is clear that the AP⃗ condition is necessary for the strong boundedness of M as a
consequence of Theorem 4.1. Now, we are going to prove that this condition is also
sufficient and, by the way, we obtain a sharp mixed bound whose original proof can be
found in [15].

Theorem 6.1. Let 1 < pi < ∞, i = 1, . . . ,m and 1
p = 1

p1
+ . . .+ 1

pm
. Then the inequality

(6.1) ∥M(f⃗ )∥Lp(νw⃗) ≤ Cn,m,P⃗ [w⃗]
1
p

A
P⃗

m∏
i=1

([σi]A∞)
1
pi

m∏
i=1

∥fi∥Lpi (wi),

holds if w⃗ ∈ AP⃗ , where σi = w
1−p′i
i , i = 1, . . . ,m. Furthermore the exponents are sharp in

the sense that they cannot be replaced by smaller ones.

Recall that the standard dyadic grid in Rn consists of the cubes

2−k([0, 1)n + j), k ∈ Z, j ∈ Zn.

Denote the standard grid by D. By a general dyadic grid D we mean a collection of cubes
with the following properties:

(i): For any Q ∈ D its sidelength ℓQ is of the form 2k, k ∈ Z.
(ii): Q ∩R ∈ {Q,R, ∅} for any Q,R ∈ D .
(iii): The cubes of a fixed sidelength 2k form a partition of Rn.

We say that {Qk
j } is a sparse family of cubes if:

(i): the cubes Qk
j are disjoint in j, with k fixed;

(ii): if Ωk = ∪jQ
k
j , then Ωk+1 ⊂ Ωk;

(iii): |Ωk+1 ∩Qk
j | ≤ 1

2 |Q
k
j |.

With each sparse family {Qk
j } we associate the sets Ek

j = Qk
j \ Ωk+1. Observe that the

sets Ek
j are pointwise disjoint and |Qk

j | ≤ 2|Ek
j |.

First, we will need two lemmas. The first one can be found in [25].

Proposition 6.2. There are 2n dyadic grids Dα such that for any cube Q ⊂ Rn there
exists a cube Qα ∈ Dα such that Q ⊂ Qα and ℓQα ≤ 6ℓQ.

Lemma 6.3. For any non-negative integrable fi, i = 1, . . . ,m, there exist sparse families
Sα ∈ Dα such that for all x ∈ Rn,

M(
−→
f )(x) ≤ (2 · 12n)m

2n∑
α=1

ADα,Sα(
−→
f )(x),

where
−→
f = (f1, . . . , fm) and given a sparse family S = {Qk

j } of cubes from a dyadic grid
D , the operator AD ,S is given by
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AD ,S(
−→
f ) =

∑
j,k

(
m∏
i=1

(fi)Qk
j

)
χQk

j
.

Proof of Lemma 6.3. First, by Proposition 6.2,

(6.2) M(f⃗ )(x) ≤ 6mn
2n∑
α=1

MDα(f⃗ )(x),

whereMDα denotes the multilinear maximal function defined with respect to Dα. Consider

Md(f⃗ ) taken with respect to the standard dyadic grid. We will use exactly the same
argument as in the Calderón-Zygmund decomposition. For cn which will be specified
below and for k ∈ Z consider the sets

Ωk = {x ∈ Rn : Md(f⃗ )(x) > ckn}.
Then we have that Ωk = ∪jQ

k
j , where the cubes Q

k
j are pairwise disjoint with k fixed, and

ckn <

m∏
i=1

(fi)Qk
j
≤ 2mnckn.

From this and from Hölder’s inequality,

|Qk
j ∩ Ωk+1| =

∑
Qk+1

l ⊂Qk
j

|Qk+1
l |

< c
− k+1

m
n

∑
Qk+1

l ⊂Qk
j

m∏
i=1

(ˆ
Qk+1

l

fi

)1/m

≤ c
− k+1

m
n

m∏
i=1

( ˆ
Qk

j

fi

)1/m
≤ 2nc−1/m

n |Qk
j |.

Hence, taking cn = 2m(n+1), we obtain that the family {Qk
j } is sparse, and

Md(f⃗ )(x) ≤ 2m(n+1)AD,S(f⃗ )(x).

Applying the same argument to each MDα(f⃗ ) and using (6.3), we get the statement of
the lemma. �
Next we proceed to the proof of Theorem 6.1.

Proof of Theorem 6.1. By Proposition 6.2, it follows

(6.3) M(f⃗ )(x) ≤ 6mn
2n∑
α=1

MDα(f⃗ )(x),

where MDα denotes the multilinear maximal function defined with respect to Dα. Then,
it suffices to prove the theorem for the dyadic maximal operators MDα . Since the proof
is independent of the particular dyadic grid, without loss of generality we consider Md

taken with respect to the standard dyadic grid D.
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Let a = 2m(n+1). and Ωk = {x ∈ Rn : Md(f⃗ )(x) > ak}. We have seen in the proof of
Lemma 6.3 that Ωk = ∪jQ

k
j , where the family {Qk

j } is sparse and ak <
∏m

i=1
1

|Qk
j |

´
Qk

j
|fi| ≤

2nmak. It follows thatˆ
Rn

Md(f⃗)p νw⃗dx =
∑
k

ˆ
Ωk\Ωk+1

Md(f⃗)p νw⃗dx

≤ ap
∑
k,j

(
m∏
i=1

1

|Qk
j |

ˆ
Qk

j

|fi|dyi

)p

νw⃗(Q
k
j )

≤ ap
∑
k,j

(
m∏
i=1

1

|Qk
j |

ˆ
Qk

j

|fi|w
1
pi
i w

− 1
pi

i dyi

)p

νw⃗(Q
k
j )

≤ ap
∑
k,j

m∏
i=1

(
1

|Qk
j |

ˆ
Qk

j

|fi|αiw
αi
pi
i dyi

) p
αi

(
1

|Qk
j |

ˆ
Qk

j

w
−α′

i
pi

i dyi

) p

α′
i

νw⃗(Q
k
j ),

where αi = (p′iri)
′ and ri is the exponent in the sharp reverse Hölder inequality (see [25,

Thm. 2.3 (a)]) for the weights σi which are in A∞ for i = 1, . . . ,m. Applying the sharp
Reverse Hölder inequality for each σi, we obtain

ˆ
Rn

Md(f⃗)p νw⃗dx ≤ ap
∑
k,j

m∏
i=1

(
1

|Qk
j |

ˆ
Qk

j

|fi|αiw
αi
pi
i dyi

) p
αi

×

(
2

1

|Qk
j |

ˆ
Qk

j

σi

) p

p′
i

νw⃗(Q
k
j )

≤ C[w⃗]A
P⃗

∑
k,j

m∏
i=1

(
1

|Qk
j |

ˆ
Qk

j

|fi|αiw
αi
pi
i dyi

) p
αi

|Qk
j |.

Let Ek
j be the sets associated with the family {Qk

j }. Using the properties of Ek
j and

Hölder’s inequality with the exponents pi/p, we get

ˆ
Rn

Md(f⃗)p νw⃗dx ≤ 2C[w⃗]A
P⃗

∑
k,j

m∏
i=1

(
1

|Qk
j |

ˆ
Qk

j

|fi(yi)|αiw
αi
pi
i dyi

) p
αi

|Ek
j |

≤ 2C[w⃗]A
P⃗

∑
k,j

ˆ
Ek

j

m∏
i=1

M

(
|fi|αiw

αi
pi
i

) p
αi

dx

≤ 2C[w⃗]A
P⃗

ˆ
Rn

m∏
i=1

M

(
|fi|αiw

αi
pi
i

) p
αi

dx

≤ 2C[w⃗]A
P⃗

m∏
i=1

(ˆ
Rn

M

(
|fi|αiw

αi
pi
i

) pi
αi

dx

) p
pi

.



20 W. DAMIÁN AND K. LI

From this and by the boundedness of M ,

ˆ
Rn

Md(f⃗)p νw⃗dx ≤ C[w⃗]A
P⃗

m∏
i=1

(
(pi/αi)

′) p
pi

∥∥∥|fi|αiw
αi
pi
i

∥∥∥ p
αi

L
pi
αi (Rn)

≤ C[w⃗]A
P⃗

m∏
i=1

(p′ir
′
i)

p
pi ∥fi∥pLpi (wi)

≤ C[w⃗]A
P⃗

m∏
i=1

([σi]A∞)
p
pi ∥fi∥pLpi (wi)

,

where in next to last inequality we have used that (pi/αi)
′ ≤ p′ir

′
i and in the last inequality

we have used that r′i ≈ [σi]A∞ , for i = 1, . . . ,m. This completes the proof of (6.1). �

Let us show now the sharpness of the exponents in (6.1). Assume that n = 1 and 0 < ε < 1.
Let

wi(x) = |x|(1−ε)(pi−1) and fi(x) = x−1+εχ(0,1)(x), i = 1, . . . ,m.

On one hand, it is easy to check that νw⃗ = |x|(1−ε)(pm−1) and

(6.4) [w⃗]A
P⃗
= [νw⃗]Apm ≈ (1/ε)mp−1.

We also need to estimate [σi]A∞ , for i = 1, . . . ,m. We have that

σi = w
1−p′i
i = |x|ε−1 := σ.

Since σ is a power weight belonging to the A1 class of weights, we obtain

(6.5) [σ]A∞ ≤ [σ]A1 ≈ 1

ε
.

Hence

(6.6)

m∏
i=1

[σ]
1
pi
A∞

= [σ]
1
p

A∞
=

(
1

ε

) 1
p

.

Besides,

(6.7)

m∏
i=1

∥fi∥Lpi (wi) = (1/ε)1/p.

On the other hand, we need to estimate ||M(f⃗)||Lp(νw⃗). First, let f = x−1+εχ(0,1)(x) and
observe that

||M(f⃗)||Lp(νw⃗) = ||Mf ||mLpm(νw⃗)

and if we pick 0 < x < 1, we obtain

Mf(x) ≥ 1

x

ˆ x

0
y−1+εdy =

f(x)

ε
.
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Then the left-hand side of (6.1) can be bounded from below as follows:

||M(f⃗)||Lp(νw⃗) = ||Mf ||mLpm(νw⃗) ≥
(
1

ε

)m(ˆ
R
f(x)mpνw⃗

) m
mp

=

(
1

ε

)m

||f ||mLpm(νw⃗)

≈
(
1

ε

)m(1

ε

)1/p

≥
(
1

ε

)m+1/p

.

(6.8)

since

||f ||mp
Lpm(νw⃗) ≈

1

ε
,

and νw⃗ ∈ Apm. By (6.4), (6.6) and (6.7) the right-hand side of (6.1) is at most (1/ε)m+1/p.
Since ε is arbitrary, this shows that the exponents 1/p and 1/pi on the right-hand side of
(6.1) cannot be replaced by smaller ones.

7. Multilinear Sawyer’s theorem

In this section, we introduce a multilinear nonstandard formulation of the (dyadic) Car-
leson embedding theorem originally proved in [25]. This result was the key lemma to
prove in [9] a generalization of Sawyer’s two weight theorem for the multisublinear maxi-
mal function M. Some remarks as well as some recent advances in this problem are listed
within the section.

Lemma 7.1. Suppose that the nonnegative numbers {aQ}Q satisfy

(7.1)
∑
Q⊂R

aQ ≤ A

ˆ
R

m∏
i=1

σ
p
pi
i dx, ∀R ∈ D

where σi are weights for i = 1, . . . ,m. Then for all 1 < pi < ∞ and p ∈ (1,∞) satisfying
1
p = 1

p1
+ · · ·+ 1

pm
and for all fi ∈ Lpi(σi),

∑
Q∈D

aQ

( m∏
i=1

1

σi(Q)

ˆ
Q
fi(yi)σi(yi)dyi

)p1/p

≤A||Md−→σ (
−→
f )||Lp(ν−→σ )

≤A

m∏
i=1

p′i||fi||Lpi (σi),

(7.2)

where Md−→σ (
−→
f ) = sup

Q∋x
Q∈D

m∏
i=1

1

σi(Q)

ˆ
Q
|fi(yi)|σi(yi)dyi.
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Proof of Lemma 7.1. Let us see the sum∑
Q∈D

aQ

(
m∏
i=1

1

σi(Q)

ˆ
Q
fi(yi)σi(yi)dyi

)p

as an integral on a measure space (D , 2D , µ) built over the set of dyadic cubes D , assigning
to each Q ∈ D the measure aQ. Thus

∑
Q∈D

aQ

(
m∏
i=1

1

σi(Q)

ˆ
Q
fi(yi)σi(yi)dyi

)p

=

=

ˆ ∞

0
pλp−1µ

{
Q ∈ D :

m∏
i=1

1

σi(Q)

ˆ
Q
fi(yi)σi(yi)dyi > λ

}

=:

ˆ ∞

0
pλp−1µ(Dλ)dλ.

Let us denote by D∗
λ the set of maximal dyadic cubesR with the property that

∏m
i=1

1
σi(Q)

´
R fi(yi)σi(yi)dyi >

λ. Then the cubes R ∈ D∗
λ are disjoint and their union is equal to the set {Md−→σ (

−→
f ) > λ}.

Thus

µ(Dλ) =
∑
Q∈Dλ

aQ ≤
∑
R∈D∗

λ

∑
Q⊂R

aQ

≤ A
∑
R∈D∗

λ

ˆ
R

m∏
i=1

σ
p
pi
i dx

= A

ˆ
{Md−→σ (

−→
f )>λ}

m∏
i=1

σ
p
pi
i dx.

Then we obtain

∑
Q∈D

aQ

(
m∏
i=1

1

σi(Q)

ˆ
Q
fi(yi)σi(yi)dyi

)p

≤ A

ˆ ∞

0
pλp−1

ˆ
{Md−→σ (

−→
f )>λ}

m∏
i=1

σ
p
pi
i dxdλ

= A

ˆ
Rn

Md−→σ (
−→
f )p

m∏
i=1

σ
p
pi
i dx

≤ A

ˆ
Rn

m∏
i=1

((Md
σi
(fi))

piσi)
p
pi dx

≤ A
m∏
i=1

(ˆ
Rn

(Md
σi
(fi))

piσidx

) p
pi

≤ A

m∏
i=1

(
p′i
)p(ˆ

Rn

|fi|piσidx
) p

pi

,



MULTILINEAR WEIGHTED INEQUALITIES 23

where we have used that Md−→σ (
−→
f ) ≤

∏m
i=1M

d
σi
(fi), Hölder’s inequality and the bounded-

ness properties of Md
σi
(fi) in Lpi(σi). �

Next we establish the following generalization of Sawyer’s theorem for which it is necessary
to define the Sawyer’s condition in the multilinear setting.

Definition 7.2. We say that the pair (v, w⃗) satisfies the SP⃗ condition if

[v, w⃗]S
P⃗
= sup

Q

(ˆ
Q
M( ⃗σχQ)

pvdx
) 1

p
( m∏

i=1

σi(Q)
1
pi

)−1
< ∞,

where ⃗σχQ = (σ1χQ, . . . , σmχQ) and σi = w
1−p′i
i for all i = 1, . . . ,m and all the suprema

in the above definitions are taken over all cubes Q in Rn.

Very recently it was shown in [41] a multilinear version of Sawyer’s theorem using a kind
of monotone property on the weights. The condition that we establish here is a sort of
reverse Hölder inequality in the multilinear setting.

Definition 7.3. We say that the vector w⃗ satisfies the RHP⃗ condition if there exists a
positive constant C such that

(7.3)

m∏
i=1

( ˆ
Q
σidx

) p
pi ≤ C

ˆ
Q

m∏
i=1

σ
p
pi
i dx,

where σi = w
1−p′i
i for i = 1, . . . ,m. We denote by [w⃗]RH

P⃗
the smallest constant C in (7.3).

Observe that when m = 1 this reverse Hölder condition is superfluous and we recover the
linear result of Moen in [43].

Theorem 7.4. Let 1 < pi < ∞, i = 1, . . . ,m and 1
p = 1

p1
+ . . . + 1

pm
. Let v and wi be

weights. If we suppose that −→w ∈ RH−→
P

then there exists a positive constant C such that

(7.4) ||M(
−→
fσ)||Lp(v) ≤ C

m∏
i=1

||fi||Lpi (σi), fi ∈ Lpi(σi),

where σi = w
1−p′i
i , if and only if (v,−→w ) ∈ S−→

P
. Moreover, if we denote the smallest constant

C in (7.4) by ||M||, we obtain

(7.5) [v,−→w ]S−→
P
. ||M|| . [v,−→w ]S−→

P
[−→w ]

1/p
RH−→

P
.

Here we make some remarks related to the previous theorem.

Remark 7.5. In the particular case when v = ν−→w , the following statements are equivalent:

(1) −→w ∈ A−→
P
.

(2) σi = w
1−p′i
i ∈ Amp′i

, for i = 1, . . . ,m and ν−→w ∈ Amp.

(3) (ν−→w ,−→w ) ∈ S−→
P
.
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(4) There exists a positive constant C such that

(7.6) ||M(
−→
f )||Lp(ν−→w ) ≤ C

m∏
i=1

||fi||Lpi (wi), fi ∈ Lpi(wi).

Indeed, the equivalence between 1., 2. and 4. was proved in [37, Th. 3.6, Th. 3.7]. It
can be easily seen that in this particular case [ν−→w ,−→w ]S−→

P
. ||M|| where ||M|| denotes the

smallest constant in (7.6) and [−→w ]A−→
P
. [ν−→w ,−→w ]pS−→

P
. Therefore we have that 4. implies 3.

and 3. implies 1.. So we have obtained that all the statements are equivalent.

Additionally, following Theorem 6.1 we also have that ||M|| . [−→w ]
1/p
A−→

P

∏m
i=1[σi]

1
pi∞ . So, we

have obtained

(7.7) [−→w ]
1/p
A−→

P
. [v−→w ,−→w ]S−→

P
. ||M|| . [−→w ]

1/p
A−→

P

m∏
i=1

[σi]
1
pi∞ .

Remark 7.6. As we have observed in the previous remark, RH−→
P

condition is not neces-
sary when v = ν−→w in Theorem 7.4. We are not sure if this condition can be removed in
the general case.

Proof of Theorem 7.4. It is clear that (7.4) implies the S−→
P

condition without using that

(v,−→w ) ∈ RH−→
P
. Thus, it remains to prove that (v,−→w ) ∈ S−→

P
implies (7.4) to complete the

proof of the theorem.
As we did before it suffices to prove the theorem for the dyadic maximal operators MDα .
Since the proof is independent of the particular dyadic grid, without loss of generality we
consider Md taken with respect to the standard dyadic grid D. Next we proceed as in the
proof of Lemma 6.3. Let a = 2m(n+1) and for k ∈ Z consider the following sets

Ωk = {x ∈ Rn : Md(
−→
fσ) > ak}.

Then we have that Ωk = ∪jQ
k
j , where the cubes Q

k
j are pairwise disjoint with k fixed, and

ak <

m∏
i=1

1

|Qk
j |

ˆ
Qk

j

|fi(yi)|σi(yi)dyi ≤ 2mnak.

It follows that

ˆ
Rn

Md(
−→
fσ)pvdx =

∑
k

ˆ
Ωk\Ωk+1

Md(
−→
fσ)pvdx

≤ ap
∑
k

ˆ
Ωk\Ωk+1

akpvdx

= ap
∑
k,j

akpv(Ek
j ),

since Ωk \ Ωk+1 = ∪jE
k
j where the sets Ek

j are the sets associated with the family {Qk
j }.

Then, we obtain
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ˆ
Rn

Md(
−→
fσ)pvdx ≤ ap

∑
k,j

(
m∏
i=1

1

|Qk
j |

ˆ
Qk

j

|fi|σidyi

)p

v(Ek
j )

= ap
∑
k,j

v(Ek
j )

(
m∏
i=1

σi(Q
k
j )

|Qk
j |

)p( m∏
i=1

1

σ(Qk
j )

ˆ
Qk

j

|fi|σidyi

)p

= ap
∑
Q∈D

aQ

(
m∏
i=1

1

σ(Qk
j )

ˆ
Qk

j

|fi|σidyi

)p

,

where aQ = v(E(Q))
(∏m

i=1
σi(Q)
|Q|

)p
, if Q = Qk

j for some (k, j) where E(Q) denotes the

corresponding set Ek
j associated to Qk

j , and aQ = 0 otherwise. If we apply the Carleson
embedding to these aQ, we will find the desired result provided that

∑
Q⊂R

aQ ≤ A

ˆ
R

m∏
i=1

σ
p
pi
i dx, R ∈ D.

For R ∈ D, we obtain

∑
Q⊂R

aQ =
∑

Qk
j⊂R

v(Ek
j )

(
m∏
i=1

σi(Q
k
j )

|Qk
j |

)p

=
∑

Qk
j⊂R

ˆ
Ek

j

(
m∏
i=1

σi(Q
k
j )

|Qk
j |

)p

v(x)dx

≤
∑

Qk
j⊂R

ˆ
Ek

j

(M(−−→σχR))
pv(x)dx

≤ [v,−→w ]pS−→
P

m∏
i=1

σi(R)
p
pi

≤ [v,−→w ]pS−→
P
[−→ω ]RH−→

P

ˆ
R

m∏
i=1

σ
p
pi
i dx,

where in the next to last inequality we have used the S−→
P

condition and in the last
inequality we have used the RH−→

P
condition. Thus, by Lemma 7.1 we get the desired

result and the proof is complete.
�

Remark 7.7. In [39], the authors studied the characterization of the two-weight inequality
for the fractional version of the multilinear maximal function

Mα(f⃗)(x) = sup
Q∋x

m∏
i=1

1

|Q|1−α/mn

ˆ
Q
|fi(yi)|dyi, 0 ≤ α < mn,
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in terms of the multilinear SP⃗ ,q condition. However, the result proved in [39, Thm. 1.1]

does not hold in the case α = 0, which corresponds to the case of the multilinear maximal
function.
In the general case, they gave two testing conditions (see [39, Thm. 4.1] for further details)
which are equivalent to Mα to be bounded from Lp1(w1)× Lp2(w2) to Lq(v), for weights
v, w1, w2, 0 ≤ α < 2n, 1 < p1, p2 < ∞, 1/p = 1/p1 + 1/p2 and 1/q = 1/p− α/n.

8. Sharp bounds for multilinear sparse operators

In this section, we prove some useful results that we are going to use in the second part of
this course. More precisely, we determine the sharp bound for multilinear sparse operators
as it was shown in [38]. These operators, as we will see in the following, control pointwisely
multilinear Calderón–Zygmund operators. We refer the interested reader to Section 9 for
a detailed description on the chronological advances this problem.
Firstly, we prove the following symmetry property of AP⃗ weights.

Lemma 8.1. Suppose that w⃗ = (w1, · · · , wm) ∈ AP⃗ and that 1 < p, p1, · · · , pm < ∞ with

1/p1 + · · · + 1/pm = 1/p. Then w⃗i := (w1, · · · , wi−1, v
1−p′

w⃗ , wi+1, · · · , wm) ∈ AP⃗ i with

P⃗ i = (p1, · · · , pi−1, p
′, pi+1, · · · , pm) and

(8.1) [w⃗i]A
P⃗ i

= [w⃗]
p′i/p
A

P⃗
,

where

[w⃗i]A
P⃗ i

:= sup
Q

(
1

|Q|

ˆ
Q
w

1−p′i
i

)
·
(

1

|Q|

ˆ
Q
(v1−p′

w⃗ )1−p

)p′i/p m∏
j=1
j ̸=i

(
1

|Q|

ˆ
Q
w

1−p′j
j

)p′i/p
′
j

.(8.2)

Proof. Without loss of generality we will only prove the conclusion for i = 1. Notice that

1/p′ + 1/p2 + · · ·+ 1/pm = 1/p′1

and
v
(1−p′)p′1/p

′

w⃗ · wp′1/p2
2 · · ·wp′1/pm

m = w
1−p′1
1 .

By the definition of multiple AP⃗ constant, we have

[w⃗1]A
P⃗1

= sup
Q

(
1

|Q|

ˆ
Q
w

1−p′1
1

)
·
(

1

|Q|

ˆ
Q
(v1−p′

w⃗ )1−p

)p′1/p

×
m∏
i=2

(
1

|Q|

ˆ
Q
w

1−p′i
i

)p′1/p
′
i

= [w⃗]
p′1/p
A

P⃗
.

�
Let us state and prove the main theorem in this section.

Theorem 8.2. Suppose that 1 < p1, · · · , pm < ∞ with 1/p1 + · · · + 1/pm = 1/p and
w⃗ ∈ AP⃗ . Then

∥AD ,S(f⃗)∥Lp(vw⃗) . [w⃗]
max(1,

p′1
p
,...,

p′m
p

)

A
P⃗

m∏
i=1

∥fi∥Lpi (wi).
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Proof. Without loss of generality we may assume that fi ≥ 0. We first consider the case
when 1

m < p ≤ 1. It suffices to prove that

∥AD ,S(f⃗σ)∥Lp(vw⃗) ≤ Cm,n,P⃗ [w⃗]
maxi(

p′i
p
)

A
P⃗

m∏
i=1

∥fi∥Lpi (σi),

where σi = w
1−p′i
i , AD ,S(f⃗σ) = AD ,S(f1σ1, · · · , fmσm). Without loss of generality, we can

assume that p1 = min{p1, · · · , pm}. We have

ˆ
Rn

AD ,S(f⃗σ)
pvw⃗ .

∑
Q∈S

m∏
i=1

( 1

|Q|

ˆ
Q
|fi|σi

)p
vw⃗(Q)

=
∑
Q∈S

vw⃗(Q)p
′
1
∏m

i=1 σi(Q)pp
′
1/p

′
i

|Q|mpp′1

( m∏
i=1

ˆ
Q
|fi|σi

)p

· |Q|mp(p′1−1)

vw⃗(Q)p
′
1−1

∏m
i=1 σi(Q)pp

′
1/p

′
i

≤ [w⃗]
p′1
A

P⃗

∑
Q∈S

2mp(p′1−1)|EQ|mp(p′1−1)

vw⃗(Q)p
′
1−1

∏m
i=1 σi(Q)pp

′
1/p

′
i

·
( m∏

i=1

ˆ
Q
|fi|σi

)p

.

By Hölder’s inequality, we have

|EQ| =

ˆ
EQ

v
1

mp

w⃗ σ

1
mp′1
1 · · ·σ

1
mp′m
m(8.3)

≤ vw⃗(EQ)
1

mpσ1(EQ)
1

mp′1 · · ·σm(EQ)
1

mp′m .

Therefore,

|EQ|mp(p′1−1) ≤ vw⃗(EQ)
p′1−1σ1(EQ)

p(p′1−1)

p′1 · · ·σm(EQ)
p(p′1−1)

p′m

and
p(p′1 − 1)

p′i
− p

pi
=

pp′1
p′i

− p ≥ 0.

Since EQ ⊂ Q, we have

vw⃗(EQ)
p′1−1 ≤ vw⃗(Q)p

′
1−1

and hence

σi(EQ)
p(p′1−1)

p′
i

− p
pi ≤ σi(Q)

pp′1
p′
i
−p

, i = 1, · · · ,m.

It follows that ∑
Q∈S

|EQ|mp(p′1−1)

vw⃗(Q)p
′
1−1

∏m
i=1 σi(Q)pp

′
1/p

′
i

·
( m∏

i=1

ˆ
Q
|fi|σi

)p

≤
∑
Q∈S

m∏
i=1

(
1

σi(Q)

ˆ
Q
|fi|σi

)p

σi(EQ)
p/pi
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≤
m∏
i=1

∑
Q∈S

(
1

σi(Q)

ˆ
Q
|fi|σi

)pi

σi(EQ)

p/pi

≤
m∏
i=1

∥MD
σi
(fi)∥pLpi (σi)

.
m∏
i=1

∥fi∥pLpi (σi)
.

Now consider the case p ≥ maxi p
′
i. It is sufficient to prove that

∥AD ,S(f⃗σ)∥Lp(vw⃗) . [w⃗]A
P⃗

m∏
i=1

∥fi∥Lpi (σi).

By duality, it suffices to estimate the (m+ 1)-linear form

ˆ
Rn

AD ,S(f⃗σ)gvw⃗ =
∑
Q∈S

ˆ
Q
gvw⃗ ·

m∏
i=1

1

|Q|

ˆ
Q
fiσi

for g ≥ 0 belonging to Lp′(vw⃗). We have∑
Q∈S

ˆ
Q
gvw⃗ ·

m∏
i=1

1

|Q|

ˆ
Q
fiσi

=
∑
Q∈S

vw⃗(Q)
∏m

i=1 σi(Q)p/p
′
i

|Q|mp
· |Q|m(p−1)

vw⃗(Q)
∏m

i=1 σi(Q)p/p
′
i

·
ˆ
Q
gvw⃗ ·

m∏
i=1

ˆ
Q
fiσi

≤ [w⃗]A
P⃗

∑
Q∈S

|Q|m(p−1)

vw⃗(Q)
∏m

i=1 σi(Q)p/p
′
i

·
ˆ
Q
gvw⃗ ·

m∏
i=1

ˆ
Q
fiσi

≤ [w⃗]A
P⃗

∑
Q∈S

2m(p−1)|EQ|m(p−1)

vw⃗(Q)
∏m

i=1 σi(Q)p/p
′
i

·
ˆ
Q
gvw⃗ ·

m∏
i=1

ˆ
Q
fiσi.

By (8.3),

(8.4) |EQ| ≤ vw⃗(EQ)
1

mpσ1(EQ)
1

mp′1 · · ·σm(EQ)
1

mp′m .

Since p ≥ maxi{p′i} and EQ ⊂ Q, we have σi(Q)
1− p

p′
i ≤ σi(EQ)

1− p

p′
i for any i = 1, · · · ,m.

Therefore,∑
Q∈S

ˆ
Q
gvw⃗ ·

m∏
i=1

1

|Q|

ˆ
Q
fiσi

≤ 2m(p−1)[w⃗]A
P⃗

∑
Q∈S

vw⃗(EQ)
1
p′

m∏
i=1

σi(EQ)
p−1

p′
i σi(Q)

1− p

p′
i
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· 1

vw⃗(Q)

ˆ
Q
gvw⃗ ·

m∏
i=1

1

σi(Q)

ˆ
Q
fiσi

≤ 2m(p−1)[w⃗]A
P⃗

∑
Q∈S

vw⃗(EQ)
1
p′

m∏
i=1

σi(EQ)
1
pi

1

vw⃗(Q)

ˆ
Q
gvw⃗

·
m∏
i=1

1

σi(Q)

ˆ
Q
fiσi

≤ 2m(p−1)[w⃗]A
P⃗

∑
Q∈S

(
1

vw⃗(Q)

ˆ
Q
gvw⃗

)p′

vw⃗(EQ)

1/p′

·
m∏
i=1

∑
Q∈S

(
1

σi(Q)

ˆ
Q
fiσi

)pi

σi(EQ)

1/pi

≤ 2m(p−1)[w⃗]A
P⃗
∥MD

vw⃗
(g)∥Lp′ (vw⃗)

m∏
i=1

∥MD
σi
(fi)∥Lpi (σi)

. 2m(p−1)[w⃗]A
P⃗
∥g∥Lp′ (vw⃗)

m∏
i=1

∥fi∥Lpi (σi),

where we have used the boundedness of the weighted maximal function in the last step.
For the other cases we use duality. Notice that the operator AD ,S is self adjoint as a
multilinear operator, in the sense that for any i, i = 1, . . . ,m, we haveˆ

Rn

AD ,S(f1, . . . , fm)g =

ˆ
Rn

AD ,S(f1, . . . , fi−1, g, fi+1, . . . fm)fi.

Without loss of generality suppose p′1 ≥ max(p, p′2, . . . , p
′
m). Hence, by duality and self

adjointness we have

∥AD ,S∥Lp1 (w1)×···×Lpm (wm)→Lp(vw⃗) = ∥AD ,S∥
Lp′ (v1−p′

w⃗
)×···×Lpm (wm)→Lp′1 (w

1−p′1
1 )

. [w⃗1]P⃗ 1 = [w⃗]
p′1
p

A
P⃗
.

�

9. Recent advances on the control of multilinear Calderón–Zygmund
operators

Below is a partial list of important contributions to find the sharp bounds for multilinear
Calderón–Zygmund operators.

• Control in norm from above by sparse operators of classical m-CZOs using the
local mean oscillation formula and generalization of the A2 theorem (W.D., A.K.
Lerner and C. Pérez, [15]).

• Sharp bounds for sparse operators in the general case avoiding the use of extrap-
olation and Ap theorem for m-CZOs for the case 1 < p < ∞ (K.L., K. Moen and
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W. Sun [38]). The case when 1/m < p < 1 was still open since their result relied
on the domination theorem in [15] which only holds for Banach function spaces.

• Pointwise control of log-Dini continuous m-CZOs by sparse operators (A.K. Lerner
and F. Nazarov [36] and J.M. Conde-Alonso and G. Rey [12]).

• Pointwise control of Dini continuous CZOs by sparse operators (M.T. Lacey [30]);
tracking the precise constants (T. Hytönen, L. Roncal and O. Tapiola [26]); and
further simplifications of the proof (A.K. Lerner [34]).

• Pointwise control of Dini continuous m-CZOs by sparse operators taking care of
the precise constants and applications to several multilinear operators (W.D., M.
Hormozi and K.L. [14]).

10. Domination theorem for multilinear Calderón-Zygmund operators

In Section 2 we have introduced the standard multilinear Calderón-Zygmund operators.
Now we shall relax the kernel estimates slightly. We say that T is a ω-bilinear Calderón–
Zygmund operator if it is a bilinear operator originally defined on the product of Schwartz
spaces and taking values into the space of tempered distributions,

(10.1) T : S(Rn)× S(Rn) → S ′(Rn),

and for some 1 ≤ q1, q2 < ∞ it extends to a bounded bilinear operator from Lq1 × Lq2 to
Lq, where 1/q1 + 1/q2 = 1/q, and if there exists a function K, defined off the diagonal
x = y = z in (Rn)3, satisfying

(10.2) T (f1, f2)(x) =

¨
(Rn)2

K(x, y, z)f1(y)f2(z)dydz,

for all x /∈ supp f1 ∩ supp f2. The kernel K must also satisfy, for some constants CK > 0
and τ ∈ (0, 1), the following size condition

(10.3) |K(x, y, z)| ≤ CK

(|x− y|+ |x− z|)2n
,

and, the smoothness estimate

|K(x+ h, y, z)−K(x, y, z)|+ |K(x, y + h, z)−K(x, y, z)|
+ |K(x, y, z + h)−K(x, y, z)|

≤ 1

(|x− y|+ |x− z|)2n
ω

(
|h|

|x− y|+ |x− z|

)
,

whenever |h| ≤ τ max (|x− y|, |x− z|).
If ω : [0,∞) → [0,∞) is a modulus of continuity (i.e. it is increasing, subadditive (ω(t +
s) ≤ ω(t) + ω(s)) and ω(0) = 0), the kernel K is said to be a log-Dini-continuous kernel
if ω satisfies the following condition

(10.4) ||ω||log-Dini :=

ˆ 1

0
ω(t)

(
1 + log

(
1

t

))
dt

t
< ∞.

We are mostly interested in the weaker case when K is a Dini(a)-conti-nuous kernel.
Namely, when ω satisfies the following condition:

(10.5) ||ω||Dini(a) :=

ˆ 1

0
ωa(t)

dt

t
< ∞.
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In the case a = 1, we will denote ||ω||Dini(a) simply as ||ω||Dini.
Given a bilinear Calderón-Zygmund operator T , the maximal truncation of T is defined
as the operator T♯ given by

(10.6) T♯(f1, f2)(x) = sup
ε>0

|Tε(f1, f2)(x)| ,

where Tε is the ε-truncation of T

(10.7) Tε(f1, f2)(x) =

ˆ
|x−y|2+|x−z|2>ε2

K(x, y, z)f1(y)f2(z)dydz.

Our goal in this section is showing that, for bilinear CZO T , whose kernel satisfies the
Dini(1) condition, then T can be controlled by a finite summation of sparse operators
introduced in Section 6. Recall that the dyadic systems are defined by

(10.8) Du := {2−k([0, 1)u +m+ (−1)k 1
3u) : k ∈ Z,m ∈ Zn}, u ∈ {0, 1, 2}n.

Our main result in this section states as follows

Theorem 10.1. Let T be a bilinear ω-Calderón–Zygmund operator with ω satisfying the
Dini condition. Then for any pair of compactly supported functions f1, f2 ∈ L1(Rn), there
exist sparse collections Su ⊂ Du, u = 1, 2, . . . , 3n, such that

(10.9) T (f1, f2)(x) ≤ cn(∥T∥Lq1×Lq2→Lq + CK + ∥ω∥Dini)

3n∑
u=1

ASu(f1, f2)(x),

for almost every x ∈ Rn, where the constant cn depends only on the dimension and
∥T∥Lq1×Lq2→Lq denotes the norm of the operator.

Theorem 10.1 has been proved in [14] (actually for T♯) using a similar arguments with [26].
However, in this lecture note, we shall introduce a new proof follows from Lerner’s recent
idea [34]. With Hänninen’s arguments [23] in hand, it suffices to prove the following

Theorem 10.2. Let T be a bilinear ω-Calderón–Zygmund operator with ω satisfying the
Dini condition. Then for any pair of compactly supported functions f1, f2 ∈ L1(Rn), there
exists a sparse collection S, such that for a.e. x ∈ Rn

(10.10) T (f1, f2)(x) ≤ cn(∥T∥Lq1×Lq2→Lq + CK + ∥ω∥Dini)
∑
Q∈S

⟨f1⟩3Q⟨f2⟩3Q1Q(x).

As that in [34], we define the bilinear grand maximal truncated operator MT by

MT (f1, f2)(x) := sup
Q∋x

ess sup
ξ∈Q

(|T (f1, f2)(ξ)− T (f1χ3Q, f2χ3Q)(ξ)|) .

Given a cube Q0, for x ∈ Q0 we define a local version of MT by

MT,Q0(f1, f2)(x) := sup
Q∋x,Q⊂Q0

ess sup
ξ∈Q

(|T (f1χ3Q0 , f2χ3Q0)(ξ)− T (f1χ3Q, f2χ3Q)(ξ)|) .

We have the following lemma.

Lemma 10.3. The following pointwise estimate holds

(1) for a.e. x ∈ Q0,

T (f1χ3Q0 , f2χ3Q0)(x) ≤ cn∥T∥
L1×L1→L

1
2 ,∞ |f1(x)f2(x)|+MT,Q0(f1, f2)(x);
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(2) for all x ∈ Rn,

MT (f1, f2)(x) ≤ cn(∥ω∥Dini + CK)M(f1, f2)(x) + T♯(f1, f2)(x).

Proof. Suppose that x ∈ Q◦ and let x be a point of approximate continuity of T (f1χ3Q0 , f2χ3Q0).
Then for every ε > 0, the sets

Es(x) := {y ∈ B(x, s) : |T (f1χ3Q0 , f2χ3Q0)(y)− T (f1χ3Q0 , f2χ3Q0)(x)| < ε}

satisfy lims→0
|Es(x)|
|B(x,s)| = 1. Denote by Q(x, s) the smallest cube centered at x and contain-

ing B(x, s). Let s > 0 be so small that Q(x, s) ⊂ Q0. Then for a.e. y ∈ Es(x),

T (f1χ3Q0 , f2χ3Q0)(x) < T (f1χ3Q0 , f2χ3Q0)(y) + ε

≤ T (f1χ3Q(x,s), f2χ3Q(x,s))(y) +MT,Q0(f1, f2)(x) + ε.

It follows that

T (f1χ3Q0 , f2χ3Q0)(x) ≤ ess inf
y∈Es(x)

T (f1χ3Q(x,s), f2χ3Q(x,s))(y) +MT,Q0(f1, f2)(x) + ε

≤

(
1

|Es(x)|

ˆ
Es(x)

|T (f1χ3Q(x,s), f2χ3Q(x,s))(y)|δdy

) 1
δ

+MT,Q0(f1, f2)(x) + ε

≤ ∥T (f1χ3Q(x,s), f2χ3Q(x,s))∥L 1
2 ,∞(Es(x),

dx
|Es(x)|

)

+MT,Q0(f1, f2)(x) + ε

≤ ∥T∥
L1×L1→L

1
2 ,∞

1

|Es(x)|2

ˆ
3Q(x,s)

|f1(y)|dy
ˆ
3Q(x,s)

|f2(y)|dy

+MT,Q0(f1, f2)(x) + ε.

Assuming additionally that x is a Lebesgue point of f1 and f2 and letting subsequently
s → 0 and ε → 0, we obtain (i).
Now we turn to prove (ii). Let x, ξ ∈ Q. Denote by Bx the closed ball centered at x of
radius 2diamQ, then 3Q ⊂ Bx. Set

T̃ε(f1, f2)(x) =

ˆ
max{|x−y|,|x−z|}>ε

K(x, y, z)f1(y)f2(z)dydz.

We have

|T (f1, f2)(ξ)− T (f1χ3Q, f2χ3Q)(ξ)|

= |T (f1, f2)(ξ)− T (f1χ3Q, f2χ3Q)(ξ)− T̃2diamQ(f1, f2)(ξ)|

+ |T̃2diamQ(f1, f2)(ξ)− T2diamQ(f1, f2)(ξ)|
+ |T2diamQ(f1, f2)(ξ)− T2diamQ(f1, f2)(x)|+ |T2diamQ(f1, f2)(ξ)|

:= I + II + III + IV.

By size condition,

I = |T (f1χBx\3Q, f2χBx) + T (f1χ3Q, f1χBx\3Q)| ≤ cnCKM(f1, f2)(x);
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II =

∣∣∣∣∣∣
ˆ
max{|x−y|,|x−z|}≤2diamQ
|x−y|2+|x−z|2>(2diamQ)2

K(x, y, z)f1(y)f2(z)dydz

∣∣∣∣∣∣ ≤ cnCKM(f1, f2)(x).

By definition, IV ≤ T♯(f1, f2)(x). Finally, by smoothness condition,

III ≤
ˆ
|x−y|2+|x−z|2>(2diamQ)2

|K(x, y, z)−K(ξ, y, z)| · |f1(y)| · |f2(z)|dydz

=

∞∑
k=1

ˆ
(2kdiamQ)2<|x−y|2+|x−z|2≤(2k+1diamQ)2

|K(x, y, z)−K(ξ, y, z)| · |f1(y)| · |f2(z)|dydz

≤
∞∑
k=1

ω(2−k)

(2kdiamQ)2n

ˆ
B(x,2k+1diamQ)

|f1(y)|dy
ˆ
B(x,2k+1diamQ)

|f2(z)|dz

≤ cnM(f1, f2)(x)

∞∑
k=1

ω(2−k)

≤ cn∥ω∥DiniM(f1, f2)(x).

�
Now we are ready to prove Theorem 10.2. Denote

CT := ∥T∥
L1×L1→L

1
2 ,∞ + ∥T♯∥

L1×L1→L
1
2 ,∞ + ∥ω∥Dini + CK

.

Proof of Theorem 10.2. Fix a cube Q0 ⊂ Rn. We shall prove the following recursive
inequality,

(10.11) |T (f1χ3Q0 , f2χ3Q0)(x)|χQ0 ≤ cnCT ⟨f⟩3Q0 +
∑
j

|T (f1χ3Pj , f2χ3Pj )(x)|χPj ,

where Pj are disjoint dyadic subcubes of Q0, say D(Q0) and moreover,
∑

j |Pj | ≤ 1
2 |Q0|.

Once (10.11) is verified, then Theorem 10.2 follows immediately.
Next, observe that for arbitrary pairwise disjoint cubes Pj ∈ D(Q0),

|T (f1χ3Q0 , f2χ3Q0)(x)|χQ0

= |T (f1χ3Q0 , f2χ3Q0)(x)|χQ0\∪jPj
+
∑
j

|T (f1χ3Q0 , f2χ3Q0)(x)|χPj

≤ |T (f1χ3Q0 , f2χ3Q0)(x)|χQ0\∪jPj
+
∑
j

|T (f1χ3Pj , f2χ3Pj )(x)|χPj

+
∑
j

|T (f1χ3Q0 , f2χ3Q0)(x)− T (f1χ3Pj , f2χ3Pj )(x)|χPj

Hence, in order to prove the recursive claim, it suffices to show that one can select pairwise
disjoint cubes Pj ∈ D(Q0) with

∑
j |Pj | ≤ 1

2 |Q0| and such that for a.e. x ∈ Q0,∑
j

|T (f1χ3Q0 , f2χ3Q0)(x)− T (f1χ3Pj , f2χ3Pj )(x)|χPj

+ |T (f1χ3Q0 , f2χ3Q0)(x)|χQ0\∪jPj
≤ cnCT ⟨f⟩3Q0 .
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By Lemma 10.3 we have ∥MT ∥
L1×L1→L

1
2 ,∞ ≤ αnCT . Therefore, one can choose cn such

that the set

E :={x ∈ Q0 : |f1(x)f2(x)| > cn⟨|f1|⟩3Q0⟨|f2|⟩3Q0}
∪ {x ∈ Q0 : MT,Q0(f1, f2)(x) > cnCT ⟨|f1|⟩3Q0⟨|f2|⟩3Q0}

will satisfy |E| ≤ 1
2n+2 |Q0|. The Calderón-Zygmund decomposition applied to the function

χE on Q0 at height λ = 1
2n+1 produces pairwise disjoint cubes Pj ∈ D(Q0) such that

1

2n+1
|Pj | ≤ |Pj ∩ E| < 1

2
|Pj |

and |E \ ∪jPj | = 0. It follows that
∑

j |Pj | ≤ 1
2 |Q0| and Pj ∩ Ec ̸= ∅. Therefore,

ess sup
ξ∈Pj

|T (f1χ3Q0 , f2χ3Q0)(x)− T (f1χ3Pj , f2χ3Pj )(x)| ≤ cnCT ⟨|f1|⟩3Q0⟨|f2|⟩3Q0 .

On the other hand, by Lemma 10.3, for a.e. x ∈ Q0 \ ∪jPj , we have

|T (f1χ3Q0 , f2χ3Q0)(x)| ≤ cnCT ⟨|f1|⟩3Q0⟨|f2|⟩3Q0 .

Therefore, combining the estimates we arrive at (10.11).
Now with (10.11), suppose that supp f1 ∪ supp f2 ⊂ Q0 ∈ Du0 for some u0 ∈ {0, 1, 2}n.
Without loss of generality we can assume that u0 = 0 and Q0 = [0, 1)n. Then we construct
a partition of Rn in the following way, which is slight different with that in Lerner’s paper

[34]. Denote bro(Q0) := {Q ⊂ Q̂0 : ℓ(Q) = ℓ(Q0), Q ̸= Q0}, where Q̂0 is the dyadic parent
of Q0. Denote

P(Q0) := {Q0} ∪
∞
∪

k=0
bro(Q

(k)
0 ),

where Q(k) denotes the k-th ancestor of Q. Then P(Q0) is a partition of the quadrant
which contains Q0. Let Qi, i = 1, · · · , 2n−1 be the mirroring of Q0 in the other quadrants.
Then our partition of Rn is

P =
2n−1
∪
i=0

P(Qi).

It is easy to check that, for any P ∈ P, Q0 ⊂ 3P . Then apply (10.11) to each P ∈ P, we
obtain

|T (f1, f2)(x)| =
∑
P∈P

|T (f1, f2)(x)|χP

=
∑
P∈P

|T (f1χ3P , f2χ3P )(x)|χP

≤ cnCT

∑
P∈P

∑
Q∈SP

⟨f1⟩3Q⟨f2⟩3Q1Q(x).

This completes the proof of Theorem 10.2. �
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11. Ap-A∞ bound of bilinear sparse operators

In this section, we study the Ap-A∞ bound of bilinear Calderón-Zygmund operators.
With the domination theorem in hand, it suffices to study the corresponding estimates for
bilinear sparse operators. Indeed, we shall study a more general class of sparse operators.
To be precise, we consider the following type of sparse operators

Ap0,γ,S(f⃗)(x) :=

∑
Q∈S

[
2∏

i=1

⟨fi⟩Q,p0

]γ
1Q(x)

1/γ

,

where for any cube Q,

⟨f⟩Q,p0 :=

(
1

|Q|

ˆ
Q
|f(x)|p0dx

) 1
p0

.

Our main result can be stated as follows.

Theorem 11.1. Let γ > 0. Suppose that p0 < p1, p2 < ∞ with 1
p = 1

p1
+ 1

p2
. Let w and σ⃗

be weights satisfying that [w, σ⃗]A
P⃗ /p0

< ∞ and w, σi ∈ A∞ for i = 1, 2. If γ ≥ p0, then

∥Ap0,γ,S(·σ1, ·σ2)∥Lp1 (σ1)×Lp2 (σ2)→Lp(w)

. [w, σ⃗]
1
p

A
P⃗ /p0

( 2∏
i=1

[σi]
1
pi
A∞

+ [w]
( 1
γ
− 1

p
)+

A∞

m∑
j=1

∏
i̸=j

[σi]
1
pi
A∞

)
,

where (
1

γ
− 1

p

)
+

:= max

{
1

γ
− 1

p
, 0

}
.

If γ < p0, then the above result still holds for all p > γ.

Remark 11.2. If p0 = γ = 1, then by the domination theorem, the Ap-A∞ bound for
bilinear Calderón-Zygmund operators follows immediately (see [40]). Indeed, the above
result actually provided the Ap-A∞ bound for a large class of operators. For example, one
can also use it to bound the bilinear square functions and bilinear Fourier multipliers.

To prove Theorem 11.1, we need the following formula.

Proposition 11.3. Let 1 < s < ∞, σ be a positive Borel measure and

ϕ =
∑
Q∈D

αQ1Q, ϕQ =
∑
Q′⊂Q

αQ′1Q′ .

Then

∥ϕ∥Ls(σ) ≤ Cs

( ∑
Q∈D

αQ(⟨ϕQ⟩σQ)s−1σ(Q)
)1/s

.

Indeed, the reverse inequality also holds. See [8, 52] for details. However, to prove Theorem
11.1, Proposition 11.3 suffices.

Proof. We use the following elementary inequality

(11.1)

(∑
i

ai

)s

≤ s
∑
i

ai

∑
j≥i

aj

s−1

,
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where {ai}i∈Z is a sequence of non-negative summable numbers. To see (11.1), notice that

bs − as ≤ s(b− a)bs−1, for 0 ≤ a ≤ b.

Then we have, for any j,∑
i≤j

ai

s

−

∑
i<j

ai

s

≤ saj

∑
i≤j

ai

s−1

Then sum over j, we arrive at (11.1). Now consider the case 1 < s ≤ 2 first. We have

∥ϕ∥sLs(σ) =

ˆ ∑
Q∈D

αQ1Q

s

dσ

≤ s

ˆ ∑
Q∈D

αQ1Q

∑
Q′⊂Q

αQ′1Q′

s−1

dσ

= s
∑
Q∈D

αQ

ˆ
Q
ϕs−1
Q dσ

≤ s
∑
Q∈D

αQσ(Q)(⟨ϕQ⟩σQ)s−1.

It remains to study the case s > 2. Denote k = ⌈s− 2⌉, then apply (11.1) k times we get

∥ϕ∥sLs(σ) =

ˆ ∑
Q∈D

αQ1Q

s

dσ

≤ s

ˆ ∑
Q∈D

αQ1Q

 ∑
Q1⊂Q

αQ11Q1

s−1

dσ

≤ s(s− 1) · · · (s− k)

ˆ ∑
Q∈D

αQ1Q
∑

Q1⊂Q

αQ11Q1 · · ·

 ∑
Qk+1⊂Qk

αQk+1
1Qk+1

s−k−1

dσ

= c(s)
∑
Q∈D

αQ

∑
Q1⊂Q

αQ1 · · ·
∑

Qk⊂Qk−1

αQk

ˆ  ∑
Qk+1⊂Qk

αQk+1
1Qk+1

s−k−1

dσ

≤ c(s)
∑
Q∈D

αQ

∑
Q1⊂Q

αQ1 · · ·
∑

Qk⊂Qk−1

αQk
(⟨ϕQk

⟩σQk
)s−k−1σ(Qk)

= c(s)

ˆ ∑
Q∈D

αQ1Q
∑

Q1⊂Q

αQ11Q1 · · ·
∑

Qk⊂Qk−1

αQk
(⟨ϕQk

⟩σQk
)s−k−11Qk

dσ

≤ c(s)

ˆ ( ∑
Q∈D

αQ1Q

)k( ∑
Q∈D

αQ(⟨ϕQ⟩σQ)s−k−11Q

)
dσ
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≤ c(s)

ˆ ( ∑
Q∈D

αQ1Q

)k+ k
s−1
( ∑

Q∈D
αQ(⟨ϕQ⟩σQ)s−11Q

) s−k−1
s−1

dσ

≤ c(s)∥ϕ∥
sk
s−1

Ls(σ)

( ∑
Q∈D

αQ(⟨ϕQ⟩σQ)s−1σ(Q)
) s−k−1

s−1
,

where c(s) = s(s − 1) · · · (s − k). Then the desired estimates follows provided that
∥ϕ∥Ls(σ) < ∞. �

We also need the following proposition.

Proposition 11.4. Let S be a sparse family and 0 ≤ γ, η < 1 satisfying γ + η < 1. Then

(11.2)
∑
Q∈S
Q⊂R

⟨u⟩γQ⟨v⟩
η
Q|Q| . ⟨u⟩γR⟨v⟩

η
R|R|.

Proof. Indeed, set 1/r := γ+ η, 1/s := γ+(1− 1/r)/2 and 1/s′ := 1− 1/s. By sparseness
and Kolmogorov’s inequality, we have∑

Q∈S
Q⊂R

⟨u⟩γQ⟨v⟩
η
Q|Q| ≤ 2

∑
Q∈S
Q⊂R

⟨u⟩γQ⟨v⟩
η
Q|EQ|

≤ 2

ˆ
R
M(u1R)

γM(v1R)
ηdx

≤ 2
(ˆ

R
M(u1R)

sγ
)1/s(ˆ

R
M(v1R)

s′η
)1/s′

. ⟨u⟩γR|R|1/s⟨v⟩ηR|R|1/s′ = ⟨u⟩γR⟨v⟩
η
R|R|.

�

To prove Theorem 11.1, we make the following two observations.
Observation 1. Our first observation is that we can reduce the problem to study the
case of p0 = 1. Indeed, consider the two weight norm inequality

(11.3) ∥Ap0,γ,S(f1, f2)∥Lp(w) ≤ N (P⃗ , p0, γ, w, σ⃗)∥f1∥Lp1 (w1)∥f2∥Lp2 (w2),

where we use N (P⃗ , p0, γ, w, σ⃗) to denote the best constant such that (11.3) holds. Rewrite
(11.3) as

∥Ap0,γ,S(f
1
p0
1 , f

1
p0
2 )∥p0Lp(w) ≤ N (P⃗ , p0, γ, w, σ⃗)

p0∥f
1
p0
1 ∥p0Lp1 (w1)

∥f
1
p0
2 ∥p0Lp2 (w2)

,

which is equivalent to the following

∥A1, γ
p0

,S(f1, f2)∥Lp/p0 (w) ≤ N (P⃗ , p0, γ, w, σ⃗)
p0∥f1∥Lp1/p0(w1)

∥f2∥Lp2/p0 (w2)
.

Therefore, if we denote by N (P⃗ , γ, w, σ) the best constant for the case p0 = 1, then the

best constant for general p0 would be N (P⃗ /p0, γ/p0, w, σ)
1/p0 . Therefore, it suffices to

study the case of p0 = 1.
Our second observation is the following
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Observation 2. Consider the case p > γ. Let N denote the best constant such that the
following inequality holds

(11.4) ∥A1,γ,S(f1σ1, f2σ2)∥Lp(w) ≤ N∥f1∥Lp1 (σ1)∥f2∥Lp2 (σ2).

Then (11.4) is equivalent to the following inequality with N ′ ≃ N γ

(11.5)
∥∥∥(∑

Q∈S
⟨f1⟩σ1

Q ⟨f2⟩σ2
Q ⟨σ1⟩γQ⟨σ2⟩

γ
Q1Q

) 1
γ
∥∥∥γ
Lp(w)

≤ N ′∥f1∥
L

p1
γ (σ1)

∥f2∥
L

p2
γ (σ2)

.

Indeed, on one hand, if (11.5) holds, we have

∥A1,γ,S(f1σ1, f2σ2)∥Lp(w)

≤
∥∥∥(∑

Q∈S
⟨Mσ1

D (f1)
γ⟩σ1

Q ⟨Mσ2
D (f2)

γ⟩σ2
Q ⟨σ1⟩γQ⟨σ2⟩

γ
Q1Q

) 1
γ
∥∥∥
Lp(w)

. N∥Mσ1
D (f1)

γ∥1/γ
Lp1/γ(σ1)

∥Mσ2
D (f2)

γ∥1/γ
Lp2/γ(σ2)

≤ N∥f1∥Lp1 (σ1)∥f2∥Lp2 (σ2),

where Mσ
D denotes the dyadic weighted maximal function, namely

(11.6) Mσ
D(f) = sup

Q∈D

1

σ(Q)

ˆ
Q
|f(x)|σdx,

which is bounded from Lp(σ) into itself for every p > 1. On the other hand, if (11.4)
holds, we have∥∥∥(∑

Q∈S
⟨f1⟩σ1

Q ⟨f2⟩σ2
Q ⟨σ1⟩γQ⟨σ2⟩

γ
Q1Q

) 1
γ
∥∥∥
Lp(w)

≤
∥∥∥(∑

Q∈S
(⟨Mσ1

γ,D(f
1/γ
1 )⟩σ1

Q )γ(⟨Mσ2
γ,D(f

1/γ
2 )⟩σ2

Q )γ⟨σ1⟩γQ⟨σ2⟩
γ
Q1Q

) 1
γ
∥∥∥
Lp(w)

≤ N∥Mσ1
γ,D(f

1/γ
1 )∥Lp1 (σ1)∥M

σ2
γ,D(f

1/γ
2 )∥Lp2 (σ2)

. N∥f1/γ
1 ∥Lp1 (σ1)∥f

1/γ
2 ∥Lp2(σ2),

where Mσ
γ,D(f) = (Mσ

D(f
γ))1/γ and we have used in the last step that p > γ, which implies

p1, p2 > γ and consequently, the boundedness of the maximal functions.
Now we are ready to prove Theorem 11.1.

Proof of Theorem 11.1. First we consider the case p > γ. With Observation 2, it suffices
to estimate∥∥∥(∑

Q∈S
⟨f1⟩σ1

Q ⟨f2⟩σ2
Q ⟨σ1⟩γQ⟨σ2⟩

γ
Q1Q

) 1
γ
∥∥∥γ
Lp(w)

= sup
∥h∥

Lq′ (w)
=1

∑
Q∈S

⟨f1⟩σ1
Q ⟨f2⟩σ2

Q ⟨σ1⟩γQ⟨σ2⟩
γ
Q

ˆ
Q
hdw

= sup
∥h∥

Lq′ (w)
=1

∑
Q∈S

⟨f1⟩σ1
Q ⟨f2⟩σ2

Q ⟨h⟩wQ⟨σ1⟩
γ
Q⟨σ2⟩

γ
Qw(Q),

where q = p/γ. For each i = 1, 2, let Fi be the stopping family starting at Q0 and defined
by the stopping condition
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chFi(Fi) := {F ′
i ∈ D : F ′

i maximal such that ⟨fi⟩σi

F ′
i
> 2⟨fi⟩σi

Fi
}.

Each collection Fi is σi-sparse, since∑
F ′
i∈chFi

(Fi )

σi(F
′
i ) ≤

1

2

∑
F ′
i∈chFi

(Fi )

´
F ′
i
fdσ´

Fi
fdσ

σi(Fi) ≤
1

2
σi(Fi).

The Fi-stopping parent πFi(Q) of a cube Q is defined by

πFi(Q) := {Fi ∈ Fi : Fi minimal such that Fi ⊇ Q}.

By the stopping condition, for every cube Q we have ⟨fi⟩σi
Q ≤ 2⟨fi⟩σi

πFi
(Q). Let H be the

analogue stopping family associated with h and the weight w, verifying the corresponding
properties. By rearranging the summation according to the stopping parents and removing
the supremum, we obtain∑
Q∈S

⟨f1⟩σ1
Q ⟨f2⟩σ2

Q ⟨h⟩wQ⟨σ1⟩
γ
Q⟨σ2⟩

γ
Qw(Q)

=

( ∑
F1∈F1

∑
F2∈F2
F2⊂F1

∑
H∈H
H⊂F2

∑
Q∈S

π(Q)=(F1,F2,H)

+
∑

F2∈F2

∑
F1∈F1
F1⊂F2

∑
H∈H
H⊂F

∑
Q∈S

π(Q)=(F1,F2,H)

+
∑

F1∈F1

∑
H∈H
H⊂F1

∑
F2∈F2
F2⊂H

∑
Q∈S

π(Q)=(F1,F2,H)

+
∑

F2∈F2

∑
H∈H
H⊂F2

∑
F1∈F1
F1⊂H

∑
Q∈S

π(Q)=(F1,F2,H)

+
∑
H∈H

∑
F1∈F1
F1⊂H

∑
F2∈F2
F2⊂F1

∑
Q∈S

π(Q)=(F1,F2,H)

+
∑
H∈H

∑
F2∈F2
F2⊂H

∑
F1∈F1
F1⊂F2

∑
Q∈S

π(Q)=(F1,F2,H)

)

× ⟨f1⟩σ1
Q ⟨f2⟩σ2

Q ⟨h⟩wQλQ

:= I + I ′ + II + II ′ + III + III ′,

where π(Q) = (F1, F2,H) means that πFi(Q) = Fi, for all i = 1, 2 and πH(Q) = H and

λQ := ⟨σ1⟩γQ⟨σ2⟩
γ
Qw(Q).

First, we estimate I. We have

I ≤
∑

F1∈F1

∑
F2∈F2
F2⊂F1

∑
H∈H
H⊂F2

∑
Q∈S

π(Q)=(F1,F2,H)

⟨f1⟩σ1
Q ⟨f2⟩σ2

Q ⟨h⟩wQλQ

≤ 8
∑

F1∈F1

⟨f1⟩σ1
F1

∑
F2∈F2
F2⊂F1

⟨f2⟩σ2
F2

∑
H∈H
H⊂F2

⟨h⟩wH
∑
Q∈S

π(Q)=(F1,F2,H)

λQ

.
∑

F1∈F1

⟨f1⟩σ1
F1

∑
F2∈F2
F2⊂F1

⟨f2⟩σ2
F2

ˆ (
sup
H′∈H

πF2
(H′)=F2

⟨h⟩wH′1H′

)
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×
∑
H∈H
H⊂F2

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

w(Q)
1Qdw

≤
∑

F1∈F1

⟨f1⟩σ1
F1

∑
F2∈F2

πF1
(F2)=F1

⟨f2⟩σ2
F2

∥∥∥ ∑
H∈H

πF2
(H)=F2

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

w(Q)
1Q

∥∥∥
Lq(w)

×
∥∥∥ sup

H′∈H
πF2

(H′)=F2

⟨h⟩wH′1H′

∥∥∥
Lq′ (w)

≤
(∑
F1∈F1

∑
F2∈F2

πF2
(F2)=F1

(⟨f1⟩σ1
F1
⟨f2⟩σ2

F2
)q
∥∥∥ ∑

H∈H
πF2

(H)=F2

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

w(Q)
1Q

∥∥∥q
Lq(w)

)1/q

×
( ∑

F1∈F1

∑
F2∈F2

πF1
(F2)=F1

∑
H′∈H

πF2
(H′)=F2

(⟨h⟩wH′)q
′
w(H ′)

)1/q′

.
( ∑

F1∈F1

∑
F2∈F2

πF1
(F2)=F1

(⟨f1⟩σ1
F1
⟨f2⟩σ2

F2
)q
∥∥∥ ∑

H∈H
πF2

(H)=F2

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

w(Q)
1Q

∥∥∥q
Lq(w)

)1/q
.

Now it remains to estimate the following testing condition∥∥∥ ∑
H∈H

πF2
(H)=F2

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

w(Q)
1Q

∥∥∥q
Lq(w)

=
∥∥∥ ∑

H∈H
πF2

(H)=F2

∑
Q∈S

π(Q)=(F1,F2,H)

⟨σ1⟩γQ⟨σ2⟩
γ
Q1Q

∥∥∥q
Lq(w)

≤
∥∥∥( ∑

Q∈S
πF2

(Q)=F2

⟨σ1⟩γQ⟨σ2⟩
γ
Q1Q

)1/γ∥∥∥p
Lp(w)

.

By the monotonicity of ℓγ norm on γ, it suffices to estimate it for small γ. Therefore,
without loss of generality, we can assume that γ < 1 with (p/γ)′ < p1 = max{p1, p2}.
Then it is easy to check that

(11.7) 0 ≤ γ − γp′1
p′2

< 1, 0 ≤ 1− γp′1
p

< 1,

and

(11.8) γ − γp′1
p′2

+ 1− γp′1
p

< 1.

By Proposition 11.3, we have∥∥∥( ∑
Q∈S

πF2
(Q)=F2

⟨σ1⟩γQ⟨σ2⟩
γ
Q1Q

)1/γ∥∥∥
Lp(w)

h
( ∑

Q∈S
πF2

(Q)=F2

λQ

( 1

w(Q)

∑
Q′⊂Q

⟨σ1⟩γQ′⟨σ2⟩γQ′w(Q
′)
) p

γ
−1) 1

p
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. [w, σ⃗]

(p−γ)p′1
p2

A
P⃗

( ∑
Q∈S

πF2
(Q)=F2

λQ

( 1

w(Q)

∑
Q′⊂Q

⟨σ2⟩
γ(1− p′1

p′2
)

Q′ ⟨w⟩
1− p′1γ

p

Q′ |Q′|
) p

γ
−1) 1

p

(11.2)

. [w, σ⃗]

(p−γ)p′1
p2

A
P⃗

( ∑
Q∈S

πF2
(Q)=F2

λQ

( 1

w(Q)
⟨σ2⟩

γ(1− p′1
p′2

)

Q ⟨w⟩
1− p′1γ

p

Q |Q|
) p

γ
−1) 1

p

= [w, σ⃗]

(p−γ)p′1
p2

A
P⃗

( ∑
Q∈S

πF2
(Q)=F2

⟨σ1⟩γQ⟨σ2⟩
γ+(1− p′1

p′2
)(p−γ)

Q ⟨w⟩
1− p′1(p−γ)

p

Q |Q|
)1/p

. [w, σ⃗]

(p−γ)p′1
p2

+ 1
p
− (p−γ)p′1

p2

A
P⃗

( ∑
Q∈S

πF2
(Q)=F2

⟨σ1⟩
p
p1
Q ⟨σ2⟩

p
p2
Q |Q|

)1/p

= [w, σ⃗]
1
p

A
P⃗

( ∑
Q∈S

πF2
(Q)=F2

⟨σ1⟩
p
p1
Q ⟨σ2⟩

p
p2
Q |Q|

)1/p
.

Then

I . [w, σ⃗]
γ
p

A
P⃗

( ∑
F1∈F1

(⟨f1⟩σ1
F1
)q

∑
F2∈F2

πF1
(F2)=F1

(⟨f2⟩σ2
F2
)q

∑
Q∈S

πF2
(Q)=F2

⟨σ1⟩
p
p1
Q ⟨σ2⟩

p
p2
Q |Q|

)1/q

≤ [w, σ⃗]
γ
p

A
P⃗

( ∑
F1∈F1

(⟨f1⟩σ1
F1
)q

∑
F2∈F2

πF1
(F2)=F1

(⟨f2⟩σ2
F2
)q
( ∑

Q∈S
πF2

(Q)=F2

⟨σ1⟩Q|Q|
) p

p1

( ∑
Q∈S

πF2
(Q)=F2

⟨σ2⟩Q|Q|
) p

p2

)1/q

≤ [w, σ⃗]
γ
p

A
P⃗

( ∑
F1∈F1

(⟨f1⟩σ1
F1
)q
( ∑

F2∈F2
πF1

(F2)=F1

(⟨f2⟩σ2
F2
)
p2
γ

∑
Q∈S

πF2
(Q)=F2

⟨σ2⟩Q|Q|
) p

p2

×
( ∑

F2∈F2
πF1

(F2)=F1

∑
Q∈S

πF2
(Q)=F2

⟨σ1⟩Q|Q|
) p

p1

)1/q

≤ [w, σ⃗]
γ
p

A
P⃗

( ∑
F1∈F1

(⟨f1⟩σ1
F1
)
p1
γ

∑
F2∈F2

πF1
(F2)=F1

∑
Q∈S

πF2
(Q)=F2

⟨σ1⟩Q|Q|
) γ

p1

×
( ∑

F1∈F1

∑
F2∈F2

πF1
(F2)=F1

(⟨f2⟩σ2
F2
)
p2
γ

∑
Q∈S

πF2
(Q)=F2

⟨σ2⟩Q|Q|
) γ

p2

≤ [w, σ⃗]
γ
p

A
P⃗
[σ1]

γ
p1
A∞

[σ2]
γ
p2
A∞

∥f1∥Lp1/γ(σ1)
∥f2∥Lp2/γ(σ2)

.
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By symmetry, II and III can be reduced to the following testing condition∥∥∥ ∑
F∈F2

πH(F2)=H

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

σ2(Q)
1Q

∥∥∥(p2/γ)′
L(p2/γ)

′
(σ2)

and ∥∥∥ ∑
F∈F2

πF1
(F2)=F1

∑
Q∈S

π(Q)=(F1,F2,H)

λQ

σ2(Q)
1Q

∥∥∥(p2/γ)′
L(p2/γ)

′
(σ2)

,

respectively. It suffices to prove the first one. Now let us consider the case (p/γ)′ ≥
max{p1, p2} and (p/γ)′ < max{p1, p2} separately. For the case (p/γ)′ < max{p1, p2},
without loss of generality, we may assume that p1 > p2. Again, having into account (11.7)
and (11.8) and using Proposition 11.3, we obtain∥∥∥ ∑

Q∈S
πH(Q)=H

⟨σ1⟩γQ⟨σ2⟩
γ−1
Q ⟨w⟩Q1Q

∥∥∥
L
(
p2
γ )′

(σ2)

≃
( ∑

Q∈S
πH(Q)=H

λQ

( 1

σ2(Q)

∑
Q′⊂Q

⟨σ1⟩γQ′⟨σ2⟩γQ′w(Q
′)
)( p2

γ
)′−1) 1

(
p2
γ )′

≤ [w, σ⃗]

p′1γ
2

pp2
A

P⃗

( ∑
Q∈S

πH(Q)=H

λQ

( 1

σ2(Q)

∑
Q′⊂Q

⟨σ2⟩
γ(1− p′1

p′2
)

Q′ ⟨w⟩
1− γp′1

p

Q′ |Q′|
)( p2

γ
)′−1) 1

(
p2
γ )′

(11.2)

. [w, σ⃗]

p′1γ
2

pp2
A

P⃗

( ∑
Q∈S

πH(Q)=H

λQ

( 1

σ2(Q)
⟨σ2⟩

γ(1− p′1
p′2

)

Q ⟨w⟩
1− γp′1

p

Q |Q|
)( p2

γ
)′−1) 1

(
p2
γ )′

=[w, σ⃗]

p′1γ
2

pp2
A

P⃗

( ∑
Q∈S

πH(Q)=H

⟨σ1⟩γQ⟨σ2⟩
γ(

p2
γ
)′−(

γp′1
p′2

+1)((
p2
γ
)′−1)

Q ⟨w⟩
(
p2
γ
)′− γp′1

p
((

p2
γ
)′−1)

Q |Q|
) 1

(
p2
γ )′

≤ [w, σ⃗]
γ
p

A
P⃗

( ∑
Q∈S

πH(Q)=H

⟨σ1⟩
γ(

p2
γ )′

p1
Q ⟨w⟩

(
p2
γ
)′(1− γ

p
)

Q |Q|
) 1

(
p2
γ )′ ,

where recall λQ = ⟨σ1⟩γQ⟨σ2⟩
γ
Qw(Q). It remains to consider the case (p/γ)′ ≥ max{p1, p2}.

In this case,

γ − p

p′1
≥ 0, γ − p

p′2
≥ 0.

Moreover, since we are considering the case p > γ,

γ − p

p′1
+ γ − p

p′2
= 2γ − 2p+ 1 < 1.
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Applying Proposition 11.3 again, we have∥∥∥ ∑
Q∈S

πH(Q)=H

⟨σ1⟩γQ⟨σ2⟩
γ−1
Q ⟨w⟩Q1Q

∥∥∥
L
(
p2
γ )′

(σ2)

≃
( ∑

Q∈S
πH(Q)=H

λQ

( 1

σ2(Q)

∑
Q′⊂Q

⟨σ1⟩γQ′⟨σ2⟩γQ′w(Q
′)
)( p2

γ
)′−1) 1

(
p2
γ )′

≤ [w, σ⃗]
γ
p2
A

P⃗

( ∑
Q∈S

πH(Q)=H

λQ

( 1

σ2(Q)

∑
Q′⊂Q

⟨σ1⟩
γ− p

p′1
Q′ ⟨σ2⟩

γ− p

p′2
Q′ |Q′|

)( p2
γ
)′−1) 1

(
p2
γ )′

(11.2)

. [w, σ⃗]
γ
p2
A

P⃗

( ∑
Q∈S

πH(Q)=H

λQ

( 1

σ2(Q)
⟨σ1⟩

γ− p

p′1
Q ⟨σ2⟩

γ− p

p′2
Q |Q|

)( p2
γ
)′−1) 1

(
p2
γ )′

= [w, σ⃗]
γ
p2
A

P⃗

( ∑
Q∈S

πH(Q)=H

⟨σ1⟩
γ

p2−γ
(p2− p

p′1
)

Q ⟨σ2⟩
1

p2−γ
(p2(1−γ)− pγ

p′2
)

Q ⟨w⟩Q|Q|
) 1

(
p2
γ )′

≤ [w, σ⃗]
γ
p

A
P⃗

( ∑
Q∈S

πH(Q)=H

⟨σ1⟩
γ(

p2
γ )′

p1
Q ⟨w⟩

(
p2
γ
)′(1− γ

p
)

Q |Q|
) 1

(
p2
γ )′ .

where again λQ = ⟨σ1⟩γQ⟨σ2⟩
γ
Qw(Q). The proof of the case p > γ is completed by combining

the above estimates. It still remains to consider the case p ≤ γ. In this case, we have

∥∥∥(∑
Q∈S

⟨f1⟩σ1
Q ⟨f2⟩σ2

Q ⟨σ1⟩γQ⟨σ2⟩
γ
Q1Q

) 1
γ
∥∥∥γ
Lp(w)

.
∥∥∥( ∑

F1∈F1

⟨f1⟩σ1
F1

∑
F2∈F2

⟨f2⟩σ2
F2

∑
Q∈S

π(Q)=(F1,F2)

⟨σ1⟩γQ⟨σ2⟩
γ
Q1Q

) 1
γ
∥∥∥γ
Lp(w)

≤
( ∑

F1∈F1

(⟨f1⟩σ1
F1
)q
∑

F2∈F2

(⟨f2⟩σ2
F2
)q
∥∥∥ ∑

Q∈S
π(Q)=(F1,F2)

⟨σ1⟩γQ⟨σ2⟩
γ
Q1Q

∥∥∥q
Lq(w)

) 1
q

.
( ∑

F1∈F1

(⟨f1⟩σ1
F1
)q
∑

F2∈F2
F2⊂F1

(⟨f2⟩σ2
F2
)q
∥∥∥ ∑

Q∈S
πF2

(Q)=F2

⟨σ1⟩γQ⟨σ2⟩
γ
Q1Q

∥∥∥q
Lp(w)

) 1
q

+
( ∑

F2∈F2

(⟨f2⟩σ2
F2
)q
∑

F1∈F1
F1⊂F2

(⟨f1⟩σ1
F1
)q
∥∥∥ ∑

Q∈S
πF1

(Q)=F1

⟨σ1⟩γQ⟨σ2⟩
γ
Q1Q

∥∥∥q
Lp(w)

) 1
q
.

Then by the same calculation as that in the above, we can get the conclusion as desired. �
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Theorem 11.5. Let γ > 0. Suppose that p0 < p1, p2 < ∞ with 1
p = 1

p1
+ 1

p2
and set

q = p/γ. Let w and σ⃗ be weights satisfying that [w, σ⃗]A
P⃗ /p0

< ∞. If γ ≥ p0, then

∥Ap0,γ,S(·σ1, ·σ2)∥Lp1 (σ1)×Lp2 (σ2)→Lp(w)

≤ [w, σ⃗]
1/p
A

P⃗ /p0

([σ⃗]
1/p
W∞

P⃗

+

2∑
i=1

[σ⃗i]
1/γ(

pi
γ
)′

W∞
P⃗ i

),
(11.9)

where [σ⃗i]W∞
P⃗ i

= 1 if p ≤ γ and otherwise,

[σ⃗i]W∞
P⃗ i

= sup
Q

(ˆ
Q
M(1Qw)

(pi/γ)
′

q′
∏
j ̸=i

M(1Qσj)
(pi/γ)

′
pj/γ dx

)

×
(ˆ

Q
w

(pi/γ)
′

q′
∏
j ̸=i

σ

(pi/γ)
′

pj/γ

j dx
)−1

.

and

[−→σ ]W∞−→
P

= sup
Q

( ˆ
Q

m∏
i=1

M(σi1Q)
p
pi dx

)( ˆ
Q

m∏
i=1

σ
p
pi
i dx

)−1
< ∞.

If γ < p0, then the above result still holds for all p > γ.

Proof. We can do the same analysis as that in Theorem 11.1. The main difference is, for
example, when we estimate I, we have

I . [w, σ⃗]
γ
p

A
P⃗

( ∑
F1∈F1

(⟨f1⟩σ1
F1
)q

∑
F2∈F2

πF1
(F2)=F1

(⟨f2⟩σ2
F2
)q

∑
Q∈S

πF2
(Q)=F2

⟨σ1⟩
p
p1
Q ⟨σ2⟩

p
p2
Q |Q|

)1/q

≤ [w, σ⃗]
γ
p

A
P⃗

( ∑
F1∈F1

(⟨f1⟩σ1
F1
)q

∑
F2∈F2

πF1
(F2)=F1

(⟨f2⟩σ2
F2
)q
ˆ
F2

M(1F2σ1)
p
p1 M(1F2σ2)

p
p2 dx

)1/q

≤ [w, σ⃗]
γ
p

A
P⃗
[−→σ ]

γ
p

W∞−→
P

( ∑
F1∈F1

(⟨f1⟩σ1
F1
)q

∑
F2∈F2

πF1
(F2)=F1

(⟨f2⟩σ2
F2
)q
ˆ
F2

σ
p
p1
1 σ

p
p2
2 dx

)1/q

≤ [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ
p

W∞
P⃗

(̂ ∑
F1∈F1

(⟨f1⟩σ1
F1
)q1F1

∑
F2∈F2

πF1
(F2)=F1

(⟨f2⟩σ2
F2
)q1F2

2∏
i=1

σ
p/pi
i dx

)1/q

≤ [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ
p

W∞
P⃗

( ˆ
Mσ1

D (f1)
qMσ2

D (f2)
q

2∏
i=1

σ
p/pi
i dx

)1/q
≤ [w, σ⃗]

γ
p

A
P⃗
[σ⃗]

γ
p

W∞
P⃗

∥Mσ1
D (f1)∥Lp1/γ(σ1)

· ∥Mσ2
D (f2)∥Lp2/γ(σ2)

. [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ
p

W∞
P⃗

∥f1∥Lp1/γ(σ1)
· ∥f2∥Lp2/γ(σ2)

.

The other terms can be estimated similarly, this completes the proof. �
We also have the following type of bound.
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Theorem 11.6. Let γ > 0. Suppose that p0 < p1, p2 < ∞ with 1
p = 1

p1
+ 1

p2
and set

q = p/γ. Let w and σ⃗ be weights satisfying that [w, σ⃗]A
P⃗ /p0

< ∞. If γ ≥ p0, then

(11.10) ∥Ap0,γ,S(·σ1, ·σ2)∥Lp1(σ1)×Lp2 (σ2)→Lp(w) ≤ [w, σ⃗]
1
p

A
P⃗ /p0

([σ⃗]
1/p
H∞

P⃗

+
2∑

i=1

[σ⃗i]
1/p′i
H∞

P⃗ i
),

where [σ⃗i]H∞
P⃗ i

= 1 if p ≤ γ and otherwise,

[σ⃗i]H∞
P⃗ i

= sup
Q

⟨w⟩
p′i(

1
γ
− 1

p
)+

Q exp

(
−
ˆ
Q
w−1

)p′i(
1
γ
− 1

p
)+

×
∏
j ̸=i

⟨σi⟩
p′i/pj
Q exp

(
−
ˆ
Q
σ−1
i

)p′i/pj

,

and

[w⃗]H∞
P⃗

:= sup
Q

m∏
i=1

⟨wi⟩
p
pi
Q exp

(
−
ˆ
Q
logw−1

i

) p
pi .

If γ < p0, then the above result still holds for all p > γ.

Proof. Likewise, we only study the estimate of I. Again,∥∥∥ ∑
Q∈S

πF2
(Q)=F2

⟨σ1⟩γQ⟨σ2⟩
γ
Q1Q

∥∥∥
Lq(w)

≤ [w, σ⃗]
γ
p

A
P⃗

( ∑
Q∈S

πF2
(Q)=F2

⟨σ1⟩
p
p1
Q ⟨σ2⟩

p
p2
Q |Q|

)γ/p

≤ [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ
p

H∞
P⃗

( ∑
Q∈S

πF2
(Q)=F2

2∏
i=1

exp
(
−
ˆ
Q
log σi

) p
pi |Q|

)γ/p

≤ [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ
p

H∞
P⃗

2∏
i=1

( ∑
Q∈S

πF2
(Q)=F2

exp
(
−
ˆ
Q
log σi

)
|Q|
)γ/pi

. [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ
p

H∞
P⃗

( ∑
Q∈S

πF2
(Q)=F2

exp
(
−
ˆ
Q
log σ1

)
|Q|
)γ/p1

∥M0(1F2σ2)∥
γ
p2

L1

≤ [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ
p

H∞
P⃗

σ2(F )
γ
p2

( ∑
Q∈S

πF2
(Q)=F2

exp
(
−
ˆ
Q
log σ1

)
|Q|
)γ/p1

,

where

(11.11) M0(f) := sup
Q

exp

(
−
ˆ
Q
log |f |

)
1Q,
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is the logarithmic maximal function. Here we have used the fact that this maximal function
is bounded from Lp into itself for p ∈ (0,∞) with bound independent of the dimension in
the dyadic case as proved in [25, Lemma 2.1]. Hence,

I ≤ [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ/p
H∞

P⃗

( ∑
F1∈F1

(⟨f1⟩σ1
F1
)q

∑
F2∈F2

πF1
(F2)=F1

(⟨f2⟩σ2
F2
)qσ2(F )

p
p2

×
( ∑

Q∈S
πF2

(Q)=F2

exp
(
−
ˆ
Q
log σ1

)
|Q|
)p/p1) γ

p

≤ [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ/p
H∞

P⃗

( ∑
F1∈F1

(⟨f1⟩σ1
F1
)q
( ∑

F2∈F2
πF1

(F2)=F1

(⟨f2⟩σ2
F2
)p2/γσ2(F )

) p
p2

×
( ∑

F2∈F2
πF1

(F2)=F1

∑
Q∈S

πF2
(Q)=F2

exp
(
−
ˆ
Q
log σ1

)
|Q|
)p/p1) γ

p

≤ [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ/p
H∞

P⃗

( ∑
F1∈F1

(⟨f1⟩σ1
F1
)p1/γ

( ∑
F2∈F2

πF1
(F2)=F1

∑
Q∈S

πF2
(Q)=F2

exp
(
−
ˆ
Q
log σ1

)
|Q|
)) γ

p1

×
( ∑

F1∈F1

∑
F2∈F2

πF1
(F2)=F1

(⟨f2⟩σ2
F2
)p2/γσ2(F )

) γ
p2

≤ [w, σ⃗]
γ
p

A
P⃗
[σ⃗]

γ/p
H∞

P⃗

∥f1∥Lp1/γ(σ1)
∥f2∥Lp2/γ(σ2)

.

�

12. Applications

12.1. Mixed Ap-A∞ estimate for commutators of multilinear Calderón-Zygmund
operators. Throughout this section, we will work with commutators of multilinear Calderón-
Zygmund operators with symbols in BMO. Recall that BMO consists of all locally inte-
grable functions b with ||b||BMO < ∞, where

∥b∥BMO := sup
Q

1

|Q|

ˆ
Q
|b(y)− ⟨b⟩Q|dy,

and the supremum in the above definition is taken over all cubes Q ⊂ Rn with sides
parallel to the axes.

Given a multilinear Calderón-Zygmund operator T and b⃗ ∈ BMOm, we consider the

following commutators with b⃗,

[⃗b, T ] =

m∑
i=1

[⃗b, T ]i,

where

[⃗b, T ]i(f⃗) := biT (f⃗)− T (f1, · · · , fi−1, bifi, fi+1, · · · , fm).



MULTILINEAR WEIGHTED INEQUALITIES 47

Our aim in this section is to prove the following mixed estimate for commutators of
multilinear Calderón-Zygmund operators following the same spirit as in [10].

Theorem 12.1. Let T be a multilinear Calderón-Zygmund operator and b⃗ ∈ BMOm. If
we assume that [w, σ⃗]A

P⃗
< ∞, then

∥[⃗b, T ]∥Lp1(w1)×···×Lpm (wm)→Lp(w)

≤ [w, σ⃗]
1
p

A
P⃗
(
m∏
i=1

[σi]
1
pi
A∞

+ [w]
1
p′
A∞

m∑
j=1

∏
i̸=j

[σi]
1
pi
A∞

)

× ([w]A∞ +
m∑
i=1

[σi]A∞)

(
m∑
i=1

∥bi∥BMO

)
,

where σi = w
1−p′i
i , i = 1, . . . ,m.

Before proving our main result in this section we need to recall some basic properties
about BMO functions and A∞ weights that we are going to use in the sequel. Recall that
a key property of BMO functions is the celebrated John-Nirenberg inequality [28].

Proposition 12.2. [29, pp. 31-32] There are dimensional constants 0 < αn < 1 < βn <
∞ such that

(12.1) sup
Q

1

|Q|

ˆ
Q
exp

( αn

∥b∥BMO
|b(y)− ⟨b⟩Q|

)
dy ≤ βn.

In fact, we can take αn = 1
2n+2 .

It is well-known that if w ∈ A∞, then logw ∈ BMO. Using the John-Nirenberg inequality,
Chung, Pereyra, and Pérez [10] proved the following bound.

Proposition 12.3. Let b ∈ BMO and let 0 < αn < 1 < βn < ∞ be the dimensional
constants from (12.1). Then

s ∈ R, |s| ≤ αn

∥b∥BMO
min{1, 1

p− 1
} ⇒ esb ∈ Ap and [esb]Ap ≤ βp

n.

In [25], Hytönen and Pérez also showed the following bound for the Fujii-Wilson A∞
constant of a particular family of weights.

Proposition 12.4. There are dimensional constants εn and cn such that

[eRezbw]A∞ ≤ cn[w]A∞ if |z| ≤ εn
∥b∥BMO[w]A∞

.

For our purpose, we need to show the following variation of the previous lemmas.

Lemma 12.5. Suppose that [w, σ⃗]A
P⃗
< ∞ and w, σi ∈ A∞, i = 1, 2 · · · ,m. Then for any

1 ≤ j ≤ m,

[wepbRez, σ1, · · · , σje−p′jbRez, · · · , σm]A
P⃗
≤ cn,P⃗ [w, σ⃗]AP⃗

,

provided that

|z| ≤
αnmin{1, p

′
1
p , · · · ,

p′m
p }

p(1 + max{[w]A∞ , [σ1]A∞ , · · · , [σm]A∞})∥b∥BMO
.
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To prove the previous lemma, we need to recall this sharp version of the reverse Hölder’s
inequality proved in [25].

Proposition 12.6. Let w ∈ A∞. Then for any 0 ≤ r ≤ 1 + 1
cn[w]A∞

, we have( 1

|Q|

ˆ
Q
w(x)rdx

) 1
r ≤ 2

1

|Q|

ˆ
Q
w(x)dx.

Proof of Lemma 12.5. Set

r = 1 +
1

cnmax{[w]A∞ , [σj ]A∞}
.

By definition of the AP⃗ constant, Hölder’s inequality and Proposition 12.6, we have

[wepbRez, σ1, · · · , σje−p′jbRez, · · · , σm]A
P⃗

= sup
Q

⟨wepbRez⟩Q⟨σje−p′jbRez⟩
p

p′
j

Q

∏
i ̸=j

⟨σi⟩
p

p′
i

Q

≤ sup
Q

⟨wr⟩
1
r
Q⟨e

pbr′Rez⟩
1
r′
Q ⟨σr

j ⟩
p

rp′
j

Q ⟨e−p′jbr
′Rez⟩

p

r′p′
j

Q

∏
i ̸=j

⟨σi⟩
p

p′
i

Q

≤ 4 sup
Q

⟨w⟩Q⟨epbr
′Rez⟩

1
r′
Q ⟨σj⟩

p

p′
j

Q ⟨e−p′jbr
′Rez⟩

p

r′p′
j

Q

∏
i̸=j

⟨σi⟩
p

p′
i

Q

≤ 4[w, σ⃗]A
P⃗
[epbr

′Rez]
1
r′
A1+

p
p′
j

≤ cn,P⃗ [w, σ⃗]AP⃗
,

where Proposition 12.3 is used in the last step. �

Now we are ready to prove the main result in this section.

Proof of Theorem 12.1. It suffices to study the boundedness of [⃗b, T ]i. Without loss of
generality, we just consider the case i = 1. Using the same trick as that in [10, Thm. 3.1],
for any complex number z, we define

T 1
z (f⃗) = ezbT (e−zbf1, f2, · · · , fm).

Then by using the Cauchy integral theorem, we get for “nice” functions,

[b, T ]1(f⃗) =
d

dz
T 1
z (f⃗)

∣∣∣
z=0

=
1

2πi

ˆ
|z|=ε

T 1
z (f⃗)

z2
dz, ε > 0.

Next, using Minkowski’s inequality, for p ≥ 1,

(12.2) ∥[b, T ]1(f⃗)∥Lp(w) ≤
1

2πε2

ˆ
|z|=ε

∥T 1
z (f⃗)∥Lp(w)|dz|.

Notice that

(12.3) ∥T 1
z (f⃗)∥Lp(w) = ∥T (e−zbf1, f2, · · · , fm)∥Lp(wepbRez).
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Therefore, applying the boundedness properties for Calderón–Zygmund operators in The-
orem 11.1 for weights (wepbRez, w1e

p1bRez, w2, . . . , wm) with p0 = γ = 1, we get

∥T (e−zbf1, f2, · · · , fm)∥Lp(wepbRez) . [epbRezw, e−p′1bRezσ1, σ2, . . . , σm]
1/p
A

P⃗

×
(
[e−p′1bRezσ1]

1/p1
A∞

m∏
i=2

[σi]
1/pi
A∞

+ [epbRezw]
1/p′

A∞

( m∏
i=2

[σi]
1/pi
A∞

+

+
m∑

i′=2

[σ1e
−p′1bRez]

1/p1
A∞

∏
i̸=i′

i>1

[σi]
1/pi
A∞

))
||f1e−zb||Lp1 (ebp1Rezw1)

m∏
i=2

||fi||Lpi (wi).

(12.4)

Combining (12.2), (12.3) and (12.4) and using Proposition 12.4 and Lemma 12.5, we arrive
at

∥[b,T ]1(f⃗)∥Lp(w)

≤ 1

2πε
[w, σ⃗]

1/p
A

P⃗

 m∏
i=1

[σi]
1/pi
A∞

+ [w]
1/p′

A∞

m∑
i′=1

∏
i′ ̸=i

[σi]
1/pi
A∞

 m∏
i=1

||fi||Lpi (wi).
(12.5)

Now taking

ε =
cn,P⃗

([w]A∞ +
∑m

i=1[σi]A∞)∥b1∥BMO
,

where cn,P⃗ is sufficiently small such that it satisfies the hypotheses in Proposition 12.4

and Lemma 12.5. Then,we obtain

∥[b, T ]1(f⃗)∥Lp(w) . [w, σ⃗]
1
p

A
P⃗
(
m∏
i=1

[σi]
1
pi
A∞

+ [w]
1
p′
A∞

m∑
j=1

∏
i̸=j

[σi]
1
pi
A∞

)

× ([w]A∞ +
m∑
i=1

[σi]A∞)||b1||BMO

m∏
i=1

||fi||Lpi (wi).

The general result follows immediately combining the estimates for all the commutators
in the different variables. �

12.2. Mixed Ap-A∞ estimates for multilinear square functions and multilinear
Fourier multipliers. The results obtained in Section 11 can be applied to different in-
stances of operators which can be reduced to the simpler dyadic operators Ap0,γ,S .
Firstly, observe that the mixed weighted bounds obtained in the main theorems in Sec-
tion 11 can be extended to the case of multilinear square functions taking into account [7,
Prop. 4.2] and choosing p0 = 1 and γ = 2.
These mixed bounds can also be extended to multilinear Fourier multipliers, which are a
particular example of a general class of operators whose kernels satisfy weaker regularity
conditions than the usual Hölder continuity. To obtain the corresponding mixed bounds,
it is sufficient to consider the results in [6] together with the main theorems in Section 11
for γ = 1. It is worth mentioning that these mixed bounds for Fourier multipliers seem to
be new in the multilinear scenario.
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Appendix A. Unweigthed bounds

In this appendix we state and prove some well-known boundedness results for bilinear
Calderón–Zygmund operators and their maximal truncations defined in Section 10, which
also hold in the multilinear setting. It is worth mentioning that the novelty of these results
is not only that they are stated in a quantitative way that will be useful for our purposes,
but also that some of these results are proved under weaker regularity conditions on the
kernels than those results in the literature.

Lemma A.1. Let T be a bilinear Dini-continuous Calderón-Zygmund operator. Then T

is bounded from L1 × L1 to L
1
2
,∞ and

(A.1) ∥T∥L1×L1→L1/2,∞ . ∥T∥Lq1×Lq2→Lq + ∥ω∥Dini,

where ∥T∥Lq1×Lq2→Lq denotes the norm of the operator as in its definition.

This result was proved under the Dini(12) condition in [42]. Observe that Dini(1/2)
condition is an stronger condition than Dini condition, which is also referred to as Dini(1).
In [46], Pérez and Torres studied the problem under the BGHC condition. Namely, we say
that a bilinear operator with kernelK satisfies the bilinear geometric Hörmander condition
(BGHC) if there exists a fixed constant C such that and for any family of disjoint dyadic
cubes D1 and D2,

(A.2)

ˆ
Rn

sup
y∈Q

ˆ
R\Q∗

|K(x, y, z)−K(x, yQ, z)|dxdz ≤ C,

(A.3)

ˆ
Rn

sup
z∈P

ˆ
R\P ∗

|K(x, y, z)−K(x, y, zP )|dxdy ≤ C,

and ∑
(P,Q)∈D1×D2

|P ||Q| sup
(y,z)∈P×Q

ˆ
Rn\(∪R∈D1

)∪(∪S∈D2)

|K(x, y, z)−K(x, yP , zQ)|dx

≤ C(| ∪P∈D1 P |+ | ∪Q∈D2 Q|).
(A.4)

Here Q∗ is the cube with the same center as Q and sidelength 10
√
nℓ(Q).This condition,

which is actually stated here in an equivalent way, was shown to be weaker than the Dini
condition in [46, Prop. 2.3]). Thus, Lemma A.1 follows immediately from the mentioned
result. Here we give the proof with the precise constants.

Proof of Lemma A.1. Suppose that T is initially bounded from Lq1 × Lq2 to Lq, where
1
q1
+ 1

q2
= 1

q . We shall dominate the bound ∥T∥L1×L1→L1/2,∞ by ∥T∥Lq1×Lq2→Lq + ∥ω∥Dini.

Indeed, fix λ > 0 and consider without loss of generality functions fi ≥ 0, i = 1, 2. Let
αi > 0 be numbers to be determined later. Apply the Calderón-Zygmund decomposition
to fi at height αiλ, to obtain its good and bad parts gi and bi, respectively, and families
of cubes {Qi

k}k with disjoint interiors such that fi = gi + bi and bi =
∑

k b
i
k verifying the

properties in [20, Thm. 4.3.1].
Next, set Ωi = ∪k4nQ

i
k. We have∣∣{x : |T (f1, f2)(x)| > λ}

∣∣ ≤ |Ω1|+ |Ω2|

+
∣∣{x ∈ (Ω1 ∪ Ω2)

c : |T (g1, g2)(x)| >
λ

4
}
∣∣
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+
∣∣{x ∈ (Ω1 ∪ Ω2)

c : |T (g1, b2)(x)| >
λ

4
}
∣∣

+
∣∣{x ∈ (Ω1 ∪ Ω2)

c : |T (b1, g2)(x)| >
λ

4
}
∣∣

+
∣∣{x ∈ (Ω1 ∪ Ω2)

c : |T (b1, b2)(x)| >
λ

4
}
∣∣.

It is easy to see that

|Ω1|+ |Ω2| ≤ Cn

( 1

α1λ
∥f1∥L1 +

1

α2λ
∥f2∥L1

)
.

For the third term, using Chebychev’s inequality and the boundedness properties of T and
gi, we have ∣∣{x ∈ (Ω1 ∪ Ω2)

c : |T (g1, g2)(x)| >
λ

4
}
∣∣

≤ 4q

λq
∥T (g1, g2)∥qLq

≤ 4q

λq
∥T∥qLq1×Lq2→Lq∥g1∥qLq1∥g2∥

q
Lq2

≤ 4q

λq
Cn,q,q1,q2∥T∥

q
Lq1×Lq2→Lq(α1λ)

q/q1′(α2λ)
q/q2′∥f1∥q/q1L1 ∥f2∥q/q2L1 .

For the fourth term, if ck denotes the center of the cube Q2
k, we have∣∣{x ∈ (Ω1 ∪ Ω2)

c : |T (g1, b2)(x)| >
λ

4
}
∣∣

≤ 4

λ

ˆ ∣∣∣∑
k

ˆ ˆ
Q2

k

(K(x, y, z)−K(x, y, ck))g1(y)b
k
2(z)dzdy

∣∣∣dx
≤ 4

λ

∑
k

ˆ ˆ ˆ
Q2

k

|K(x, y, z)−K(x, y, ck)| · |g1(y)| · |bk2(z)|dzdydx

≤ 4

λ

∑
k

ˆ
Q2

k

ˆ ˆ
ω
( √

nℓ(Q2
k)

2(|x− y|+ |x− z|)

) |g1(y)| · |bk2(z)|
(|x− y|+ |x− z|)2n

dydxdz

≤ Cnα1

∑
k

ˆ
Q2

k

ˆ ˆ
ω
( √

nℓ(Q2
k)

2(|y|+ |x− z|)

) |bk2(z)|
(|y|+ |x− z|)2n

dydxdz

≤ Cnα1

∑
k

ˆ
Q2

k

ˆ ˆ
ω
(√nℓ(Q2

k)

2|x− z|

) |bk2(z)|
(|y|+ |x− z|)2n

dydxdz

≤ Cnα1

∑
k

ˆ
Q2

k

ˆ
|x−z|≥nℓ(Q2

k)
ω
(√nℓ(Q2

k)

2|x− z|

) |bk2(z)|
|x− z|n

dxdz

≤ C ′
nα1∥ω∥Dini∥f2∥L1 ,

where we have used the cancelation properties of bk2, the regularity condition on the third
variable of K (since |z − ck| < τ max (|x− y|, |x− z|) for x /∈ Ω1 ∪ Ω2), the fact that ω is
increasing, the Dini condition, ||g1||L∞ ≤ cnα1λ and

∑
k ||bk2||L1 ≤ cn||f2||L1 .
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Since the estimate of the fifth term is symmetric to the previous estimate, it remains to
estimate the last term. If we denote as cl and ck the center of the cubes Q1

l and Q2
k,

respectively, proceeding similarly as in the previous estimate, we obtain∣∣{x ∈ (Ω1 ∪ Ω2)
c : |T (b1, b2)(x)| >

λ

4
}
∣∣

≤ 4

λ

ˆ ∣∣∣∑
k,l

ˆ
Q1

l

ˆ
Q2

k

(K(x, y, z)−K(x, y, ck))b
l
1(y)b

k
2(z)dzdy

∣∣∣dx
≤ 4

λ

∑
k,l

ˆ
(Ω1∪Ω2)c

ˆ
Q1

l

ˆ
Q2

k

|K(x, y, z)−K(x, y, ck)||bl1(y)||bk2(z)|dxdydx

≤ 4

λ

∑
k,l

ˆ
Q2

k

ˆ
Q1

l

ˆ
(Ω1∪Ω2)c

ω
( √

nℓ(Q2
k)

2(|x− y|+ |x− z|)

) |bl1(y)||bk2(z)|dxdydz
(|x− y|+ |x− z|)2n

≤ Cn

λ

∑
k,l

ˆ
Q2

k

ˆ
Q1

l

ˆ
(Ω1∪Ω2)c

ω
( √

nℓ(Q2
k)

2(|x− cl|+ |x− ck|)

) |bl1(y)||bk2(z)|dxdydz
(|x− cl|+ |x− ck|)2n

≤Cn

∑
k,l

|Q1
l ||Q2

k|α1α2λ

ˆ
(Ω1∪Ω2)c

ω
( √

n(ℓ(Q2
k) + ℓ(Q1

l ))

2(|x− cl|+ |x− ck|)

) dx

(|x− cl|+ |x− ck|)2n

≤C ′
n

∑
k,l

α1α2λ

ˆ
Q2

k

ˆ
Q1

l

ˆ
(Ω1∪Ω2)c

ω
(√n(ℓ(Q2

k) + ℓ(Q1
l ))

2(|x− y|+ |x− z|)

) dxdydz

(|x− y|+ |x− z|)2n

= C ′
n

∑
k,l

α1α2λ
(ˆ

ℓ(Q2
k)≥ℓ(Q1

l )
+

ˆ
ℓ(Q1

l )≥ℓ(Q2
k)

)
≤ I + II.

By symmetry, it suffices to estimate I. We have

I ≤ C ′
n

∑
k

α1α2λ

ˆ
Q2

k

ˆ
(Ω1∪Ω2)c

ˆ
Rn

ω
(√nℓ(Q2

k))

|x− z|

) dydxdz

(|x− y|+ |x− z|)2n

= C ′
n

∑
k

α1α2λ

ˆ
Q2

k

ˆ
(Ω1∪Ω2)c

ω
(√nℓ(Q2

k))

|x− z|

) 1

|x− z|n
dxdz

≤ Cnα1∥ω∥Dini∥f2∥L1 .

Combining the arguments above, we have∣∣{x : |T (f1, f2)(x)| > λ}
∣∣

. 1

α1λ
∥f1∥L1 +

1

α2λ
∥f2∥L1

+ ∥T∥qLq1×Lq2→Lq(α1)
q/q′1(α2)

q/q′2λq−1∥f1∥q/q1L1 ∥f2∥q/q2L1

+ α1∥ω∥Dini∥f2∥L1 + α2∥ω∥Dini∥f1∥L1

Take

α1 = λ− 1
2
∥f1∥

1
2

L1

∥f2∥
1
2

L1

1

(∥T∥Lq1×Lq2→Lq + ∥ω∥Dini)
1
2
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α2 = λ− 1
2
∥f2∥

1
2

L1

∥f1∥
1
2

L1

1

(∥T∥Lq1×Lq2→Lq + ∥ω∥Dini)
1
2

,

we get

λ
∣∣{x : |T (f1, f2)(x)| > λ}

∣∣2 ≤ (∥T∥Lq1×Lq2→Lq + ∥ω∥Dini)∥f1∥L1∥f2∥L1 .

�

We also need to show that the maximal truncated operator T♯ is bounded from L1 × L1

to L
1
2
,∞. Therefore, we need to check first that Cotlar’s inequality holds for this class of

operators.

Theorem A.2. Let T be a bilinear Dini-continuous Calderón-Zygmund operator with
kernel K. Then, for all η ∈ (0, 12), there exists a constant C such that

(A.5) T♯(f⃗) ≤ cη,n(CK + ||ω||Dini + ||T ||Lq1×Lq2→Lq)M(f⃗) +Mη(|T (f⃗)|).

In this proof we combine the strategies used in [42, Thm 6.4] and [26, Lemma 5.3] to
determine the precise constants involved in the inequality.

Proof of Theorem A.2. Let us begin defining the following maximal truncation

T̃♯(f1, f2)(x) = sup
ε>0

∣∣∣T̃ε(f1, f2)(x)
∣∣∣,

where

T̃ε(f1, f2)(x) =

ˆ
max{|x−y|,|x−z|}>ε

K(x, y, z)f1(y)f2(z)dydz.

Since

(A.6) sup
ε>0

∣∣∣∣∣∣
ˆ
max{|x−y|,|x−z|}≤ε
|x−y|2+|x−z|2>ε2

K(x, y, z)f1(y)f2(z)dydz

∣∣∣∣∣∣ . CKM(f1, f2)(x),

it suffices to show (A.5) with T♯ replaced by T̃♯. Notice that we can write for x′ ∈ B(x, ε/2),

T̃ε(f1, f2)(x) =

ˆ
max{|x−y|,|x−z|}>ε

(K(x, y, z)−K(x′, y, z))f1(y)f2(z)dydz

+ T (f1, f2)(x
′)− T (f0

1 , f
0
2 )(x

′),

(A.7)

where f0
i = fi1B(x,ε). For the first term in (A.7), using the regularity assumptions on the

kernel, we get∣∣∣ ˆ
max{|x−y|,|x−z|}>ε

(K(x, y, z)−K(x′, y, z))f1(y)f2(z)dydz
∣∣∣

≤
ˆ
max{|x−y|,|x−z|}>ε

ω
( |x− x′|
|x− y|+ |x− z|

) |f1(y)||f2(z)|dydz
(|x− y|+ |x− z|)2n

=

∞∑
k=0

ˆ
2kε<max{|x−y|,|x−z|}≤2k+1ε

ω
( |x− x′|

2kε

) 1

(2kε)2n
|f1(y)||f2(z)|dydz
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. M(f1, f2)(x)

∞∑
k=0

ω
( |x− x′|

2kε

)
. M(f1, f2)(x)

∞∑
k=0

ˆ 2k

2k−1

ω(
|x− x′|

εt
)
dt

t

= M(f1, f2)(x)

∞∑
k=0

ˆ |x−x′|
2k−1ε

|x−x′|
2kε

ω(u)
du

u

= M(f1, f2)(x)

ˆ 2|x−x′|
ε

0
ω(u)

du

u

≤ ∥ω∥DiniM(f1, f2)(x),

where the last step holds since |x − x′| ≤ ε/2. Next, taking the Lη average over x′ ∈
B(x, ε/2), we arrive at

|T̃ε(f1, f2)(x)| . ||ω||DiniM(f1, f2)(x) +Mη(|T (f1, f2)|)(x)

+

(
1

|B(x, ε/2)|

ˆ
B(x,ε/2)

|T (f0
1 , f

0
2 )(x

′)|ηdx′
)1/η

.

For the last term, using Kolmogorov’s inequality to relate the Lη and L1/2,∞ norms and
the boundedness of T from L1 × L1 to L1/2,∞, we obtain for any η ∈ (0, 12),( 1

|B(x, ε/2)|

ˆ
B(x,ε/2)

|T (f0
1 , f

0
2 )(x

′)|ηdx′
)1/η

= ||T (f0
1 , f

0
2 )||Lη(B(x,

ε
2 ),

dx

|B(x,
ε
2 )|

)

≤ Cη||T (f0
1 , f

0
2 )||L1/2,∞(B(x,

ε
2 ),

dx

|B(x,
ε
2 )|

)

≤ Cη||T ||L1×L1→L1/2,∞M(f1, f2)(x).

Combining all the terms, we finally arrive at

|T̃ε(f1, f2)(x)| ≤ cn(||ω||Dini + Cη||T ||L1×L1→L1/2,∞)M(f1, f2)(x)

+Mη(|T (f1, f2)|)(x),

which taking into account (A.6) and (A.1) leads to the desired result. �

As a corollary of the previous result follows the weak boundedness of the maximal trun-
cation of T .

Corollary A.3. Let T be a bilinear Calderón–Zygmund operator with Dini-continuous
kernel K. Then

(A.8) ||T♯||L1×L1→L1/2,∞ . (CK + ||ω||Dini + ||T ||Lq1×Lq2→Lq).

Proof. Fix η ∈ (0, 1/2) and use the previous result together with the weak boundedness of
the multilinear maximal function and bilinear Calderón–Zygmund operators and the fact
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that Mη ◦T : L1×L1 → L1/2,∞. To prove the latter, notice that for the Hardy-Littlewood
maximal function using [26, Lemma 2.2], we can write

M(f) h
3n∑
u=1

Mu(f),

where

Mu(f) := sup
Q∋x
Q∈Du

1

|Q|

ˆ
Q
|f(y)|dy.

Therefore,∣∣∣{x : M(|T (f1, f2)|η)(x)
1
η > λ}

∣∣∣ ≤ 3n∑
u=1

∣∣∣{x : Mu(|T (f1, f2)|η)(x)
1
η > λ/3n}

∣∣∣.
Denote

Eu := {x ∈ Rn : Mu(|T (f1, f2)|η)(x)
1
η > λ/3n}.

We can find a collection of maximal dyadic cubes {Qj}j such that Eu = ∪jQj and

1

|Qj |

ˆ
Qj

|T (f1, f2)|η > λη(3n)−η,

which means that

|Eu| ≤ (3n)ηλ−η

ˆ
Eu

|T (f1, f2)|η, u = 1, . . . , 3n.

Now using Kolmogorov’s inequality and the fact that T : L1×L1 → L1/2,∞, and assuming
that η < 1/2, we getˆ

Eu

|T (f1, f2)|η . ∥T (f1, f2)∥η
L

1
2 ,∞(Eu,

dx
|Eu| )

|Eu| ≤ ∥f1∥η1∥f2∥
η
1|Eu|1−2η

Combining both estimates, it follows that

|Eu| ≤ λ−η(3n)η∥f1∥η1∥f2∥
η
1|Eu|1−2η,

which is exactly,

λ|Eu|2 ≤ cn,η∥f1∥1∥f2∥1.
�
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