Spring 2016

WEIGHTED INEQUALITIES FOR MULTILINEAR SINGULAR INTEGRALS

MUCKENHOUPT'S A_p WEIGHTS

Wendolín Damián González

15 March 2016

Weights

DEFINITION

A weight is a nonnegative locally integrable function on \mathbb{R}^n that takes values in $(0,\infty)$ almost everywhere.

NOTATION

• Given a weight w and a measurable set E, we use the notation

$$w(E) = \int_E w(x) dx,$$

to denote the *w*-measure of the set *E*.

• The weighted Lebesgue spaces are denoted by $L^p(\mathbb{R}^n, w)$ or simply $L^p(w)$.

Weights

DEFINITION

A weight is a nonnegative locally integrable function on \mathbb{R}^n that takes values in $(0,\infty)$ almost everywhere.

NOTATION

• Given a weight w and a measurable set E, we use the notation

$$w(E) = \int_E w(x) dx,$$

to denote the *w*-measure of the set *E*.

• The weighted Lebesgue spaces are denoted by $L^p(\mathbb{R}^n, w)$ or simply $L^p(w)$.

Weights

DEFINITION

A weight is a nonnegative locally integrable function on \mathbb{R}^n that takes values in $(0,\infty)$ almost everywhere.

NOTATION

• Given a weight w and a measurable set E, we use the notation

$$w(E) = \int_E w(x) dx,$$

to denote the *w*-measure of the set *E*.

• The weighted Lebesgue spaces are denoted by $L^p(\mathbb{R}^n, w)$ or simply $L^p(w)$.

Muckenhoupt A_p classes of weights

ONE-WEIGHT PROBLEM

Characterization of all weights w(x) such that the strong type (p,p) inequality

$$\int_{\mathbb{R}^n} M(f)(x)^p w(x) dx \le C_p^p \int_{\mathbb{R}^n} |f(x)|^p w(x) dx,$$

holds for all $f \in L^p(x)$.

Muckenhoupt A_p classes of weights

ONE-WEIGHT PROBLEM

Characterization of all weights w(x) such that the strong type (p,p) inequality

$$\int_{\mathbb{R}^n} M(f)(x)^p w(x) dx \le C_p^p \int_{\mathbb{R}^n} |f(x)|^p w(x) dx,$$

holds for all $f \in L^p(x)$.

A_p WEIGHTS

Let 1 . A weight*w* $is said to be of class <math>A_p$ if

$$[w]_{A_p} := \sup_{\mathcal{Q}} \left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} w(x) dx \right) \left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} w(x)^{1-p'} dx \right)^{p-1} < \infty.$$

The quantity $[w]_{A_p}$ is known as the A_p characteristic constant of the weight w.

A_1 class of weights

In the case p = 1, we also have the corresponding result

$$M: L^1(w) \to L^{1,\infty}(w),$$

if and only if w satisfies the A_1 condition, i.e.,

 $M(w)(x) \le Cw(x), \quad a.e. \ x \in \mathbb{R}^n$

A₁ class of weights

In the case p = 1, we also have the corresponding result

$$M: L^1(w) \to L^{1,\infty}(w),$$

if and only if w satisfies the A_1 condition, i.e.,

$$M(w)(x) \le Cw(x), \quad a.e. \ x \in \mathbb{R}^n$$

A_1 CONDITION

If w is an A_1 weight, then the (finite) quantity

$$[w]_{A_1} := \sup_{\mathcal{Q}} \left(\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} w(t) dt \right) ||w^{-1}||_{L^{\infty}(\mathcal{Q})}$$

is called the A_1 characteristic constant of w.

A_1 class of weights

In the case p = 1, we also have the corresponding result

$$M: L^1(w) \to L^{1,\infty}(w),$$

if and only if w satisfies the A_1 condition, i.e.,

$$M(w)(x) \le Cw(x), \quad a.e. \ x \in \mathbb{R}^n$$

REMARK

If $w \in A_1$, then

$$\left(\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}w(t)dt\right)\leq [w]_{A_1}\operatorname{ess.inf}_{y\in\mathcal{Q}}w(y),$$

for all cubes Q in \mathbb{R}^n .

• $[w]_{A_p} \ge 1$ (Equality holds if *w* is a constant).

• $[w]_{A_p} \ge 1$ (Equality holds if *w* is a constant).

1

• When
$$1 , $[w^{1-p'}]_{A_{p'}} \le [w]_{A_p}^{\frac{1}{p-1}}$.$$

- $[w]_{A_p} \ge 1$ (Equality holds if *w* is a constant).
- When $1 , <math>[w^{1-p'}]_{A_{p'}} \le [w]_{A_p}^{\frac{1}{p-1}}$.
- The A_p classes are **increasing** as p increases $([w]_{A_q} \leq [w]_{A_p})$.

<u>Properties</u> of A_p classes

- - $[w]_{A_p} \ge 1$ (Equality holds if *w* is a constant).
 - When $1 , <math>[w^{1-p'}]_{A_{p'}} \le [w]_{A_p}^{\frac{1}{p-1}}$.
 - The A_p classes are **increasing** as p increases $([w]_{A_q} \leq [w]_{A_p})$.
 - **Reverse Hölder's inequality** There exist constants *C* and *γ* such that for every cube *Q*,

$$\left(\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}w(t)^{1+\gamma}dt\right)^{\frac{1}{1+\gamma}}\leq\frac{C}{|\mathcal{Q}|}\int_{\mathcal{Q}}w(t)dt$$

- $[w]_{A_p} \ge 1$ (Equality holds if *w* is a constant).
- When $1 , <math>[w^{1-p'}]_{A_{p'}} \le [w]_{A_p}^{\frac{1}{p-1}}$.
- The A_p classes are **increasing** as p increases $([w]_{A_q} \leq [w]_{A_p})$.
- **Reverse Hölder's inequality** There exist constants *C* and γ such that for every cube *Q*,

$$\left(\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}w(t)^{1+\gamma}dt\right)^{\frac{1}{1+\gamma}}\leq\frac{C}{|\mathcal{Q}|}\int_{\mathcal{Q}}w(t)dt$$

• Factorization $w \in A_p$, $1 such that <math>w = w_1 w_2^{1-p}$.

WEIGHTS

Properties of A_p classes

- $[w]_{A_p} \ge 1$ (Equality holds if *w* is a constant).
- When $1 , <math>[w^{1-p'}]_{A_{p'}} \le [w]_{A_p}^{\frac{1}{p-1}}$.
- The A_p classes are **increasing** as p increases $([w]_{A_q} \leq [w]_{A_p})$.
- **Reverse Hölder's inequality** There exist constants *C* and *γ* such that for every cube *Q*,

$$\left(\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}w(t)^{1+\gamma}dt\right)^{\frac{1}{1+\gamma}}\leq\frac{C}{|\mathcal{Q}|}\int_{\mathcal{Q}}w(t)dt$$

- Factorization $w \in A_p$, $1 such that <math>w = w_1 w_2^{1-p}$.
- Extrapolation An estimate on $L^{p_0}(v)$ for a single p_0 and all A_{p_0} weights v implies a similar $L^p(w)$ estimate for all $p \in (1,\infty)$ and all weights $w \in A_p$.

A_{∞} class of weights

Observe that since the A_p classes are increasing, it is natural to define the A_{∞} class of weights as

$$A_{\infty} := \bigcup_{p \ge 1} A_p.$$

A_{∞} class of weights

Observe that since the A_p classes are increasing, it is natural to define the A_{∞} class of weights as

$$A_{\infty} := \bigcup_{p \ge 1} A_p.$$

HRUSČĚV A_{∞} CONSTANT

$$[w]_{A_{\infty}}^{H} := \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w(t) dt \right) exp\left(\frac{1}{|Q|} \int_{Q} logw(t)^{-1} dt \right)$$

A_{∞} class of weights

Observe that since the A_p classes are increasing, it is natural to define the A_{∞} class of weights as

$$A_{\infty} := \bigcup_{p \ge 1} A_p$$

HRUSČĚV A_{∞} CONSTANT

$$[w]_{A_{\infty}}^{H} := \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w(t) dt \right) exp\left(\frac{1}{|Q|} \int_{Q} logw(t)^{-1} dt \right)$$

FUJII-WILSON A_{∞} CONSTANT

$$[w]_{A_{\infty}} = \sup_{Q} \frac{1}{w(Q)} \int_{Q} M(w \chi_{Q})(x) dx$$

Sharp Reverse Hölder Inequality for A_{∞} weights

THEOREM [HP]

If $w \in A_{\infty}$, then $\left(\frac{1}{|Q|} \int_{Q} w^{r(w)}\right)^{1/r(w)} \leq 2\frac{1}{|Q|} \int_{Q} w,$ where $r(w) = 1 + \frac{1}{\tau_n[w]_{A_{\infty}}}$ and $\tau_n = 2^{11+n}$. Furthermore, $[w]_{A_{\infty}} \simeq r'(w)$.

Recommended bibliography

- Grafakos, Loukas. Classical Fourier analysis. Graduate Texts in Mathematics, 249, (2014).
- Duoandikoetxea, Javier. Fourier analysis. Graduate Studies in Mathematics, 29, (2001).

García-Cuerva, José, and Rubio de Francia, José L. Weighted norm inequalities and related topics. North-Holland Mathematics Studies, 116. Notas de Matemtica 104, (1985).

For interested readers

- Fujii, Nobuhiko . Weighted bounded mean oscillation and singular integrals. Math. Japon. 22 (1977/78), no. 5, 529–534.
- Hrusčěv, Sergei V. A description of weights satisfying the A_{∞} condition of Muckenhoupt. Proc. Amer. Math. Soc. 90 (1984), no. 2, 253–257.
- Hytönen, Tuomas and Pérez, Carlos . Sharp weighted bounds involving A_{∞} . Anal. PDE 6 (2013), no. 4, 777–818.
- Muckenhoupt, Benjamin . Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207–226.
- Wilson, J. Michael . Weighted inequalities for the dyadic square function without dyadic A_{∞} . Duke Math. J. 55 (1987), no. 1, 19–50.