Homework Set 4, Topology 1, Solutions of exercises 1,2,5
Laura Venieri

1. If f:R — R is continuous and f(x +y) = f(z) + f(y) then f(z) = ma for
some m € R.

Proof. Let g(x) = f(z) — f(1)x. If we show that g(z) = 0 for every x € R then
f(z) = ma with m = f(1).
First observe that since f(z +y) = f(z) + f(y) we have g(z +y) = g(z) + g(y).
Moreover, ¢ is continuous. Indeed, let x € R and let ¢ > 0. Then (by the
continuity of f) there exists d; > 0 such that |z —y| < & = |f(z) — f(y)| < €/2.
Choose § = min{dy,€/(2|f(1)])}. Then for |x — y| < 0 we have

l9(@) = 9| < |f(@) = F@)| + [FW)llz =yl < 5+ 5 =€
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First we show by induction that g(n) = 0 for every n € N. Indeed, g(0) =
g(0+0) = g(0) + ¢g(0) thus g(0) = 0; g(1) ( ) — f(1) = 0. Suppose now that

g(n—1)=0. Then g(n) =g(n —1+1)=g(n—1)+g(1) = 0.

Since 0 = ¢g(0) = g(n — n) = g(n) + g(—n), we have g(—n) = —g(n) = 0 for
every n € N. Thus g(n) = 0 for every n € Z.

Next we show that g(r) = 0 for every r € Q. Let r = £ with p,q € Z. Then

0=g(p) =y (qg) =qg (g) ,
thus ¢(r) = 0.

Now we use the density of @Q in R and the continuity of g to show that g(z) = 0
for every z € R. Let z € R and € > 0. Then there exists § > 0 such that
|z —y| <= |g(x) —g(y)| <e. Since Q is dense in R, there exists r € Q such that
|z —r| < 6. Thus |g(x) — g(r)| = |g(z)| < €, which implies g(x) = 0. O

2. Let (X, d;) and (Y, dy) be metric spacesandlet AC X, A#£(). If f,g: X =Y
are continuous and f(r) = g(z) for every z € A then f(z) = g(z) for every x € A.

Proof. Let x € A. Then either z € A or x is a limit point of A.

If x € A then f(z) = g(x) by assumption. Let now x be a limit point of
A. Let € > 0. Then by continuity of f there exists §; > 0 such that di(z,y) <
0 = do(f(x), f(y)) < €/2, and by continuity of g there exists d, > 0 such that

di(z,y) < b2 = da(g(x),9(y)) <e€/2.
Let 6 = min{d;,d2}. Since z is a limit point of A, there exists y € A such that
di(x,y) < 0. Thus we have f(y) = g(y) and by triangle inequality

dy(f (), g(x)) < do(f (), f(y)) + da(g(y), 9(x)) <.
Since this holds for arbitrary €, we have do(f(x), g(x)) = 0 thus f(x) = g(z). O
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5. A Cauchy sequence in a metric space (X, d) is convergent if and only if it has
a convergent subsequence.

Proof. Let {x,} be a Cauchy sequence in X.

If {z,} is convergent then it is a convergent subsequence of itself.

Assume now that {x,} has a convergent subsequence, call this {x,, }. Let z,, —
xg. We will show that also z,, — 9.

Let € > 0. Then there exists ny such that d(x,,,x¢) < €/2 for all ny > ny.
Moreover, since {z,} is a Cauchy sequence, there exists Ny such that d(x,,, x,,) < €/2
for all n,m > Ny. Let now N = max{ng, No} and let ny > N. Then for every n > N,

d(wn, 20) < d(2p, ) + (g, ) < g + % —e

Hence x,, — xy. O



