Homework Set 1, Topology 1, Solutions to exercises 2 and 3

2. First we prove that

$$(A \bigtriangleup B) \bigtriangleup C = A \bigtriangleup (B \bigtriangleup C). \tag{1}$$

Proof. By definition,

$$A \bigtriangleup B = (A - B) \cup (B - A) \tag{2}$$

$$= (A \cap B') \cup (A' \cap B) \tag{3}$$

$$= (A \cup B) \cap (A' \cup B'). \tag{4}$$

Here (4) follows from (3) using the distributive laws, because

$$(A \cap B') \cup (A' \cap B)$$

= $((A \cap B') \cup A') \cap ((A \cap B') \cup B)$
= $((A \cup A') \cap (B' \cup A')) \cap ((A \cup B) \cap (B' \cup B))$
= $(B' \cup A') \cap (A \cup B).$

The left-hand side in (1) equals by (3)

$$(((A \cap B') \cup (A' \cap B)) \cap C') \cup ((A \bigtriangleup B)' \cap C),$$

which using (4) becomes

$$(((A \cap B') \cup (A' \cap B)) \cap C') \cup (((A \cup B) \cap (A' \cup B'))' \cap C).$$

Using now the distributive laws and properties of complement, we get

$$(A \cap B' \cap C') \cup (A' \cap B \cap C') \cup (((A' \cap B') \cup (A \cap B)) \cap C),$$

which using again the distributive laws equals to

$$(A \cap B' \cap C') \cup (A' \cap B \cap C') \cup (A' \cap B' \cap C) \cup (A \cap B \cap C).$$
(5)

For the right-side of (1), using the same tools we get

$$\begin{split} (A \cap (B \bigtriangleup C)') \cup (A' \cap ((B \cap C') \cup (B' \cap C))) \\ &= (A \cap ((B \cup C) \cap (B' \cup C'))') \cup (A' \cap ((B \cap C') \cup (B' \cap C))) \\ &= (A \cap ((B \cup C)' \cup (B' \cup C')')) \cup (A' \cap B \cap C') \cup (A' \cap B' \cap C)) \\ &= (A \cap ((B' \cap C') \cup (B \cap C))) \cup (A' \cap B \cap C') \cup (A' \cap B' \cap C)) \\ &= (A \cap B' \cap C') \cup (A \cap B \cap C) \cup (A' \cap B \cap C') \cup (A' \cap B' \cap C), \end{split}$$

which equals (5) since the union is commutative.

We now prove that $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.

Proof. We start from the right-hand side, use the definition of symmetric difference, the distributive laws of intersection over minus and union to get

$$(A \cap B) \bigtriangleup (A \cap C)$$

= $((A \cap B) - (A \cap C)) \cup ((A \cap C) - (A \cap B))$
= $((A \cap (B - C)) \cup (A \cap (C - B)))$
= $A \cap ((B - C) \cup (C - B))$
= $A \cap (B \bigtriangleup C).$

The distributive law of intersection over minus (used to go from the second line to the third) is the following

$$(A - B) \cap C = (A \cap C) - (B \cap C).$$

It holds because using De Morgan's law $(A - (B \cap C) = (A - B) \cup (B - C))$ we have

$$(A \cap C) - (B \cap C) = ((A \cap C) - B) \cup ((A \cap C) - C)$$
$$= ((A \cap C) - B) \cup \emptyset$$
$$= (A \cap C) \cap B'$$
$$= (A \cap B') \cap C$$
$$= (A - B) \cap C.$$

г		
L		
ь.	 _	

- 3. If $f: X \to Y$ then
- $f^{-1}(\emptyset) = \emptyset$ because by definition $f^{-1}(\emptyset) = \{x \in X : f(x) \in \emptyset\} = \emptyset$ since there is no such x.
- $f^{-1}(Y) = X$ because for every $x \in X$, $f(x) \in Y$.
- $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$ because if $y \in f^{-1}(B_1)$ then y = f(x) with $x \in B_1$, thus $x \in B_2$, which implies $y \in f^{-1}(B_2)$.
- $f^{-1}(\cup_i B_i) = \cup_i f^{-1}(B_i)$

We prove the double inclusion. If $y \in f^{-1}(\bigcup_i B_i)$ then y = f(x) with $x \in \bigcup_i B_i$. Thus $x \in B_i$ for at least one *i*, which implies that $y \in f^{-1}(B_i)$ for at least one *i*. Hence $y \in \bigcup_i f^{-1}(B_i)$.

On the other hand, if $y \in \bigcup_i f^{-1}(B_i)$, then $y \in f^{-1}(B_i)$ for at least one *i*. Thus y = f(x) with $x \in B_i$ for at least one *i*, that is $x \in \bigcup_i B_i$. Hence $y \in f^{-1}(\bigcup_i B_i)$.

• $f^{-1}(\cap_i B_i) = \cap_i f^{-1}(B_i)$

Again with double inclusion. If $y \in f^{-1}(\cap_i B_i)$ then y = f(x) with $x \in \cap_i B_i$, that is $x \in B_i$ for every *i*. Hence $y \in f^{-1}(B_i)$ for every *i*, which means $y \in \cap_i f^{-1}(B_i)$.

On the other hand, if $y \in \bigcap_i f^{-1}(B_i)$ then $y \in f^{-1}(B_i)$ for every *i*, thus y = f(x) with $x \in B_i$ for every *i*. This implies $x \in \bigcap_i B_i$, hence $y \in f^{-1}(\bigcap_i B_i)$.

• $f^{-1}(B') = (f^{-1}(B))'$

If $y \in f^{-1}(B')$ then y = f(x) with $x \in B'$, that is $x \notin B$. Thus $y \notin f^{-1}(B)$, which means $y \in (f^{-1}(B))'$. Hence $f^{-1}(B') \subseteq (f^{-1}(B))'$.

If $y \in (f^{-1}(B))'$ then $y \notin f^{-1}(B)$, that is y = f(x) with $x \notin B$. This implies $x \in B'$, thus $y \in f^{-1}(B')$. Hence $(f^{-1}(B))' \subseteq f^{-1}(B')$.