
SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 7

Exercise 1. a) Derive the Euler-Lagrange equations for the variational integral

I(u) =

∫
Ω

F
(
Du(x)

)
dx,

where F : Rn → R is a smooth function.

b) Consider the variational integral I(u) =
∫ 1

−1
[xu′(x)]2dx from the counterexample of

Weierstrass [c.f. the notes/Section 12, on homepage].

Find the solutions to the Euler-Lagrange equation of this variational integral.
[Hint: Non-constant solutions will have a singularity at x = 0.]

Solution 1. a) We refer the reader to the derivation in Evans’ book, pages 432-434. The end
result (in our case) is the equation

n∑
i,j=1

Fpipj(Du)uxixj = 0.

b) In this case, the Euler-Lagrange equations read

(x2u′(x))′ = 0.

Equivalently
x2u′(x) = C, ⇔ u(x) = A/x+B.

However, one should note that if A 6= 0 this function is not in W1,2.

Exercise 2. [Evans 8.6.1.b] Consider weakly converging sequences (uk)
∞
k=1 ⊂ Lp(0, 1), where

1 < p <∞; see notes/Section 8, on homepage.

If a, b ∈ R and 0 < λ < 1, let

uk(x) =

{
a, if j/k ≤ x < λ(j + 1)/k,
b, if λ(j + 1)/k ≤ x < (j + 1)/k.

(j = 0, . . . , k − 1)

[Draw a picture] Show that (uk)
∞
k=1 converges weakly to u(x) ≡ λa+ (1−λ)b in Lp(0, 1).

Solution 2. We need to show that

lim
k→∞

∫ 1

0

uk(x)g(x)dx =

∫ 1

0

u(x)g(x)dx

for all g ∈ Lq(0, 1). It is enough to prove this for g ∈ C∞0 (0, 1), since they are dense in
Lq(0, 1). The functions uk alternate between the values a and b rapidly. The intervals on
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which uk takes the value a are of length λ/k and on which it takes the value b have length
(1 − λ)/k. The smoothness of g will imply that this averages out to taking the integral
of a weighted average λa+(1−λ)b of a and b multiplied by g. We give a short proof of this.

We may as well assume that b = 0, otherwise replace uk by uk − b. Denote by Uλ = Uλ(k)
the union of the intervals on which uk = a. We wish to show that

lim
k→∞

∫
Uλ

g(x)dx = λ

∫ 1

0

g(x)dx.

To prove this, split the interval [0, 1] into subintervals Ij = [j/k, (j + 1)/k]. On each such
subinterval, make the change of variables

y = j/k + λ(x− j/k),

essentially squeezing each interval to an interval of length λ/k with the same left endpoint.
In this way, we see that

λ

∫ 1

0

g(x)dx =
k∑
j=1

∫
Ij

g(λ−1(y − j/k) + j/k)dy.

Meanwhile, ∫
Uλ

g(x)dx =
k∑
j=1

∫
Ij

g(y)dy.

Now, the distance between the numbers λ−1(y − j/k) + j/k and y is at most 1/k. Thus
by uniform continuity of g we see that the above two expressions must converge to each
other as k →∞. This finishes the proof.

Exercise 3. [Evans 8.6.2] Find L = L(p, z, x) so that the PDE

−∆u+Dφ ·Du = f in Ω

is the Euler-Lagrange equation corresponding to the functional I(w) =
∫

Ω
L
(
Dw,w, x

)
dx.

Here φ, f are given functions smooth in Ω.

Solution 3. Consider first L of the form

L(Du, u, x) = ψ(x)|Du|2.

Then the Euler-Lagrange equations are of the form

−
n∑
j=1

(ψ(x)uxi)xi = −ψ∆u−Dψ ·Du = 0.

In order for this to be equivalent to the original equation, we must have that

ψxi = −φxiψ

for every j. This is satisfied by choosing ψ = e−φ. Thus L = e−φ|Du|2.
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Exercise 4. [Evans 8.6.3] The elliptic regularisation of the heat equation is the PDE

(∗) ∂tu−∆u − ε ∂2
t u = 0 in

1

2
ΩT ,

where ε > 0, ΩT = Ω× (0, T ] and Ω ⊂ Rn. Show that (*) is the Euler-Lagrange equation
corresponding to an energy integral

Iε(w) =

∫
ΩT

Lε
(
Dw, ∂tw,w, x, t

)
dxdt.

[Here Du = (∂x1u, . . . , ∂xnu) is the space gradient of u]

Solution 4. The ε∂2
t u term suggests that we should try

L = ψ(|Du|2 + ε|∂tu|2).

This gives the equation

−
n∑
j=1

(ψuxi)xi − ε(ψ∂tu)t = 0.

Let us look for ψ that only depend on the variable t. In this case the equation above takes
the form

−ψ(t)∆u− εψ(t)∂2
t u− εψ′(t)∂tu = 0.

Thus we must choose ψ such that εψ′(t) = −ψ(t), giving ψ(t) = e−t/ε. Thus L =
e−t/ε(|Du|2 + ε|∂tu|2).

Exercise 5. [Evans 6.6.2] A function u ∈ W 2,2
0 (Ω) = H2

0 (Ω) is a weak solution of the following
boundary value problem for the biharmonic equation

(1)

{
∆2u = f, in Ω,
u = ∂u

∂ν
= 0, on ∂Ω,

provided ∫
Ω

∆u∆v dx =

∫
Ω

f v dx ∀v ∈ W 2,2
0 (Ω).

Given f ∈ L2(Ω), prove that there always exists a weak solution to (1).

Solution 5. We apply the Lax-Milgram theorem. Choose H =W2,2
0 (Ω) as the Hilbert space.

In particular, the boundary condition u = ∂u
∂ν

= 0 is satisfied for any u ∈ H. We only need
to find u ∈ H such that

B(u, v) =

∫
Ω

f v dx, where B(u, v) =

∫
Ω

∆u∆v dx.
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By Cauchy-Schwarz, we have

|B(u, v)| ≤ ||u||H ||v||H .

For the opposite direction, we may apply the Poincare inequality to get

||u||L2(Ω) ≤ C||D2u||L2(Ω) and ||Du||L2(Ω) ≤ C||D2u||L2(Ω).

Thus to prove that
||u||2H ≤ c|B(u, u)| for some c > 0,

we only need to establish an inequality of the form ||D2u||L2(Ω) ≤ C||∆u||L2(Ω). We claim,
in fact, that

||D2u||L2(Ω) = ||∆u||L2(Ω), u ∈ W2,2
0 (Ω).

By approximation, it is enough to verify this for smooth u. We compute that∫
Ω

|D2u|2dx =
n∑

i,j=1

∫
Ω

uxixjuxixjdx

=
n∑

i,j=1

∫
Ω

uuxixjxixjdx

=
n∑

i,j=1

∫
Ω

uxixiuxjxjdx

=

∫
Ω

(
n∑
j=1

uxjxj

)2

dx

=

∫
Ω

|∆u|2dx.

Applying Lax-Milgram with the functional 〈f, v〉 =
∫

Ω
fvdx finishes the proof.
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