
SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 9

Exercise 1. Consider maps f = (u, v, w) ∈ C∞(R3;R3) with differential matrix

Df(x) =

 ux uy uz
vx vy vz
wx wy wz



Show that the 2×2 minor L(Df) := det

(
vy vz
wy wz

)
= vywz−vzwy is a null-Lagrangian.

Solution 1. It is sufficiently simple to compute the Euler-Lagrange equations for the expression
L(Df) = vywz − vzwy. We obtain that

−∇ ·DP 1L(Df) +Dz1L(Df) = 0

−∇ ·DP 2L(Df) +Dz2L(Df) = −∇ · (0, wz,−wy) + 0 = −wzy + wyz = 0

−∇ ·DP 3L(Df) +Dz3L(Df) = −∇ · (0,−vz, vy) + 0 = vzy − vyz = 0

There is no dependence of z (the variable in whose place you put the function f) in L(Df),
so the derivatives DziL(Df) vanish above. The expression DP iL(Df) denotes a gradient
of the function

L(Df) = L

ux uy uz
vx vy vz
wx wy wz


with respect to the variables on the row i. Since the Euler-Lagrange equations are always
satisfied, L is a null Lagrangian.

Exercise 2. [Evans, Problem 8.7.7] Prove that L(P ) := trace(P 2) − trace(P )2 is a null
Lagrangian. Here the trace of an n × n matrix A = (ai,j)

n
i,j=1 is defined trace(A) =∑n

j=1 ajj.

Solution 2. Let us first expand the formula, denoting P = (pij):

tr(P 2)− tr(P )2 =
n∑

i,j=1

pijpji −

(
n∑

i=1

pii

)2

=
n∑

i,j=1

pijpji − piipjj.

The expression pijpji− piipjj is a 2× 2 subdeterminant of the matrix

(
pii pij
pji pjj

)
obtained

from the matrix P by removing all rows and columns except i and j. It happens that
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each of these subdeterminants is a null Lagrangian, much to the same reason as why the
expression of Exercise 1 was one (in fact, subdeterminants are always null Lagrangians).
To prove this, we compute the Euler-Lagrange equations for Lij = pijpji − piipjj as

−∇ ·DPkLij(Df) +DzkLij(Df) = 0, when k 6= i, j

−∇ ·DP iLij(Df) +DziLij(Df) = −f j
zjzi

+ f j
zizj

= 0

−∇ ·DP jLij(Df) +DzjLij(Df) = f i
zjzi − f i

zizj = 0.

Exercise 3. [Evans, Problem 8.7.4] Assume η : Rn → R is C1.

(i) Show that L(P, z, x) := η(z) detP is a null Lagrangian; here

P ∈Mn×n, z ∈ Rn.

(ii) Deduce that if f : Rn → Rn is C1, then∫
Ω

η(f) det(Df)dx

depends only on f|∂Ω.

Solution 3. a) We compute again by Euler-Lagrange equations.

−∇x ·DPkL(Df, f) +DzkL(Df, f)

= −∇x · (η(f)DPk detDf) + (Dzkη)(f) detDf

= −η(f)∇x ·DPk detDf −∇xη(f) ·DPk detDf + (Dzkη)(f) detDf

The first term is just η(f) times the Euler-Lagrange equation for the Jacobian detDf .
The Jacobian is known to be a null Lagrangian, so we do not repeat the proof here. One
may compute

∇xη(f) =

(
n∑

j=1

ηzj(f)f j
i

)n

i=1

We use the cofactor expansion for the determinant with row k:

detDf =
n∑

i=1

(−1)i+kfk
i Mki,

where Mki denotes the determinant of the matrix we get by removing row k and column
i from Df . Thus

DPk detDf =
(
(−1)i+kMki

)n
i=1

.

This finally gives

−∇xη(f) ·DPk detDf = −
n∑

i=1

n∑
j=1

ηzj(f)f j
i (−1)i+kMki
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Note that the term in the above sum with j = k is exactly (Dzkη)(f) detDf , which cancels
out the similar term in the Euler-Lagrange equation. The rest is equal to

−
∑
j 6=k

ηzj(f)
n∑

i=1

f j
i (−1)i+kMki

We now expand each subdeterminant (cof Df)ki with respect to the jth row, which gives

(cof Df)ki =
∑
l 6=i

(−1)l+j(−1)
χ(l>i)+χ(j>k)f j

l Mki,jl,

where Mki,jl denotes the determinant of the matrix we get by removing rows k and j and
columns i and l from Df . Here also χ(a > b) is equal to 1 if a > b and 0 otherwise. The

factor (−1)
χ(l>i)+χ(j>k) comes from the fact that when we remove row k and column i, we

have to swap all the ±-signs that come after. Thus what remains of the Euler-Lagrange
equation reads

−
∑
j 6=k

ηzj(f)
n∑

i=1

∑
l 6=i

(−1)i+k+l+j(−1)
χ(l>i)+χ(j>k)f j

l f
j
iMki,jl.

Obviously Mki,jl = Mkl,ji. But this means that in the last two sums, the terms (i, l) and

(l, i) cancel each other out because of the factor (−1)
χ(l>i). This shows that the whole

expression is zero, and hence that L is a null Lagrangian.

b) Follows from the alternate characterization of null Lagrangians, and the fact that the
above computation may be generalized to f ∈ C1 in the weak sense.

Exercise 4. [Evans, Problem 8.7.5] If f : Rn → Rn is as in Problem 3, fix x0 /∈ f(∂Ω). If
r is so small that B(x0, r) ∩ f(∂Ω) = ∅, choose a C1-map η so that

∫
Rn η(z)dz = 1 and

η(x) = 0 when |x− x0| ≥ r.

Define

deg(f, x0) =

∫
Ω

η(f) det(Df)dx,

the degree of f relative to x0. Prove that the degree is an integer.

Solution 4. Solution will be added a bit later.

Exercise 5. In geometric function theory one studies the distortion of a map f : R2 → R2.
Writing f = (u, v) and assuming that the Jacobian det(Df(x)) > 0 is positive almost
everywhere, the distortion is defined by

K(f) :=
|∂xu|2 + |∂yu|2 + |∂xv|2 + |∂yv|2

det(Df)
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Show that the functional L(Df) := K(f) is polyconvex; do this by first showing that
F (x, y) = x2/y is convex on (0,∞)× (0,∞).

[Hint: You need to show that F (x, y)− F (a, b) ≥ 2ab−1(x− a)− ab−2(y − b)]

Note. In higher dimensions the distortion of a map f : Rn → Rn is defined by

K(f) :=

[∑n
j,k=1 |∂xj

fk|2
]n/2

det(Df)

so that K(tf) = K(f) for all t ∈ R. Also in higher dimensions the distortion is polyconvex,
but the algebra to prove this is a little more difficult.

Solution 5. Let us first show that F (x, y) = x2/y is convex as a function of two real variables.
Let 0 < t < 1. We want to prove that

F (tx+ (1− t)a, ty + (1− t)b) ≤ tF (x, y) + (1− t)F (a, b)

This reduces to

⇔ t2x2 + 2t(1− t)ax+ (1− t)2a2

ty + (1− t)b
≤ tx2

y
+

(1− t)a2

b

⇔ t2x2yb+ 2t(1− t)axyb+ (1− t)2a2yb ≤ (ty + (1− t)b)(tx2b+ (1− t)a2y)

⇔ 2t(1− t)axyb ≤ t(1− t)(x2b2 + a2y2)

⇔ 0 ≤ t(1− t)(xb− ay)2.

Thus our expression is convex. Now let us consider the distortion as a function

K(P, r) =
p2

11 + p2
12 + p2

21 + p2
22

r
=
|P |2

r
.

Here |P | = (p2
11 + p2

12 + p2
21 + p2

22)1/2, and we remark that |P |2 is a convex function of the
matrix P because the function f(x) = x2 is convex as well. Then if 0 < t < 1,

K(tP1 + (1− t)P2, tr1 + (1− t)r2) =
|tP1 + (1− t)P2|2

tr1 + (1− t)r2

≤ t|P1|2 + (1− t)|P2|2

tr1 + (1− t)r2

≤ t|P1|2

r1

+
(1− t)|P2|2

r2

= tK(P1, r1) + (1− t)K(P2, r2).

This proves the polyconvexity.
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