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WEIGHTS

Weights

DEFINITION

A weight is a nonnegative locally integrable function on R” that takes values

in (0,c0) almost everywhere.

.

NOTATION

@ Given a weight w and a measurable set E, we use the notation

w(E) :/Ew(x)dx,

to denote the w-measure of the set E.

o The weighted Lebesgue spaces are denoted by LP (R",w) or simply
LP(w).
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Muckenhoupt A, classes of weights

ONE-WEIGHT PROBLEM
Characterization of all weights w(x) such that the strong type (p,p)

inequality

L MO < 6 [ s,

holds for all f € LP(x).
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ONE-WEIGHT PROBLEM
Characterization of all weights w(x) such that the strong type (p,p)
inequality

L MO erwar< g [ 1Pwiods
holds for all f € LP(x).
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A, WEIGHTS

Let 1 < p < oo. A weight w is said to be of class A, if

Wla, = sup(|Q|/ w(x )dx> (ﬁ/QW(x)”"de_1 < oo,

The quantity [w]4, is known as the A, characteristic constant of the weight w.

y
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Aj class of weights

In the case p = 1, we also have the corresponding result
M : LY (w) = L' (w),
if and only if w satisfies the A| condition, i.e.,

M(w)(x) < Cw(x), a.e.x€R"
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Aj class of weights

In the case p = 1, we also have the corresponding result
M : L' (w) = L' (w),
if and only if w satisfies the A| condition, i.e.,

M(w)(x) < Cw(x), a.e.xeR"

A1 CONDITION

If wis an A; weight, then the (finite) quantity

Wa, := sup <|Q|/ (t)dt> ||W_1||L°°(Q)

is called the A; characteristic constant of w.
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Aj class of weights

In the case p = 1, we also have the corresponding result
M : LY (w) — L' (w),

if and only if w satisfies the A| condition, i.e.,

M(w)(x) < Cw(x), a.e. xeR"

If w e Ay, then

(ﬁ /Q w(t)dt) < [Wla, ess.infyeow(),

for all cubes Q in R”.
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o [wla, > 1 (Equality holds if w is a constant).
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Properties of A, classes

o [wla, > 1 (Equality holds if w is a constant).
1
© When I < p < oo, [wlfpl]Ap, < [W]X;l.
@ The A, classes are increasing as p increases ([wa, < [W]a,)-
o Reverse Holder’s inequality There exist constants C and ¥ such that

for every cube Q,

1

(é/Qw(t)lﬂfdt) Hy < |—g|/Qw(t)dt.
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Properties of A, classes

[w]a, > 1 (Equality holds if w is a constant).
1
- =
When 1 <p <o, W]y, < Wi,

The A, classes are increasing as p increases ([wa, < [W]a,)-

Reverse Holder’s inequality There exist constants C and Y such that
for every cube Q,

(ﬁ/Qw(t)l'Wdt)liy < |—g|/Qw(t)dt.

Factorization w € A,, 1 < p <o < dw,wy € Aj such that

1—
W= wiw, p.
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Properties of A, classes

[w]a, > 1 (Equality holds if w is a constant).
1
- =
When 1 <p <o, W]y, < Wi,

@ The A, classes are increasing as p increases ([wa, < [W]a,)-
o Reverse Holder’s inequality There exist constants C and ¥ such that
for every cube Q,

(ﬁ/Qw(t)l'wdt)liy < |—g|/Qw(t)dt.

o Factorization w € A, 1 < p <o < dwy,ws € Aj such that
w= wlw;p )

o Extrapolation An estimate on L/0(v) for a single po and all A,
weights v implies a similar L” (w) estimate for all p € (1,o0) and all

weights w € A;,.
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Observe that since the A, classes are increasing, it is natural to define the A

class of weights as

Aw = A
p=1
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HRUSCEV A., CONSTANT

Wi - sup <| o / (t)dt) exp (ﬁ /Q logw(t)_ldt>
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Ao class of weights

Observe that since the A, classes are increasing, it is natural to define the A

class of weights as

Aw = A

p>1

Wi - sup <|Q|/ (t)dt) exp (é/Qlogw(t)_ldO J
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Sharp Reverse Holder Inequality for A. weights

If w € Ao, then

l/rw
<ﬁ/wr(w> IQI/W’

where r(w) = 1+ —i— and 7, = 2", Furthermore, [w]a. ~r'(w).
AT ]
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