
Homework Set 1, Topology 1, Solutions to exercises 2 and 3

2. First we prove that

(A4B)4 C = A4 (B 4 C). (1)

Proof. By definition,

A4B = (A−B) ∪ (B − A) (2)
= (A ∩B′) ∪ (A′ ∩B) (3)
= (A ∪B) ∩ (A′ ∪B′). (4)

Here (4) follows from (3) using the distributive laws, because

(A ∩B′) ∪ (A′ ∩B)

= ((A ∩B′) ∪ A′) ∩ ((A ∩B′) ∪B)

= ((A ∪ A′) ∩ (B′ ∪ A′)) ∩ ((A ∪B) ∩ (B′ ∪B))

= (B′ ∪ A′) ∩ (A ∪B).

The left-hand side in (1) equals by (3)

(((A ∩B′) ∪ (A′ ∩B)) ∩ C ′) ∪ ((A4B)′ ∩ C),

which using (4) becomes

(((A ∩B′) ∪ (A′ ∩B)) ∩ C ′) ∪ (((A ∪B) ∩ (A′ ∪B′))′ ∩ C).

Using now the distributive laws and properties of complement, we get

(A ∩B′ ∩ C ′) ∪ (A′ ∩B ∩ C ′) ∪ (((A′ ∩B′) ∪ (A ∩B)) ∩ C),

which using again the distributive laws equals to

(A ∩B′ ∩ C ′) ∪ (A′ ∩B ∩ C ′) ∪ (A′ ∩B′ ∩ C) ∪ (A ∩B ∩ C). (5)

For the right-side of (1), using the same tools we get

(A ∩ (B 4 C)′) ∪ (A′ ∩ ((B ∩ C ′) ∪ (B′ ∩ C)))

= (A ∩ ((B ∪ C) ∩ (B′ ∪ C ′))′) ∪ (A′ ∩ ((B ∩ C ′) ∪ (B′ ∩ C)))

= (A ∩ ((B ∪ C)′ ∪ (B′ ∪ C ′)′)) ∪ (A′ ∩B ∩ C ′) ∪ (A′ ∩B′ ∩ C)

= (A ∩ ((B′ ∩ C ′) ∪ (B ∩ C))) ∪ (A′ ∩B ∩ C ′) ∪ (A′ ∩B′ ∩ C)

= (A ∩B′ ∩ C ′) ∪ (A ∩B ∩ C) ∪ (A′ ∩B ∩ C ′) ∪ (A′ ∩B′ ∩ C),

which equals (5) since the union is commutative.
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We now prove that A ∩ (B 4 C) = (A ∩B)4 (A ∩ C).

Proof. We start from the right-hand side, use the definition of symmetric difference,
the distributive laws of intersection over minus and union to get

(A ∩B)4 (A ∩ C)

= ((A ∩B)− (A ∩ C)) ∪ ((A ∩ C)− (A ∩B))

= ((A ∩ (B − C)) ∪ (A ∩ (C −B))

= A ∩ ((B − C) ∪ (C −B))

= A ∩ (B 4 C).

The distributive law of intersection over minus (used to go from the second line
to the third) is the following

(A−B) ∩ C = (A ∩ C)− (B ∩ C).

It holds because using De Morgan’s law (A− (B∩C) = (A−B)∪ (B−C)) we have

(A ∩ C)− (B ∩ C) = ((A ∩ C)−B) ∪ ((A ∩ C)− C)

= ((A ∩ C)−B) ∪ ∅
= (A ∩ C) ∩B′

= (A ∩B′) ∩ C

= (A−B) ∩ C.

3. If f : X → Y then

• f−1(∅) = ∅ because by definition f−1(∅) = {x ∈ X : f(x) ∈ ∅} = ∅ since there
is no such x.

• f−1(Y ) = X because for every x ∈ X, f(x) ∈ Y .

• B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2) because if y ∈ f−1(B1) then y = f(x) with
x ∈ B1, thus x ∈ B2, which implies y ∈ f−1(B2).

• f−1(∪iBi) = ∪if−1(Bi)

We prove the double inclusion. If y ∈ f−1(∪iBi) then y = f(x) with x ∈ ∪iBi.
Thus x ∈ Bi for at least one i, which implies that y ∈ f−1(Bi) for at least one
i. Hence y ∈ ∪if−1(Bi).

On the other hand, if y ∈ ∪if−1(Bi), then y ∈ f−1(Bi) for at least one i. Thus
y = f(x) with x ∈ Bi for at least one i, that is x ∈ ∪iBi. Hence y ∈ f−1(∪iBi).
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• f−1(∩iBi) = ∩if−1(Bi)

Again with double inclusion. If y ∈ f−1(∩iBi) then y = f(x) with x ∈ ∩iBi,
that is x ∈ Bi for every i. Hence y ∈ f−1(Bi) for every i, which means
y ∈ ∩if−1(Bi).

On the other hand, if y ∈ ∩if−1(Bi) then y ∈∈ f−1(Bi) for every i, thus
y = f(x) with x ∈ Bi for every i. This implies x ∈ ∩iBi, hence y ∈ f−1(∩iBi).

• f−1(B′) = (f−1(B))′

If y ∈ f−1(B′) then y = f(x) with x ∈ B′, that is x /∈ B. Thus y /∈ f−1(B),
which means y ∈ (f−1(B))′. Hence f−1(B′) ⊆ (f−1(B))′.

If y ∈ (f−1(B))′ then y /∈ f−1(B), that is y = f(x) with x /∈ B. This implies
x ∈ B′, thus y ∈ f−1(B′). Hence (f−1(B))′ ⊆ f−1(B′).
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