Homework Set 6, Topology 1, Solutions of exercises 2,3,4

Laura Venieri
2. Let $\left(X, T_{1}\right),\left(Y, T_{2}\right)$ be topological spaces, let $f: X \rightarrow Y$ be a mapping and let \mathcal{B} be an open base in Y. Then f is continuous if and only if $f^{-1}(B) \in T_{1}$ for every $B \in \mathcal{B}$.

Proof. If f is continuous then by definition for every $U \in T_{2}, f^{-1}(U) \in T_{1}$. Since every $B \in \mathcal{B}$ belongs to T_{2}, it follows that $f^{-1}(B) \in T_{1}$.

On the other hand, suppose that f is such that $f^{-1}(B) \in T_{1}$ for every $B \in \mathcal{B}$. Let $U \in T_{2}$. Since \mathcal{B} is an open base, U can be written as $U=\cup_{i \in I} B_{i}$ for some $B_{i} \in \mathcal{B}$. But then $f^{-1}(U)=\cup_{i \in I} f^{-1}\left(B_{i}\right)$ and by assumption $f^{-1}\left(B_{i}\right) \in T_{1}$ for every $i \in I$. Since T_{1} is a topology, this implies that $\cup_{i \in I} f^{-1}\left(B_{i}\right) \in T_{1}$, thus $U \in T_{1}$. This means that f is continuous.
3. Let (X, T) be a compact topological space and let $F \subseteq X$ be a closed subspace. Then F is compact.

Proof. Let $\cup_{i \in I} U_{i}$ be an open cover of F. Since U_{i} are open in the subspace topology, it follows that $U_{i}=V_{i} \cap F$ for some $V_{i} \in T$ for every $i \in I$. Then $F^{\prime} \cup\left(\cup_{i \in I} U_{i}\right)$ is an open cover of X because F^{\prime} is open (F is closed) and $\cup_{i \in I} U_{i}$ covers F. Since X is compact, this cover has a finite subcover $F^{\prime} \cup\left(\cup_{n=1}^{N} V_{n}\right)$ (it can also happen that F^{\prime} does not belong to this subcover). Then $\cup_{n=1}^{N}\left(V_{n} \cap F\right)$ is a finite subcover of F, hence F is compact.
4. Let (X, T) be a compact topological space and let $f: X \rightarrow \mathbb{R}$ be continuous. Then there exist $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=\inf \{f(x): x \in X\}$ and $f\left(x_{2}\right)=$ $\sup \{f(x): x \in X\}$.

Proof. Since X is compact and f is continuous, $f(X)$ is compact by Theorem 21-B in Simmon's book. Hence $f(X) \subset \mathbb{R}$ is closed and bounded by the inverse of the Heine-Borel theorem. It follows that f has infimum and supremum, let $a=$ $\inf \{f(x): x \in X\}$ and $b=\sup \{f(x): x \in X\}$.

Let (c, d) be any open interval containing a. Since $a<d$, by definition of infimum there exists $x \in X$ such that $a \leq f(x)<d$. Thus $(c, d) \cap f(X) \neq \emptyset$, which implies (by definition of closure of a set) that a is in the closure of $f(X)$, which equals $f(X)$ since $f(X)$ is closed. Hence $a=f\left(x_{1}\right)$ for some $x_{1} \in X$.

Similarly one can can show that $b=f\left(x_{2}\right)$ for some $x_{2} \in X$.

