
Homework Set 2, Topology 1, Solutions of exercises 1,2,3
Laura Venieri

1. Cantor-Schröder-Bernstein Theorem: if A � B and B � A then A and B are
equinumerous.

Proof. (Completing the details of the proof on page 29 of the textbook)
By assumption, there exist a one-to-one mapping (i.e. injective) f : A→ B and

a one-to-one mapping g : B → A. We want to find a one-to-one correspondence
F : A→ B, that is a bijection.

Given x ∈ A, we define its ancestors as in the textbook and also Ai, Ae and
Ao. We want to show that they form a partition of A. First observe that they
are disjoint by definition: if x ∈ Ai then it has an infinite number of ancestors so
x /∈ Ae ∪ Ao; if x ∈ Ae then it has an even number of ancestors (so in particular
finite), hence x ∈ Ai ∪ Ao and so on.

Observe that since f g are injective, so are f−1 and g−1. Hence for every x ∈ A
the ancestors are uniquely determined.

It remains to show that A = Ai ∪ Ae ∪ Ao.
We prove the double inclusion. First let x ∈ A. If x has zero ancestors then

x ∈ Ae. Otherwise, x has at least one ancestor. It can happen either that x has
finitely many ancestors n or infinitely many. In the first case, x ∈ Ae or Ao depending
on whether n is even or odd. In the second case, x ∈ Ai. Thus A ⊆ Ai ∪ Ae ∪ Ao.

The other inclusion A ⊆ Ai ∪Ae ∪Ao is obvious by definition of the sets Ai, Ae,
Ao.

Similarly, the sets Bi, Be and Bo partition B.
There are now three bijections between these subsets:

i) f is a bijection from Ai to Bi. Indeed, by assumption f is injective so we need
to prove that it is also surjective. Let y ∈ Bi. Since y has infinitely many
ancestors, there is x ∈ A such that f−1(y) = x. But since y has infinitely
many ancestors, also x will have infinitely many ancestors so x ∈ Ai. Thus
y = f(x) with x ∈ Ai and f is surjective.

ii) f is a bijection from Ae to Bo. Again we need to prove that the mapping is
surjective. Let y ∈ Bo, thus y has at least one ancestor f−1(y) = x ∈ A. If
y has 2n + 1 ancestors then x will have 2n ancestors, thus x ∈ Ae. Hence
y = f(x) with x ∈ Ae.

iii) g−1 is a bijection from Ao to Be. Let y ∈ Be. We want to show that g(y) ∈ Ao,
so y = g−1(g(y)) and the mapping is surjective. Suppose by contradiction
that g(y) ∈ Ai ∪ Ae. If g(y) ∈ Ai then it has infinitely many ancestors, so
also y = g−1(g(y)) has infinitely many ancestors. Hence y ∈ Bi, which is
a contradiction. If g(y) ∈ Ae then g(y) has 2n ancestors (n ≥ 1), so y =
g−1(g(y)) has 2n− 1 ancestors. This implies y ∈ Bo, which is a contradiction.
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Now we are ready to construct F as

F (x) =

{
f(x) if x ∈ Ai ∪ Ae,
g−1(x) if x ∈ Ao.

Then F : A → B is a bijection because Ai, Ae and Ao partition A, Bi, Be

and Bo partition B and by i), ii) and iii) F �Ai
: Ai → Bi, F �Ae : Ae → Bo and

F �Ao : Ao → Be are bijections.

2. If {Ai}i∈I is a countable collection of countable sets, then ∪i∈IAi is countable.

Proof. We use the idea behind Figure 13 in Simmon’s book. For each i ∈ I, we can
enumerate the elements in Ai (since there are countably many of them) as

Ai = {aij : j ∈ N}.

We can then enumerate the elements in ∪i∈IAi as in the following picture:

a11 a12 a13 a14 . . .

a21 a22 a23 a24 . . .

a31 a32 a33 a34 . . .

a41 a42 a43 a44 . . .

...
...

...
...

...

Thus a11 will correspond to number 1, a12 to number 2, a21 to number 3, a13 to
number 4 and so on following the arrows in the picture.

3. To write 3
4
in binary notation, first split the interval [0, 1) into two subintervals

of length 1/2: [0, 1) = [0, 1/2)∪ [1/2, 1) and assign number 0 to the first interval and
number 1 to the second (these will correspond to the digits in the binary expansion).
Since 3

4
∈ [1/2, 1) then the first digit in the expansion will be 1.
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Then split again [1/2, 1) = [1/2, 3/4)∪ [3/4, 1) and since 3
4
belongs to the second

interval, the second digit in the expansion is 1.
Continuing by splitting [3/4, 1) into two subintervals (and so on) we will always

have that 3
4
belongs to first interval, so it is 0.110000 . . . in binary notation.

Indeed, we can verify 3
4
= 11

2
+ 1 1

22
.

To write 3
4
in ternary notation, we use the same method dividing at each step

the interval to which 3
4
belongs into 3 subintervals of the same length and assign

them the numbers 0, 1, 2 in order.
Thus [0, 1) = [0, 1/3) ∪ [1/3, 2/3) ∪ [2/3, 1) and since 3

4
belongs to the third

interval its first digit will be 2.
Then [2/3, 1) = [2/3, 7/9) ∪ [7/9, 8/9) ∪ [8/9, 1). Since 3

4
belongs to the first

interval, its second digit is 0.
Again we split [2/3, 7/9) = [2/3, 19/27) ∪ [19/27, 20/27) ∪ [20/27, 7/9). Then 3

4

belongs to the third interval so the third digit is 2.
Actually one can verify that 3

4
in ternary notation is 0.2020202020 . . . either by

induction using the above method or just because

3

4
=
∞∑
n=0

2

(
1

3

)2n+1

by the sum of a geometric series with odd powers.

4. The class of all subsets of the natural numbers P(N) is equinumerous with
[0, 1).

I will not write the details here but we can construct two injective functions
f : P(N)→ [0, 1) and g : [0, 1)→ P(N) for example as it is done in Simmon’s book
on pages 41-42 and then conclude by using the Cantor-Schröder-Bernstein theorem.
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