SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 9

Exercise 1. Consider maps $f=(u, v, w) \in C^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ with differential matrix

$$
D f(x)=\left(\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right)
$$

Show that the 2×2 minor $L(D f):=\operatorname{det}\left(\begin{array}{cc}v_{y} & v_{z} \\ w_{y} & w_{z}\end{array}\right)=v_{y} w_{z}-v_{z} w_{y} \quad$ is a null-Lagrangian.
Solution 1. It is sufficiently simple to compute the Euler-Lagrange equations for the expression $L(D f)=v_{y} w_{z}-v_{z} w_{y}$. We obtain that

$$
\begin{aligned}
& -\nabla \cdot D_{P^{1}} L(D f)+D_{z^{1}} L(D f)=0 \\
& -\nabla \cdot D_{P^{2}} L(D f)+D_{z^{2}} L(D f)=-\nabla \cdot\left(0, w_{z},-w_{y}\right)+0=-w_{z y}+w_{y z}=0 \\
& -\nabla \cdot D_{P^{3}} L(D f)+D_{z^{3}} L(D f)=-\nabla \cdot\left(0,-v_{z}, v_{y}\right)+0=v_{z y}-v_{y z}=0
\end{aligned}
$$

There is no dependence of z (the variable in whose place you put the function f) in $L(D f)$, so the derivatives $D_{z^{i}} L(D f)$ vanish above. The expression $D_{P^{i}} L(D f)$ denotes a gradient of the function

$$
L(D f)=L\left(\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right)
$$

with respect to the variables on the row i. Since the Euler-Lagrange equations are always satisfied, L is a null Lagrangian.

Exercise 2. [Evans, Problem 8.7.7] Prove that $L(P):=\operatorname{trace}\left(P^{2}\right)-\operatorname{trace}(P)^{2} \quad$ is a null Lagrangian. Here the trace of an $n \times n$ matrix $A=\left(a_{i, j}\right)_{i, j=1}^{n}$ is defined $\operatorname{trace}(A)=$ $\sum_{j=1}^{n} a_{j j}$.

Solution 2. Let us first expand the formula, denoting $P=\left(p_{i j}\right)$:

$$
\operatorname{tr}\left(P^{2}\right)-\operatorname{tr}(P)^{2}=\sum_{i, j=1}^{n} p_{i j} p_{j i}-\left(\sum_{i=1}^{n} p_{i i}\right)^{2}=\sum_{i, j=1}^{n} p_{i j} p_{j i}-p_{i i} p_{j j} .
$$

The expression $p_{i j} p_{j i}-p_{i i} p_{j j}$ is a 2×2 subdeterminant of the matrix $\left(\begin{array}{ll}p_{i i} & p_{i j} \\ p_{j i} & p_{j j}\end{array}\right)$ obtained from the matrix P by removing all rows and columns except i and j. It happens that
each of these subdeterminants is a null Lagrangian, much to the same reason as why the expression of Exercise 1 was one (in fact, subdeterminants are always null Lagrangians). To prove this, we compute the Euler-Lagrange equations for $L_{i j}=p_{i j} p_{j i}-p_{i i} p_{j j}$ as

$$
\begin{aligned}
& -\nabla \cdot D_{P^{k}} L_{i j}(D f)+D_{z^{k}} L_{i j}(D f)=0, \quad \text { when } k \neq i, j \\
& -\nabla \cdot D_{P^{i}} L_{i j}(D f)+D_{z^{i}} L_{i j}(D f)=-f_{z}^{j} j^{j}+f_{z^{i}}^{j}+z^{j}=0 \\
& -\nabla \cdot D_{P^{j}} L_{i j}(D f)+D_{z^{j}} L_{i j}(D f)=f_{z z^{i}}^{j}-f_{z z^{i} z^{j}}^{i}=0 .
\end{aligned}
$$

Exercise 3. [Evans, Problem 8.7.4] Assume $\eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{1}.
(i) Show that $L(P, z, x):=\eta(z) \operatorname{det} P$ is a null Lagrangian; here $P \in \mathbb{M}^{n \times n}, z \in \mathbb{R}^{n}$.
(ii) Deduce that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is C^{1}, then

$$
\int_{\Omega} \eta(f) \operatorname{det}(D f) d x
$$

depends only on $f_{\mid \partial \Omega}$.
Solution 3. a) We compute again by Euler-Lagrange equations.

$$
\begin{aligned}
-\nabla_{x} \cdot D_{P^{k}} L(D f, f) & +D_{z^{k}} L(D f, f) \\
& =-\nabla_{x} \cdot\left(\eta(f) D_{P^{k}} \operatorname{det} D f\right)+\left(D_{z^{k}} \eta\right)(f) \operatorname{det} D f \\
& =-\eta(f) \nabla_{x} \cdot D_{P^{k}} \operatorname{det} D f-\nabla_{x} \eta(f) \cdot D_{P^{k}} \operatorname{det} D f+\left(D_{z^{k}} \eta\right)(f) \operatorname{det} D f
\end{aligned}
$$

The first term is just $\eta(f)$ times the Euler-Lagrange equation for the Jacobian $\operatorname{det} D f$. The Jacobian is known to be a null Lagrangian, so we do not repeat the proof here. One may compute

$$
\nabla_{x} \eta(f)=\left(\sum_{j=1}^{n} \eta_{z^{j}}(f) f_{i}^{j}\right)_{i=1}^{n}
$$

We use the cofactor expansion for the determinant with row k :

$$
\operatorname{det} D f=\sum_{i=1}^{n}(-1)^{i+k} f_{i}^{k} M_{k i}
$$

where $M_{k i}$ denotes the determinant of the matrix we get by removing row k and column i from $D f$. Thus

$$
D_{P^{k}} \operatorname{det} D f=\left((-1)^{i+k} M_{k i}\right)_{i=1}^{n}
$$

This finally gives

$$
-\nabla_{x} \eta(f) \cdot D_{P^{k}} \operatorname{det} D f=-\sum_{i=1}^{n} \sum_{j=1}^{n} \eta_{z^{j}}(f) f_{i}^{j}(-1)^{i+k} M_{k i}
$$

Note that the term in the above sum with $j=k$ is exactly $\left(D_{z^{k}} \eta\right)(f) \operatorname{det} D f$, which cancels out the similar term in the Euler-Lagrange equation. The rest is equal to

$$
-\sum_{j \neq k} \eta_{z^{j}}(f) \sum_{i=1}^{n} f_{i}^{j}(-1)^{i+k} M_{k i}
$$

We now expand each subdeterminant $(\operatorname{cof} D f)_{k i}$ with respect to the j th row, which gives

$$
(\operatorname{cof} D f)_{k i}=\sum_{l \neq i}(-1)^{l+j}(-1)^{\chi(l>i)+\chi_{(j>k)}} f_{l}^{j} M_{k i, j l},
$$

where $M_{k i, j l}$ denotes the determinant of the matrix we get by removing rows k and j and columns i and l from $D f$. Here also $\chi(a>b)$ is equal to 1 if $a>b$ and 0 otherwise. The factor $(-1)^{\chi(l>i)+\chi_{(j>k)}}$ comes from the fact that when we remove row k and column i, we have to swap all the \pm-signs that come after. Thus what remains of the Euler-Lagrange equation reads

$$
-\sum_{j \neq k} \eta_{z j}(f) \sum_{i=1}^{n} \sum_{l \neq i}(-1)^{i+k+l+j}(-1)^{\chi(l>i)+\chi(j>k)} f_{l}^{j} f_{i}^{j} M_{k i, j l} .
$$

Obviously $M_{k i, j l}=M_{k l, j i}$. But this means that in the last two sums, the terms (i, l) and (l, i) cancel each other out because of the factor $(-1)^{\chi_{(l>i)}}$. This shows that the whole expression is zero, and hence that L is a null Lagrangian.
b) Follows from the alternate characterization of null Lagrangians, and the fact that the above computation may be generalized to $f \in C^{1}$ in the weak sense.

Exercise 4. [Evans, Problem 8.7.5] If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is as in Problem 3, fix $x_{0} \notin f(\partial \Omega)$. If r is so small that $B\left(x_{0}, r\right) \cap f(\partial \Omega)=\emptyset$, choose a C^{1}-map η so that $\int_{\mathbb{R}^{n}} \eta(z) d z=1$ and $\eta(x)=0$ when $\left|x-x_{0}\right| \geq r$.
Define

$$
\operatorname{deg}\left(f, x_{0}\right)=\int_{\Omega} \eta(f) \operatorname{det}(D f) d x
$$

the degree of f relative to x_{0}. Prove that the degree is an integer.
Solution 4. Solution will be added a bit later.
Exercise 5. In geometric function theory one studies the distortion of a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Writing $f=(u, v)$ and assuming that the Jacobian $\operatorname{det}(D f(x))>0$ is positive almost everywhere, the distortion is defined by

$$
K(f):=\frac{\left|\partial_{x} u\right|^{2}+\left|\partial_{y} u\right|^{2}+\left|\partial_{x} v\right|^{2}+\left|\partial_{y} v\right|^{2}}{\operatorname{det}(D f)}
$$

Show that the functional $L(D f):=K(f)$ is polyconvex; do this by first showing that $F(x, y)=x^{2} / y$ is convex on $(0, \infty) \times(0, \infty)$.
[Hint: You need to show that $F(x, y)-F(a, b) \geq 2 a b^{-1}(x-a)-a b^{-2}(y-b)$]

Note. In higher dimensions the distortion of a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by

$$
K(f):=\frac{\left[\sum_{j, k=1}^{n}\left|\partial_{x_{j}} f^{k}\right|^{2}\right]^{n / 2}}{\operatorname{det}(D f)}
$$

so that $K(t f)=K(f)$ for all $t \in \mathbb{R}$. Also in higher dimensions the distortion is polyconvex, but the algebra to prove this is a little more difficult.

Solution 5. Let us first show that $F(x, y)=x^{2} / y$ is convex as a function of two real variables. Let $0<t<1$. We want to prove that

$$
F(t x+(1-t) a, t y+(1-t) b) \leq t F(x, y)+(1-t) F(a, b)
$$

This reduces to

$$
\begin{aligned}
& \Leftrightarrow \quad \frac{t^{2} x^{2}+2 t(1-t) a x+(1-t)^{2} a^{2}}{t y+(1-t) b} \leq \frac{t x^{2}}{y}+\frac{(1-t) a^{2}}{b} \\
& \Leftrightarrow t^{2} x^{2} y b+2 t(1-t) a x y b+(1-t)^{2} a^{2} y b \leq(t y+(1-t) b)\left(t x^{2} b+(1-t) a^{2} y\right) \\
& \Leftrightarrow 2 t(1-t) a x y b \leq t(1-t)\left(x^{2} b^{2}+a^{2} y^{2}\right) \\
& \Leftrightarrow 0 \leq t(1-t)(x b-a y)^{2} .
\end{aligned}
$$

Thus our expression is convex. Now let us consider the distortion as a function

$$
K(P, r)=\frac{p_{11}^{2}+p_{12}^{2}+p_{21}^{2}+p_{22}^{2}}{r}=\frac{|P|^{2}}{r}
$$

Here $|P|=\left(p_{11}^{2}+p_{12}^{2}+p_{21}^{2}+p_{22}^{2}\right)^{1 / 2}$, and we remark that $|P|^{2}$ is a convex function of the matrix P because the function $f(x)=x^{2}$ is convex as well. Then if $0<t<1$,

$$
\begin{aligned}
K\left(t P_{1}+(1-t) P_{2}, t r_{1}+(1-t) r_{2}\right) & =\frac{\left|t P_{1}+(1-t) P_{2}\right|^{2}}{t r_{1}+(1-t) r_{2}} \\
& \leq \frac{t\left|P_{1}\right|^{2}+(1-t)\left|P_{2}\right|^{2}}{t r_{1}+(1-t) r_{2}} \\
& \leq \frac{t\left|P_{1}\right|^{2}}{r_{1}}+\frac{(1-t)\left|P_{2}\right|^{2}}{r_{2}} \\
& =t K\left(P_{1}, r_{1}\right)+(1-t) K\left(P_{2}, r_{2}\right) .
\end{aligned}
$$

This proves the polyconvexity.

