
Homework Set 3, Topology 1, Solutions of exercises 2,3,4,5 (and one
extra)

Laura Venieri

2. If (X, d) is a metric space, x ∈ X, F ⊆ X is a closed set with x /∈ F , then
there exist two disjoint open sets G1, G2 such that x ∈ G1 and F ⊆ G2.

Moreover, if F1, F2 are two disjoint closed sets then there exist two disjoint open
sets G1, G2 such that F1 ⊆ G1 and F2 ⊆ G2.

Proof. Since for every x ∈ X, {x} equals the closed ball of radius 0 and center x,
we have that {x} is closed.

Thus the first claim is a special case of the second one and it suffices to prove
the second one.

First observe that if F is closed and x /∈ F then d(x, F ) > 0. Indeed, suppose
by contradiction that d(x, F ) = 0. Since d(x, F ) = inf{d(x, y) : y ∈ F}, for every
r > 0 there exists y ∈ F such that d(x, y) < r, that is y ∈ Sr(x). Since x /∈ F , y is
distinct from x thus x is a limit point of F . But this is a contradiction because F
is closed so it contains all its limit points.

For every x ∈ F1, let rx = d(x,F2)
2

and for every y ∈ F2, let ry = d(y,F1)
2

. Let

G1 =
⋃
x∈F1

Srx(x), G2 =
⋃
y∈F2

Sry(y).

Then G1 and G2 are open sets because they are unions of open balls. Moreover,
F1 ⊆ G1 and F2 ⊆ G2.

It remains to show that G1∩G2 = ∅. Suppose by contradiction that there exists a
point z ∈ G1∩G2. Then there exist x ∈ F1 and y ∈ F2 such that z ∈ Srx(x)∩Sry(y).
By triangle inequality, we have

d(x, y) ≤ d(x, z) + d(z, y) < rx + ry. (1)

But d(x, y) ≥ d(x, F2) = 2rx and d(x, y) ≥ d(F1, y) = 2ry and summing these two
and dividing by 2 we get

d(x, y) ≥ rx + ry,

which yields a contradiction with (1).

3. Let (X, d) be a metric space and A ⊆ X. Then

(a) If x is a limit point of A, then for every r > 0, Sr(x) contains infinitely many
points of A.

(b) Any finite subset of X is closed.
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Proof. (a) Let r > 0 and suppose by contradiction that (Sr(x) ∩ A) − {x} =
{a1, . . . , an} (it is 6= ∅ since x is a limit point of A). Let R = min{d(ai, x) :
i = 1, . . . , n}. Then d(x, ai) ≥ R for every i = 1, . . . , n, thus SR(x) contains
no point of A different from x. This yields a contradiction since x is a limit
point of A.

(b) Let A be finite. By (a), if x is a limit point of A then any open sphere Sr(x)
contains infinitely many points of A. But A contains only finitely many points,
thus A has no limit points. It follows that A contains all its limit points, hence
it is closed by definition.

4. Let (X, d) be a metric space and A ⊆ X. Then

(a) (Ā)′ = Int(A′);

(b) Ā = {x ∈ X : d(x,A) = 0}.

Proof. (a) Since Ā is closed, (Ā)′ is open. Moreover, A ⊆ Ā implies (Ā)′ ⊆ A′.
Thus (Ā)′ ⊆ Int(A′) (because Int(A′) contains every open subset of A′).

On the other hand, if x ∈ Int(A′) then there exists r > 0 such that Sr(x) ⊂ A′.
Thus Sr(x) ∩ A = ∅, that is x is not a limit point of A. This implies that
x /∈ Ā, hence x ∈ (Ā)′. Thus also Int(A′) ⊆ (Ā)′.

(b) By definition, x ∈ Ā if and only if x ∈ A or x is a limit point of A. If x ∈ A
then d(x,A) = 0. The fact that x is a limit point of A is equivalent to say
that for every r > 0 there exists y 6= x such that y ∈ A∩Sr(x). This happens
if and only if for every r > 0 there exists y ∈ A such that d(x, y) < r, which
is equivalent to say that d(x,A) < r for every r > 0. But this means that
d(x,A) = 0.

5. The interior of the Cantor set F is empty.

Proof. By definition, F = ∩∞n=1Fn, where F1 = [0, 1], F2 = [0, 1/3] ∪ [2/3, 1], . . . .
Each Fn is the union of 2n−1 closed intervals of length 31−n each.

Suppose by contradiction that there exists x ∈ Int(F ). Then there exists r > 0
such that Sr(x) = (x − r, x + r) ⊆ F . Thus Sr(x) ⊆ Fn for every n, that is
Sr(x) is contained in one of the intervals whose union is Fn for every n. Hence
0 < 2r ≤ 31−n for every n, which yields a contradiction since the right hand side
tends to 0 as n→∞.
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Extra exercise: A subset A of a metric space X is nowhere dense if and only if
every non-empty open subset of X contains an open sphere disjoint from A.

Proof. Suppose that A is nowhere dense. Let U ⊆ X be open, U 6= ∅. Since
Int(Ā) = ∅, U is not contained in Int(Ā), thus U is not contained in Ā. This means
that there exists b ∈ U such that b /∈ Ā, hence b ∈ U ∩ (Ā)′. Call this set W . Since
W is open, there exists an open sphere Sr(b) ⊆ W . Thus Sr(b) ∩ A = ∅ and the
claim is proved.

The other direction is straightforward and was seen in Juliette’s lecture.
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