Homework Set 4, Topology 1, Solutions of exercises 1,2,5

Laura Venieri

1. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(x+y)=f(x)+f(y)$ then $f(x)=m x$ for some $m \in \mathbb{R}$.

Proof. Let $g(x)=f(x)-f(1) x$. If we show that $g(x)=0$ for every $x \in \mathbb{R}$ then $f(x)=m x$ with $m=f(1)$.

First observe that since $f(x+y)=f(x)+f(y)$ we have $g(x+y)=g(x)+g(y)$.
Moreover, g is continuous. Indeed, let $x \in \mathbb{R}$ and let $\epsilon>0$. Then (by the continuity of f) there exists $\delta_{1}>0$ such that $|x-y|<\delta_{1} \Rightarrow|f(x)-f(y)|<\epsilon / 2$. Choose $\delta=\min \left\{\delta_{1}, \epsilon /(2|f(1)|)\right\}$. Then for $|x-y|<\delta$ we have

$$
|g(x)-g(y)| \leq|f(x)-f(y)|+|f(1)||x-y|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

First we show by induction that $g(n)=0$ for every $n \in \mathbb{N}$. Indeed, $g(0)=$ $g(0+0)=g(0)+g(0)$ thus $g(0)=0 ; g(1)=f(1)-f(1)=0$. Suppose now that $g(n-1)=0$. Then $g(n)=g(n-1+1)=g(n-1)+g(1)=0$.

Since $0=g(0)=g(n-n)=g(n)+g(-n)$, we have $g(-n)=-g(n)=0$ for every $n \in \mathbb{N}$. Thus $g(n)=0$ for every $n \in \mathbb{Z}$.

Next we show that $g(r)=0$ for every $r \in \mathbb{Q}$. Let $r=\frac{p}{q}$ with $p, q \in \mathbb{Z}$. Then

$$
0=g(p)=g\left(q \frac{p}{q}\right)=q g\left(\frac{p}{q}\right)
$$

thus $g(r)=0$.
Now we use the density of \mathbb{Q} in \mathbb{R} and the continuity of g to show that $g(x)=0$ for every $x \in \mathbb{R}$. Let $x \in \mathbb{R}$ and $\epsilon>0$. Then there exists $\delta>0$ such that $|x-y|<\delta \Rightarrow|g(x)-g(y)|<\epsilon$. Since \mathbb{Q} is dense in \mathbb{R}, there exists $r \in \mathbb{Q}$ such that $|x-r|<\delta$. Thus $|g(x)-g(r)|=|g(x)|<\epsilon$, which implies $g(x)=0$.
2. Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be metric spaces and let $A \subseteq X, A \neq \emptyset$. If $f, g: X \rightarrow Y$ are continuous and $f(x)=g(x)$ for every $x \in A$ then $f(x)=g(x)$ for every $x \in \bar{A}$.

Proof. Let $x \in \bar{A}$. Then either $x \in A$ or x is a limit point of A.
If $x \in A$ then $f(x)=g(x)$ by assumption. Let now x be a limit point of A. Let $\epsilon>0$. Then by continuity of f there exists $\delta_{1}>0$ such that $d_{1}(x, y)<$ $\delta_{1} \Rightarrow d_{2}(f(x), f(y))<\epsilon / 2$, and by continuity of g there exists $\delta_{2}>0$ such that $d_{1}(x, y)<\delta_{2} \Rightarrow d_{2}(g(x), g(y))<\epsilon / 2$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Since x is a limit point of A, there exists $y \in A$ such that $d_{1}(x, y)<\delta$. Thus we have $f(y)=g(y)$ and by triangle inequality

$$
d_{2}(f(x), g(x)) \leq d_{2}(f(x), f(y))+d_{2}(g(y), g(x))<\epsilon
$$

Since this holds for arbitrary ϵ, we have $d_{2}(f(x), g(x))=0$ thus $f(x)=g(x)$.
5. A Cauchy sequence in a metric space (X, d) is convergent if and only if it has a convergent subsequence.

Proof. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in X.
If $\left\{x_{n}\right\}$ is convergent then it is a convergent subsequence of itself.
Assume now that $\left\{x_{n}\right\}$ has a convergent subsequence, call this $\left\{x_{n_{k}}\right\}$. Let $x_{n_{k}} \rightarrow$ x_{0}. We will show that also $x_{n} \rightarrow x_{0}$.

Let $\epsilon>0$. Then there exists n_{0} such that $d\left(x_{n_{k}}, x_{0}\right)<\epsilon / 2$ for all $n_{k} \geq n_{0}$. Moreover, since $\left\{x_{n}\right\}$ is a Cauchy sequence, there exists N_{0} such that $d\left(x_{n}, x_{m}\right)<\epsilon / 2$ for all $n, m \geq N_{0}$. Let now $N=\max \left\{n_{0}, N_{0}\right\}$ and let $n_{k}>N$. Then for every $n \geq N$,

$$
d\left(x_{n}, x_{0}\right) \leq d\left(x_{n}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{0}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Hence $x_{n} \rightarrow x_{0}$.

