Homework Set 3, Topology 1, Solutions of exercises 2,3,4,5 (and one extra)

Laura Venieri

2. If (X, d) is a metric space, $x \in X, F \subseteq X$ is a closed set with $x \notin F$, then there exist two disjoint open sets G_{1}, G_{2} such that $x \in G_{1}$ and $F \subseteq G_{2}$.

Moreover, if F_{1}, F_{2} are two disjoint closed sets then there exist two disjoint open sets G_{1}, G_{2} such that $F_{1} \subseteq G_{1}$ and $F_{2} \subseteq G_{2}$.

Proof. Since for every $x \in X,\{x\}$ equals the closed ball of radius 0 and center x, we have that $\{x\}$ is closed.

Thus the first claim is a special case of the second one and it suffices to prove the second one.

First observe that if F is closed and $x \notin F$ then $d(x, F)>0$. Indeed, suppose by contradiction that $d(x, F)=0$. Since $d(x, F)=\inf \{d(x, y): y \in F\}$, for every $r>0$ there exists $y \in F$ such that $d(x, y)<r$, that is $y \in S_{r}(x)$. Since $x \notin F, y$ is distinct from x thus x is a limit point of F. But this is a contradiction because F is closed so it contains all its limit points.

For every $x \in F_{1}$, let $r_{x}=\frac{d\left(x, F_{2}\right)}{2}$ and for every $y \in F_{2}$, let $r_{y}=\frac{d\left(y, F_{1}\right)}{2}$. Let

$$
G_{1}=\bigcup_{x \in F_{1}} S_{r_{x}}(x), \quad G_{2}=\bigcup_{y \in F_{2}} S_{r_{y}}(y)
$$

Then G_{1} and G_{2} are open sets because they are unions of open balls. Moreover, $F_{1} \subseteq G_{1}$ and $F_{2} \subseteq G_{2}$.

It remains to show that $G_{1} \cap G_{2}=\emptyset$. Suppose by contradiction that there exists a point $z \in G_{1} \cap G_{2}$. Then there exist $x \in F_{1}$ and $y \in F_{2}$ such that $z \in S_{r_{x}}(x) \cap S_{r_{y}}(y)$. By triangle inequality, we have

$$
\begin{equation*}
d(x, y) \leq d(x, z)+d(z, y)<r_{x}+r_{y} \tag{1}
\end{equation*}
$$

But $d(x, y) \geq d\left(x, F_{2}\right)=2 r_{x}$ and $d(x, y) \geq d\left(F_{1}, y\right)=2 r_{y}$ and summing these two and dividing by 2 we get

$$
d(x, y) \geq r_{x}+r_{y}
$$

which yields a contradiction with (1).
3. Let (X, d) be a metric space and $A \subseteq X$. Then
(a) If x is a limit point of A, then for every $r>0, S_{r}(x)$ contains infinitely many points of A.
(b) Any finite subset of X is closed.

Proof. (a) Let $r>0$ and suppose by contradiction that $\left(S_{r}(x) \cap A\right)-\{x\}=$ $\left\{a_{1}, \ldots, a_{n}\right\}$ (it is $\neq \emptyset$ since x is a limit point of A). Let $R=\min \left\{d\left(a_{i}, x\right)\right.$: $i=1, \ldots, n\}$. Then $d\left(x, a_{i}\right) \geq R$ for every $i=1, \ldots, n$, thus $S_{R}(x)$ contains no point of A different from x. This yields a contradiction since x is a limit point of A.
(b) Let A be finite. By (a), if x is a limit point of A then any open sphere $S_{r}(x)$ contains infinitely many points of A. But A contains only finitely many points, thus A has no limit points. It follows that A contains all its limit points, hence it is closed by definition.
4. Let (X, d) be a metric space and $A \subseteq X$. Then
(a) $(\bar{A})^{\prime}=\operatorname{Int}\left(A^{\prime}\right)$;
(b) $\bar{A}=\{x \in X: d(x, A)=0\}$.

Proof. (a) Since \bar{A} is closed, $(\bar{A})^{\prime}$ is open. Moreover, $A \subseteq \bar{A}$ implies $(\bar{A})^{\prime} \subseteq A^{\prime}$. Thus $(\bar{A})^{\prime} \subseteq \operatorname{Int}\left(A^{\prime}\right)$ (because $\operatorname{Int}\left(A^{\prime}\right)$ contains every open subset of A^{\prime}).

On the other hand, if $x \in \operatorname{Int}\left(A^{\prime}\right)$ then there exists $r>0$ such that $S_{r}(x) \subset A^{\prime}$. Thus $S_{r}(x) \cap A=\emptyset$, that is x is not a limit point of A. This implies that $x \notin \bar{A}$, hence $x \in(\bar{A})^{\prime}$. Thus also $\operatorname{Int}\left(A^{\prime}\right) \subseteq(\bar{A})^{\prime}$.
(b) By definition, $x \in \bar{A}$ if and only if $x \in A$ or x is a limit point of A. If $x \in A$ then $d(x, A)=0$. The fact that x is a limit point of A is equivalent to say that for every $r>0$ there exists $y \neq x$ such that $y \in A \cap S_{r}(x)$. This happens if and only if for every $r>0$ there exists $y \in A$ such that $d(x, y)<r$, which is equivalent to say that $d(x, A)<r$ for every $r>0$. But this means that $d(x, A)=0$.
5. The interior of the Cantor set F is empty.

Proof. By definition, $F=\cap_{n=1}^{\infty} F_{n}$, where $F_{1}=[0,1], F_{2}=[0,1 / 3] \cup[2 / 3,1], \ldots$ Each F_{n} is the union of 2^{n-1} closed intervals of length 3^{1-n} each.

Suppose by contradiction that there exists $x \in \operatorname{Int}(F)$. Then there exists $r>0$ such that $S_{r}(x)=(x-r, x+r) \subseteq F$. Thus $S_{r}(x) \subseteq F_{n}$ for every n, that is $S_{r}(x)$ is contained in one of the intervals whose union is F_{n} for every n. Hence $0<2 r \leq 3^{1-n}$ for every n, which yields a contradiction since the right hand side tends to 0 as $n \rightarrow \infty$.

Extra exercise: A subset A of a metric space X is nowhere dense if and only if every non-empty open subset of X contains an open sphere disjoint from A.

Proof. Suppose that A is nowhere dense. Let $U \subseteq X$ be open, $U \neq \emptyset$. Since $\operatorname{Int}(\bar{A})=\emptyset, U$ is not contained $\operatorname{in} \operatorname{Int}(\bar{A})$, thus U is not contained in \bar{A}. This means that there exists $b \in U$ such that $b \notin \bar{A}$, hence $b \in U \cap(\bar{A})^{\prime}$. Call this set W. Since W is open, there exists an open sphere $S_{r}(b) \subseteq W$. Thus $S_{r}(b) \cap A=\emptyset$ and the claim is proved.

The other direction is straightforward and was seen in Juliette's lecture.

