## Homework Set 1, Topology 1, Solutions to exercises 2 and 3

2. First we prove that

$$
\begin{equation*}
(A \triangle B) \triangle C=A \triangle(B \triangle C) \tag{1}
\end{equation*}
$$

Proof. By definition,

$$
\begin{align*}
A \triangle B & =(A-B) \cup(B-A)  \tag{2}\\
& =\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)  \tag{3}\\
& =(A \cup B) \cap\left(A^{\prime} \cup B^{\prime}\right) . \tag{4}
\end{align*}
$$

Here (4) follows from (3) using the distributive laws, because

$$
\begin{aligned}
& \left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right) \\
& =\left(\left(A \cap B^{\prime}\right) \cup A^{\prime}\right) \cap\left(\left(A \cap B^{\prime}\right) \cup B\right) \\
& =\left(\left(A \cup A^{\prime}\right) \cap\left(B^{\prime} \cup A^{\prime}\right)\right) \cap\left((A \cup B) \cap\left(B^{\prime} \cup B\right)\right) \\
& =\left(B^{\prime} \cup A^{\prime}\right) \cap(A \cup B) .
\end{aligned}
$$

The left-hand side in (1) equals by (3)

$$
\left(\left(\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right) \cap C^{\prime}\right) \cup\left((A \triangle B)^{\prime} \cap C\right)
$$

which using (4) becomes

$$
\left(\left(\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right) \cap C^{\prime}\right) \cup\left(\left((A \cup B) \cap\left(A^{\prime} \cup B^{\prime}\right)\right)^{\prime} \cap C\right)
$$

Using now the distributive laws and properties of complement, we get

$$
\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(A^{\prime} \cap B \cap C^{\prime}\right) \cup\left(\left(\left(A^{\prime} \cap B^{\prime}\right) \cup(A \cap B)\right) \cap C\right),
$$

which using again the distributive laws equals to

$$
\begin{equation*}
\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(A^{\prime} \cap B \cap C^{\prime}\right) \cup\left(A^{\prime} \cap B^{\prime} \cap C\right) \cup(A \cap B \cap C) \tag{5}
\end{equation*}
$$

For the right-side of (1), using the same tools we get

$$
\begin{aligned}
& \left(A \cap(B \triangle C)^{\prime}\right) \cup\left(A^{\prime} \cap\left(\left(B \cap C^{\prime}\right) \cup\left(B^{\prime} \cap C\right)\right)\right) \\
& =\left(A \cap\left((B \cup C) \cap\left(B^{\prime} \cup C^{\prime}\right)\right)^{\prime}\right) \cup\left(A^{\prime} \cap\left(\left(B \cap C^{\prime}\right) \cup\left(B^{\prime} \cap C\right)\right)\right) \\
& =\left(A \cap\left((B \cup C)^{\prime} \cup\left(B^{\prime} \cup C^{\prime}\right)^{\prime}\right)\right) \cup\left(A^{\prime} \cap B \cap C^{\prime}\right) \cup\left(A^{\prime} \cap B^{\prime} \cap C\right) \\
& =\left(A \cap\left(\left(B^{\prime} \cap C^{\prime}\right) \cup(B \cap C)\right)\right) \cup\left(A^{\prime} \cap B \cap C^{\prime}\right) \cup\left(A^{\prime} \cap B^{\prime} \cap C\right) \\
& =\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup(A \cap B \cap C) \cup\left(A^{\prime} \cap B \cap C^{\prime}\right) \cup\left(A^{\prime} \cap B^{\prime} \cap C\right),
\end{aligned}
$$

which equals (5) since the union is commutative.

We now prove that $A \cap(B \triangle C)=(A \cap B) \triangle(A \cap C)$.
Proof. We start from the right-hand side, use the definition of symmetric difference, the distributive laws of intersection over minus and union to get

$$
\begin{aligned}
& (A \cap B) \triangle(A \cap C) \\
& =((A \cap B)-(A \cap C)) \cup((A \cap C)-(A \cap B)) \\
& =((A \cap(B-C)) \cup(A \cap(C-B)) \\
& =A \cap((B-C) \cup(C-B)) \\
& =A \cap(B \triangle C) .
\end{aligned}
$$

The distributive law of intersection over minus (used to go from the second line to the third) is the following

$$
(A-B) \cap C=(A \cap C)-(B \cap C)
$$

It holds because using De Morgan's law $(A-(B \cap C)=(A-B) \cup(B-C))$ we have

$$
\begin{aligned}
(A \cap C)-(B \cap C) & =((A \cap C)-B) \cup((A \cap C)-C) \\
& =((A \cap C)-B) \cup \emptyset \\
& =(A \cap C) \cap B^{\prime} \\
& =\left(A \cap B^{\prime}\right) \cap C \\
& =(A-B) \cap C .
\end{aligned}
$$

3. If $f: X \rightarrow Y$ then

- $f^{-1}(\emptyset)=\emptyset$ because by definition $f^{-1}(\emptyset)=\{x \in X: f(x) \in \emptyset\}=\emptyset$ since there is no such $x$.
- $f^{-1}(Y)=X$ because for every $x \in X, f(x) \in Y$.
- $B_{1} \subseteq B_{2} \Rightarrow f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$ because if $y \in f^{-1}\left(B_{1}\right)$ then $y=f(x)$ with $x \in B_{1}$, thus $x \in B_{2}$, which implies $y \in f^{-1}\left(B_{2}\right)$.
- $f^{-1}\left(\cup_{i} B_{i}\right)=\cup_{i} f^{-1}\left(B_{i}\right)$

We prove the double inclusion. If $y \in f^{-1}\left(\cup_{i} B_{i}\right)$ then $y=f(x)$ with $x \in \cup_{i} B_{i}$. Thus $x \in B_{i}$ for at least one $i$, which implies that $y \in f^{-1}\left(B_{i}\right)$ for at least one $i$. Hence $y \in \cup_{i} f^{-1}\left(B_{i}\right)$.
On the other hand, if $y \in \cup_{i} f^{-1}\left(B_{i}\right)$, then $y \in f^{-1}\left(B_{i}\right)$ for at least one $i$. Thus $y=f(x)$ with $x \in B_{i}$ for at least one $i$, that is $x \in \cup_{i} B_{i}$. Hence $y \in f^{-1}\left(\cup_{i} B_{i}\right)$.

- $f^{-1}\left(\cap_{i} B_{i}\right)=\cap_{i} f^{-1}\left(B_{i}\right)$

Again with double inclusion. If $y \in f^{-1}\left(\cap_{i} B_{i}\right)$ then $y=f(x)$ with $x \in \cap_{i} B_{i}$, that is $x \in B_{i}$ for every $i$. Hence $y \in f^{-1}\left(B_{i}\right)$ for every $i$, which means $y \in \cap_{i} f^{-1}\left(B_{i}\right)$.
On the other hand, if $y \in \cap_{i} f^{-1}\left(B_{i}\right)$ then $y \in \in f^{-1}\left(B_{i}\right)$ for every $i$, thus $y=f(x)$ with $x \in B_{i}$ for every $i$. This implies $x \in \cap_{i} B_{i}$, hence $y \in f^{-1}\left(\cap_{i} B_{i}\right)$.

- $f^{-1}\left(B^{\prime}\right)=\left(f^{-1}(B)\right)^{\prime}$

If $y \in f^{-1}\left(B^{\prime}\right)$ then $y=f(x)$ with $x \in B^{\prime}$, that is $x \notin B$. Thus $y \notin f^{-1}(B)$, which means $y \in\left(f^{-1}(B)\right)^{\prime}$. Hence $f^{-1}\left(B^{\prime}\right) \subseteq\left(f^{-1}(B)\right)^{\prime}$.
If $y \in\left(f^{-1}(B)\right)^{\prime}$ then $y \notin f^{-1}(B)$, that is $y=f(x)$ with $x \notin B$. This implies $x \in B^{\prime}$, thus $y \in f^{-1}\left(B^{\prime}\right)$. Hence $\left(f^{-1}(B)\right)^{\prime} \subseteq f^{-1}\left(B^{\prime}\right)$.

