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Basic inequalities such us Hölder and Minkowski.

Linear weighted theory (desirable, but not compulsory).
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Framework: Lebesgue spaces

LEBESGUE SPACES

Lp(Rn,µ), 1≤ p < ∞, is defined as the set of all µ-measurable functions

from Rn to C whose p-th powers are integrable, equipped with the norm

||f ||Lp(Rn,µ) =

(∫
Rn
|f |pdµ

) 1
p

.

HÖLDER’S INEQUALITY

Let p1, . . . ,pm,p be numbers such that

1
p
=

1
p1

+ . . .+
1

pm
.

Then

||f1 · . . . · fm||Lp(Rn,µ) ≤
m

∏
i=1
||fi||Lpi (Rn,µ).



INFORMATION BIBLIOGRAPHY FRAMEWORK MOTIVATION COURSE PLAN

Framework: Lebesgue spaces

LEBESGUE SPACES

Lp(Rn,µ), 1≤ p < ∞, is defined as the set of all µ-measurable functions

from Rn to C whose p-th powers are integrable, equipped with the norm

||f ||Lp(Rn,µ) =

(∫
Rn
|f |pdµ

) 1
p

.
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Framework: Weak Lebesgue spaces

WEAK LEBESGUE SPACES

Lp,∞(Rn,µ), 1≤ p < ∞, is defined as the set of all µ-mesurable functions

from Rn to C such that

||f ||Lp,∞(Rn,µ) = sup{t > 0 : tµ({x ∈ Rn : |f (x)|> t})1/p}< ∞.

HÖLDER’S INEQUALITY FOR WEAK SPACES

Let fj ∈ Lpj,∞(Rn,µ) where 0 < pj < ∞ for j = 1, . . . ,k. Let

1
p
=

1
p1

+ . . .+
1

pm
.

Then

||f1 . . . fj||Lp,∞(Rn,µ) ≤ p−1/p
k

∏
j=1

p
1/pj
j ||fj||Lpj (Rn,µ).
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Useful inequalities

KOLMOGOROV’S INEQUALITY

Let 0 < p < q < ∞. Then, there exists a constant C = Cp,q such that for any

measurable function f ,

||f ||
Lp(Q,

dx
|Q| )
≤ C||f ||

Lq,∞(Q,
dx
|Q| )

,

where C = O
(

1
q−p

)
.

MINKOWSKI’S INEQUALITY

Let f be an integrable function on the product space (Rn,µ)× (Rn,ν) where

µ,ν are σ -finite and p≥ 1. Then,[∫
Rn

∣∣∣∣∫Rn
|f (x,y)|dµ(x)

∣∣∣∣p dν(y)
]1/p

≤
∫
Rn

[∫
Rn
|f (x,y)|pdν(y)

]1/p

dµ(x).
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Weak and strong norm inequalities

DEFINITION

Let (X,µ) and (Y,ν) be measure spaces and let T be an operator defined

from Lp(X,µ) into the space of measurable functions from Y to C. We say

that:

1 T is strong (p,q) if ||Tf ||Lq(Y,ν) . ||f ||Lp(X,µ).

2 T is weak (p,q) if ||Tf ||Lq,∞(Y,ν) . ||f ||Lp(X,µ).

When (X,µ) = (Y,ν) in the above definition of weak (p,p) operator, we get

the Chebyshev’s inequality,

µ({x ∈ X : |Tf (x)|> λ}).
( ||f ||Lp(X,µ)

λ

)p

.
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Norm weighted inequalities

GOAL

Determine under which conditions a given operator T (initially bounded on

Lp(Rn,dx)) satisfies is bounded on Lp(Rn,µ), where dµ = w(x)dx.

DEFINITION

We will say that w is a weight if it is a measurable locally integrable

function defined in Rn taking values in (0,∞) for almost each point.

MAIN OPERATORS UNDER STUDY

Maximal functions (Hardy-Littlewood, fractional versions,...).

Singular integral operators (CZO).
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Origin of modern theory of weights

HARDY–LITTLEWOOD MAXIMAL FUNCTION

Mf (x) = sup
Q3x

1
|Q|

∫
Q
|f (y)|dy.
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HARDY–LITTLEWOOD MAXIMAL FUNCTION

Mf (x) = sup
Q3x

1
|Q|

∫
Q
|f (y)|dy.

THEOREM [MU]
For 1 < p < ∞ it holds that∫

Rn
(Mf (x))pw(x)dx≤ C

∫
Rn
|f (x)|pw(x)dx, f ∈ Lp(w),

if and only if w satisfies the Ap condition, i.e.,

[w]Ap := sup
Q

(
1
|Q|

∫
Q

w(x)dx
)(

1
|Q|

∫
Q

w(x)−
1

p−1

)p−1
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Mf (x) = sup
Q3x

1
|Q|

∫
Q
|f (y)|dy.

THEOREM [MU]
For 1≤ p < ∞, it holds that

sup
λ>0

λ
p
∫
{Mf>λ}

u(x)dx≤ C
∫
Rn
|f (x)|pv(x)dx, f ∈ Lp(v).

if and only if

[u,v]Ap := sup
Q

(
1
|Q|

∫
Q
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1
|Q|

∫
Q

v(x)−
1

p−1
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Origin of modern theory of weights

THEOREM [SA]

Let (u,v) be weights. Then, for 1 < p < ∞ it holds that

M : Lp(v)−→ Lp(u),

if and only if

[u,v]Sp = sup
Q

(∫
Q M(χQσ)pudx

σ(Q)

)1/p

< ∞,

where σ = v1−p′ .

The Sp condition involves the operator under study itself.

These testing conditions are defined for particular operators.
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Sharp bounds for maximal functions

REMARK

The classical results were qualitative results since they did not reflect the

quantitative dependence of the Lp(w) operator norm in term of the relevant

constant involving the weights.

S. Buckley

||M||Lp(w) ≤ Cp [w]
1

p−1
Ap

.

J. Wittwer: martingale operator and square function.

K. Moen
||M||Lp(v)−→Lp(u) ≈ [u,v]Sp .
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Singular integral operators

Tf (x) =
∫

K(x,y)f (y)dy

Hilbert transform

Hf (x) =
1
π

pv
∫
R

1
x− y

f (y)dy, x ∈ R

Riesz transforms

Rjf (x) =
Γ
( n+1

2

)
π

n+1
2

p.v.
∫
Rn

yj

|y|n+1 f (x− y)dy, 1≤ j≤ n.

Ahlfors-Beurling transform

Bf (z) = p.v.
∫
C

f (w)
(w− z)2 dw.
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Calderón–Zygmund operators

DEFINITION

A linear operator T is a Calderón–Zygmund operator (CZO) if it extends to a

bounded operator from L2(Rn) into itself and there exists a function K

defined off the diagonal of x = y, such that

T(f )(x) =
∫
Rn

K(x,y)f (y)dy, x 6∈ supp(f ), f ∈ C∞
c .

The kernel must also satisfy:

|K(x,y)|. 1
|x−y|n .

For certain δ > 0,
|K(x,y)−|. ,

if ≤ 1
2 max{}.
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Sharp bounds for singular integral operators

S. Petermichl and A. Volberg: Linear bound for the Beurling operator

when p≥ 2.

S. Petermichl: Optimal bounds for Hilbert and Riesz transforms.

O. Beznosova: Linear bound for discrete paraproduct operators.

M. Lacey, S. Petermichl and M.C. Reguera: Sharp A2 bound for a

large family of Haar shift operators.

D. Cruz-Uribe, J.M. Martell and C. Pérez: More flexible method

avoiding Bellman functions and two-weighted norm inequalities.

T. Hytönen: Sharp A2 bound for CZO (probabilistic approach).

A.K. Lerner: Sharp A2 bound for CZO (sparse operators).

K. Moen: Sharp weighted bounds for sparse operators without

extrapolation.
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avoiding Bellman functions and two-weighted norm inequalities.

T. Hytönen: Sharp A2 bound for CZO (probabilistic approach).

A.K. Lerner: Sharp A2 bound for CZO (sparse operators).

K. Moen: Sharp weighted bounds for sparse operators without

extrapolation.



INFORMATION BIBLIOGRAPHY FRAMEWORK MOTIVATION COURSE PLAN

Sharp bounds for singular integral operators

S. Petermichl and A. Volberg: Linear bound for the Beurling operator

when p≥ 2.

S. Petermichl: Optimal bounds for Hilbert and Riesz transforms.

O. Beznosova: Linear bound for discrete paraproduct operators.

M. Lacey, S. Petermichl and M.C. Reguera: Sharp A2 bound for a

large family of Haar shift operators.

D. Cruz-Uribe, J.M. Martell and C. Pérez: More flexible method
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Recent improvements

T. Hytönen and C. Pérez: Replace a portion of the Ap constant by

another smaller constant.

[w]A∞
:= sup

Q

1
w(Q)

∫
Q

M(wχQ)

[w]HA∞
:= sup

Q

(
1
|Q|

∫
Q

w(t)dt
)

exp
(

1
|Q|

∫
Q

logw(t)−1dt
)
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Recent improvements

Improvement of Buckley’s estimate

||M||Lp(w) ≤ Cp′([w]Ap [σ ]A∞
)1/p

Improvement of A2 theorem

||T||L2(w)≤C[w]1/2
A2

([w−1]A∞
+[w]A∞

)1/2

Starting point for proving analogue results for other operators, i.e.,
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Improvement of Buckley’s estimate

||M||Lp(w) ≤ Cp′([w]Ap [σ ]A∞
)1/p

Improvement of A2 theorem

||T||L2(w)≤C[w]1/2
A2

([w−1]A∞
+[w]A∞

)1/2

Starting point for proving analogue results for other operators, i.e.,

[T,b] f (x) =
∫
Rn
(b(y)−b(x))K(x,y)f (y)dy.
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Recent improvements

Improvement of Buckley’s estimate

||M||Lp(w) ≤ Cp′([w]Ap [σ ]A∞
)1/p

Improvement of A2 theorem

||T||L2(w)≤C[w]1/2
A2

([w−1]A∞
+[w]A∞

)1/2

Starting point for proving analogue results for other operators, i.e.,

||[T,b] f ||L2(w) ≤ C[w]2A2
||b||BMO||f ||L2(w).
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Part 1: organization

PART 1
Introduce m−CZO and M .

Control m−CZO by M .

Prove a weak type inequality for M .

Define the A~P classes of weights.

Prove the sharp (strong) bound for M .

Introduce the two-weight problem for M .

Prove the sharp bounds for the m-sparse operators.

Prove some auxiliary results.
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