Homework Set 2, Topology 1, Solutions of exercises 1,2,3

Laura Venieri

1. Cantor-Schröder-Bernstein Theorem: if $A \preceq B$ and $B \preceq A$ then A and B are equinumerous.

Proof. (Completing the details of the proof on page 29 of the textbook)
By assumption, there exist a one-to-one mapping (i.e. injective) $f: A \rightarrow B$ and a one-to-one mapping $g: B \rightarrow A$. We want to find a one-to-one correspondence $F: A \rightarrow B$, that is a bijection.

Given $x \in A$, we define its ancestors as in the textbook and also A_{i}, A_{e} and A_{o}. We want to show that they form a partition of A. First observe that they are disjoint by definition: if $x \in A_{i}$ then it has an infinite number of ancestors so $x \notin A_{e} \cup A_{o}$; if $x \in A_{e}$ then it has an even number of ancestors (so in particular finite), hence $x \in A_{i} \cup A_{o}$ and so on.

Observe that since $f g$ are injective, so are f^{-1} and g^{-1}. Hence for every $x \in A$ the ancestors are uniquely determined.

It remains to show that $A=A_{i} \cup A_{e} \cup A_{o}$.
We prove the double inclusion. First let $x \in A$. If x has zero ancestors then $x \in A_{e}$. Otherwise, x has at least one ancestor. It can happen either that x has finitely many ancestors n or infinitely many. In the first case, $x \in A_{e}$ or A_{o} depending on whether n is even or odd. In the second case, $x \in A_{i}$. Thus $A \subseteq A_{i} \cup A_{e} \cup A_{o}$.

The other inclusion $A \subseteq A_{i} \cup A_{e} \cup A_{o}$ is obvious by definition of the sets A_{i}, A_{e}, A_{o}.

Similarly, the sets B_{i}, B_{e} and B_{o} partition B.
There are now three bijections between these subsets:
i) f is a bijection from A_{i} to B_{i}. Indeed, by assumption f is injective so we need to prove that it is also surjective. Let $y \in B_{i}$. Since y has infinitely many ancestors, there is $x \in A$ such that $f^{-1}(y)=x$. But since y has infinitely many ancestors, also x will have infinitely many ancestors so $x \in A_{i}$. Thus $y=f(x)$ with $x \in A_{i}$ and f is surjective.
ii) f is a bijection from A_{e} to B_{o}. Again we need to prove that the mapping is surjective. Let $y \in B_{o}$, thus y has at least one ancestor $f^{-1}(y)=x \in A$. If y has $2 n+1$ ancestors then x will have $2 n$ ancestors, thus $x \in A_{e}$. Hence $y=f(x)$ with $x \in A_{e}$.
iii) g^{-1} is a bijection from A_{o} to B_{e}. Let $y \in B_{e}$. We want to show that $g(y) \in A_{o}$, so $y=g^{-1}(g(y))$ and the mapping is surjective. Suppose by contradiction that $g(y) \in A_{i} \cup A_{e}$. If $g(y) \in A_{i}$ then it has infinitely many ancestors, so also $y=g^{-1}(g(y))$ has infinitely many ancestors. Hence $y \in B_{i}$, which is a contradiction. If $g(y) \in A_{e}$ then $g(y)$ has $2 n$ ancestors $(n \geq 1)$, so $y=$ $g^{-1}(g(y))$ has $2 n-1$ ancestors. This implies $y \in B_{o}$, which is a contradiction.

Now we are ready to construct F as

$$
F(x)= \begin{cases}f(x) & \text { if } x \in A_{i} \cup A_{e} \\ g^{-1}(x) & \text { if } x \in A_{o}\end{cases}
$$

Then $F: A \rightarrow B$ is a bijection because A_{i}, A_{e} and A_{o} partition A, B_{i}, B_{e} and B_{o} partition B and by i), ii) and iii) $F \upharpoonright_{A_{i}}: A_{i} \rightarrow B_{i}, F \upharpoonright_{A_{e}}: A_{e} \rightarrow B_{o}$ and $F \upharpoonright_{A_{o}}: A_{o} \rightarrow B_{e}$ are bijections.
2. If $\left\{A_{i}\right\}_{i \in I}$ is a countable collection of countable sets, then $\cup_{i \in I} A_{i}$ is countable.

Proof. We use the idea behind Figure 13 in Simmon's book. For each $i \in I$, we can enumerate the elements in A_{i} (since there are countably many of them) as

$$
A_{i}=\left\{a_{i j}: j \in \mathbb{N}\right\}
$$

We can then enumerate the elements in $\cup_{i \in I} A_{i}$ as in the following picture:

Thus a_{11} will correspond to number $1, a_{12}$ to number $2, a_{21}$ to number $3, a_{13}$ to number 4 and so on following the arrows in the picture.
3. To write $\frac{3}{4}$ in binary notation, first split the interval $[0,1)$ into two subintervals of length $1 / 2: \quad[0,1)=[0,1 / 2) \cup[1 / 2,1)$ and assign number 0 to the first interval and number 1 to the second (these will correspond to the digits in the binary expansion). Since $\frac{3}{4} \in[1 / 2,1)$ then the first digit in the expansion will be 1 .

Then split again $[1 / 2,1)=[1 / 2,3 / 4) \cup[3 / 4,1)$ and since $\frac{3}{4}$ belongs to the second interval, the second digit in the expansion is 1 .

Continuing by splitting $[3 / 4,1$) into two subintervals (and so on) we will always have that $\frac{3}{4}$ belongs to first interval, so it is $0.110000 \ldots$ in binary notation.

Indeed, we can verify $\frac{3}{4}=1 \frac{1}{2}+1 \frac{1}{2^{2}}$.
To write $\frac{3}{4}$ in ternary notation, we use the same method dividing at each step the interval to which $\frac{3}{4}$ belongs into 3 subintervals of the same length and assign them the numbers $0,1,2$ in order.

Thus $[0,1)=[0,1 / 3) \cup[1 / 3,2 / 3) \cup[2 / 3,1)$ and since $\frac{3}{4}$ belongs to the third interval its first digit will be 2 .

Then $[2 / 3,1)=[2 / 3,7 / 9) \cup[7 / 9,8 / 9) \cup[8 / 9,1)$. Since $\frac{3}{4}$ belongs to the first interval, its second digit is 0 .

Again we split $[2 / 3,7 / 9)=[2 / 3,19 / 27) \cup[19 / 27,20 / 27) \cup[20 / 27,7 / 9)$. Then $\frac{3}{4}$ belongs to the third interval so the third digit is 2 .

Actually one can verify that $\frac{3}{4}$ in ternary notation is $0.2020202020 \ldots$ either by induction using the above method or just because

$$
\frac{3}{4}=\sum_{n=0}^{\infty} 2\left(\frac{1}{3}\right)^{2 n+1}
$$

by the sum of a geometric series with odd powers.
4. The class of all subsets of the natural numbers $\mathcal{P}(\mathbb{N})$ is equinumerous with $[0,1)$.

I will not write the details here but we can construct two injective functions $f: \mathcal{P}(\mathbb{N}) \rightarrow[0,1)$ and $g:[0,1) \rightarrow \mathcal{P}(\mathbb{N})$ for example as it is done in Simmon's book on pages 41-42 and then conclude by using the Cantor-Schröder-Bernstein theorem.

