
SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 1

Exercise 1. Suppose f ∈ L2(Ω) and g ∈ W 1,2(Ω), where Ω ⊂ Rn is a bounded domain with
C1-boundary. Assume also that A(x) = (ai,j(x)) is symmetric and uniformly elliptic, so
that λ|ξ|2 ≤ ξ · A(x)ξ ≤ Λ|ξ|2 for all ξ ∈ Rn.

We know from the lectures that the variational integral

I(u) =

∫
Ω

Du(x) · A(x)Du(x) + f(x)u(x) dx

has a minimizer in the set A(g) := {v ∈ W 1,2(Ω) : v − g ∈ W 1,2
0 (Ω)}. Prove that

I(1
2
(u + v)) < 1

2
I(u) + 1

2
I(v) for u, v ∈ W 1,2(Ω) unless u = v almost everywhere, and use

this to show that the minimiser is unique.

Solution 1. We first prove the pointwise inequality〈
1

2
(Du+Dv), A(x)

1

2
(Du+Dv)

〉
≤ 1

2
〈Du,A(x)Du〉+

1

2
〈Dv,A(x)Dv〉 .

After some simplification, this reads

0 ≤ 1

4
〈Du−Dv,A(x)(Du−Dv)〉 ,

which is true thanks to the ellipticity condition for A. Equality holds if Du(x) = Dv(x).
This also implies that

I

(
1

2
(u+ v)

)
≤ 1

2
I(u) +

1

2
I(v),

since the term “+f(x)u(x)” is linear. Equality holds iff Du = Dv almost everywhere,
which implies u = v almost everywhere if u and v have the same boundary values, say
u, v ∈ A(g). This implies the uniqueness of minimizers to I(u), since if u, v ∈ A(g) are
distinct minimizers, then the function 1

2
(u+ v) ∈ A(g) would have even lower energy than

u and v.

Exercise 2. [Evans, Problem 8.7.8] Explain why the methods studied in the lectures, i.e.
Evans Chapter 8.2, will not work for the integral representing the area of the graph of a
function,

I(w) =

∫
Ω

(
1 + |Dw|2

)1/2
dx,

over A(g) = {w ∈ W 1,2(Ω) : w − g ∈ W 1,2
0 (Ω)} for any 1 ≤ q <∞.
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Solution 2. The issue is with the coercivity condition in 8.2.1. Evans requires that

L(p, z, x) ≥ α|p|q − β

for some q > 1. This is not the case when L(p, z, x) = (1 + |p|2)1/2. One might also
ask whether it would be enough to assume the coercivity condition for q = 1. If one
follows Evans’ proof, this is not enough. The reason is that the coercivity condition is
used to establish the weak convergence of a minimizing sequence in the spaceW1,q. As we
have seen in Exercise 5 of set 6, a bounded sequence in L1 need not have a subsequence
converging weakly. Thus in Evans’ proof it is essential that the coercivity condition holds
for q > 1.

Exercise 3. Given g ∈ W 1,2(Ω) show that the Dirichlet problem
−∆u+ u3 = 0,

u− g ∈ W 1,2
0 (Ω)

has at least one weak solution u ∈ W 1,2(Ω), if Ω ⊂ R4 is bounded with C1-boundary.

[Hint: Express u as a solution to the Euler-Lagrange equation of a suitable variational
integral.]

Solution 3. We guess the variational integral that the equation comes from first. The equation
is Laplace’s equation with an added term, so it is not hard to guess that we should choose

L(Du, u, x) =
1

2
|Du|2 +

1

4
u4.

Indeed, the Euler-Lagrange equation for this functional is −∆u + u3 = 0. Thus to prove
that the Euler-Lagrange equation has at least one weak solution, it is enough to prove that

I(u) =

∫
Ω

(
1

2
|Du|2 +

1

4
u4

)
dx

has a minimizer in the class A(g) = g +W1,2
0 (Ω). First, though, we should check whether

it makes sense to integrate u4, as we only assumed u ∈ W1,2. This is okay because of the
Sobolev embedding W1,2(Ω) ⊂ L4(Ω), as we are in the dimension n = 4.

We use Theorem 2 from section 8.2 in Evans to find a minimizer. We have to check
coercivity and convexity of L(p, z, x) = 1

2
|p|2 + 1

4
z4. The convexity in the variable p is

clear, since the expression |p|2 is the same as for the Dirichlet energy. The coercivity is
also easy, we find that

1

2
|p|2 +

1

4
z4 ≥ 1

2
|p|2.

These combined with Evans’ theorem prove our claim.
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Exercise 4. If a, b ∈ R and 0 < t < 1, define w : R→ R by

w(s) =


as, if 0 ≤ s < t,
bs+ t(a− b), if t ≤ s ≤ 1,
w(s− n) + nw(1), if n < s ≤ n+ 1, n ∈ N.

Given 0 6= x0 ∈ Rn let then uk(x) = w(kx · x0)/k.

If Ω ⊂ Rn is a bounded domain, show that the sequence uk(x) := w(kx) ∈ W 1,q(Ω), for
every 1 ≤ q ≤ ∞ and k ∈ N. Furthermore, show that for 1 < q < ∞ the sequence
{uk}k∈N converges weakly in W 1,q(Ω), and determine its weak limit u ∈ W 1,q(Ω).

[Hint: Draw the graph of w(s) and recall Problem 2 in Exercises 7]

Solution 4. Firstly, the fact that uk(x) ∈ W1,q(Ω) for every q ∈ [1,∞] follows immediately
from the fact that uk is locally affine. This implies that both uk and its derivatives are
locally bounded (the derivatives are even piecewise constant), which gives the required
Sobolev-regularity.

We would next like to find the weak limit of the sequence uk in W1,q for q ∈ (1,∞).
The proof will be essentially the same as in Exercise 2 of set 7, so we will omit some
details. The essential fact to know is that it is enough to prove the weak convergence of
uk in Lq(Ω), as well as the weak convergence of the derivatives in Lq(Ω). Let us show that
these weak convergences hold first.

Let w̃(s) = (ta + (1 − t)b)s, so that w̃ is a linear function. Define u(x) = w̃(x · x0).
Then u is an affine function, with derivative equal to ta+ (1− t)b in the direction x0 and
zero in the orthogonal directions. We claim that u will be the weak limit of the uk.

The proof that the derivatives (any directional derivatives) of uk converge weakly to u
is the same as in Exercise 2 of set 7. For example, in the x0 direction the derivatives
oscillate rapidly between the values a and b, and thus eventually converge weakly to the
weighted average ta+ (1− t)b when we test them with smooth functions. The proof of the
fact that uk → u in Lq(Ω) is similar too: We test with smooth functions first and see that
the oscillation of uk eventually averages out to an affine function u.

Let us now try to conclude why uk → u weakly in W1,q(Ω). We use the classification
of the dual of W1,q for 1 < q < ∞, mentioned shortly in the end of Section 5 of Evans’
book in the case q = 2. Any functional v ∈ W1,q(Ω)∗ may be written in the form

〈v, g〉 =

∫
Ω

f0(x)g(x)dx+
n∑

j=1

∫
Ω

fj(x)gxj
(x)dx,

where g ∈ Lq(Ω) and f0, . . . , fn ∈ Lq∗(Ω). The proof of this fact follows the same lines as in
Evans’ book and as discussed in the lectures. First we embedW1,q(Ω) into Lq(Ω)×Lq(Ω)n,
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then we extend any linear functional onW1,q(Ω)∗ into the dual of Lq(Ω)×Lq(Ω)n by Hahn-
Banach. The dual of Lq(Ω)×Lq(Ω)n is Lq∗(Ω)×Lq∗(Ω)n, which gives the formula above.
Thus uk → u weakly in W1,q(Ω).

Exercise 5. Suppose F : Rn → R is not convex, so that there are z0, y0 ∈ Rn and 0 < t < 1
so that F (tz0 + (1 − t)y0) > tF (z0) + (1 − t)F (y0) and assume that F is bounded. Let
Ω = B(0, 1) be the unit ball of Rn.

Show that the variational integral

I(u) =

∫
Ω

F (Du) dx

is not weakly lower semicontinuous in any W 1,q(Ω), 1 < q <∞.

[Hint: Consider first the case tz0 + (1− t)y0 = 0; use here Problem 4]

Solution 5. Suppose first that tz0 + (1 − t)y0 = 0. Thus z0 = ax0 and y0 = bx0 for some
a, b ∈ R. We now consider the sequence uk as defined in Exercise 4. If one computes the
gradient of uk, we find that

Duk(x) = ax0 or Duk(x) = bx0 almost everywhere.

For the (weak) limit function u we have Du(x) = (ta+ (1− t)b)x0 everywhere. Thus∫
Ω

F (Du(x))dx = |Ω|F ((ta+ (1− t)b)x0)

and ∫
Ω

F (Duk(x))dx = t|Ω|F (ax0) + (1− t)|Ω|F (bx0),

since the sets where Duk(x) takes the values ax0 and bx0 are of size t|Ω| and (1 − t)|Ω|
respectively. This proves the claim, since now we have that∫

Ω

F (Du(x))dx > lim
k→∞

∫
Ω

F (Duk(x))dx.

Consider now the case tz0 + (1 − t)y0 = v0 6= 0. Thus z0 − v0 = ax0 and y0 − v0 = bx0.
Define uk as before, but consider instead the sequence v0 · x + uk(x), which converges
weakly to v0 · x+ u(x). Plugging these instead in the variational integral gives the desired
result.
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