Homework Set 9, Topology 1, Solutions of exercises $1,2,3$

Laura Venieri

1. The space $C[0,1]$ of all bounded continuous functions defined on $[0,1]$ (equipped with the sup norm) is not locally compact.

Proof. Let $0(x)=0$ for every $x \in[0,1]$ be the constant zero function. If we show that the closure of every neighbourhood of 0 is not compact then it follows that $C[0,1]$ is not locally compact.

Let $r>0$ and suppose by contradiction that the closure of $S_{r}(0)$ is compact. Then it is also sequentially compact. Consider the sequence of functions $\left\{f_{n}\right\}$, where

$$
\begin{aligned}
& f_{n}(x)=r n x \quad \text { if } 0 \leq x \leq \frac{1}{n} \\
& f_{n}(x)=r \quad \text { if } \frac{1}{n} \leq x \leq 1
\end{aligned}
$$

Then f_{n} is continuous on $[0,1]$ and

$$
\left\|f_{n}\right\|=\sup _{x \in[0,1]}\left|f_{n}(x)\right|=r
$$

thus $\left\{f_{n}\right\}$ is a sequence in the closure of $S_{r}(0)$. Since this is sequentially compact, there exists a subsequence $\left\{f_{n_{k}}\right\}$ converging to some $f \in C[0,1]$. This means that for every $\epsilon>0$ there exists $k_{0} \in \mathbb{N}$ such that for every $k \geq k_{0}$

$$
\left\|f_{n_{k}}-f\right\|=\sup _{x \in[0,1]}\left|f_{n_{k}}(x)-f(x)\right|<\epsilon .
$$

Thus $f_{n_{k}}$ converges uniformly to f, which implies that it converges pointwise. Hence for every $x \in(0,1]$,

$$
f(x)=\lim _{k \rightarrow \infty} f_{n_{k}}(x)=r
$$

since for every $x \in(0,1]$ there exists k_{0} such that for all $k \geq k_{0}, \frac{1}{n_{k}} \leq x \leq 1$, which means $f_{n_{k}}(x)=r$ for every $k \geq k_{0}$.

Moreover,

$$
f(0)=\lim _{k \rightarrow \infty} f_{n_{k}}(0)=0
$$

Thus

$$
\lim _{x \rightarrow 0^{+}} f(x)=r \neq 0=f(0)
$$

which means that f is not continuous at 0 . This is a contradiction, hence the closure of $S_{r}(0)$ is not compact.
2. Every finite T_{1} space is discrete.

Proof. We want to show that every $A \subseteq X$ is open. If $A=\emptyset$ or $A=X$ then A is open so let us assume $A \neq X, A \neq \emptyset$.

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let $A=\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$.
Then the complement of A is $X-\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$, which equals the set of the $n-k$ remaining points, call them $x_{j_{1}}, \ldots, x_{j_{n-k}}$. Thus $A^{\prime}=\cup_{l=1}^{n-k}\left\{x_{j_{l}}\right\}$.

Since X is T_{1}, every $\left\{x_{j_{l}}\right\}$ is closed (by Thorem 26-A in the book), hence A^{\prime} is closed (because it is a finite union of closed sets). This means that A is open.
3. If X is a topological space, Y a Hausdorff space and $f: X \rightarrow Y$ is continuous, then the graph of f is a closed subset of the product space $X \times Y$.

Proof. Let $G=\{(x, f(x)): x \in X\} \subseteq X \times Y$ be the graph of f. We prove that its complement G^{\prime} is open.

Let $(x, y) \in G^{\prime}$, i.e. $y \neq f(x)$. Since Y is Hausdorff, there exist two disjoint open sets U and V in Y such that $y \in U$ and $f(x) \in V$.

Since f is continuous, $W=f^{-1}(V) \subseteq X$ is open.
Hence $W \times U$ is open in $X \times Y$ and $(x, y) \in W \times U$. It remains to show that $W \times U \subseteq G^{\prime}$. If $(z, f(z)) \in G$ then if $z \notin W$ also $(z, f(z)) \notin W \times U$, if $z \in W$ then $f(z) \in V$ thus $f(z) \notin U$ (since V and U are disjoint). Hence $G \cap(W \times U)=\emptyset$, which means $W \times U \subseteq G^{\prime}$.

We have shown that every point in G^{\prime} has a neighbourhood which is contained in G^{\prime}, hence G^{\prime} is open.

