SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 7

Exercise 1. a) Derive the Euler-Lagrange equations for the variational integral

$$
I(u)=\int_{\Omega} F(D u(x)) d x
$$

where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a smooth function.
b) Consider the variational integral $I(u)=\int_{-1}^{1}\left[x u^{\prime}(x)\right]^{2} d x \quad$ from the counterexample of Weierstrass [c.f. the notes/Section 12, on homepage].

Find the solutions to the Euler-Lagrange equation of this variational integral.
[Hint: Non-constant solutions will have a singularity at $x=0$.]
Solution 1. a) We refer the reader to the derivation in Evans' book, pages 432-434. The end result (in our case) is the equation

$$
\sum_{i, j=1}^{n} F_{p_{i} p_{j}}(D u) u_{x_{i} x_{j}}=0 .
$$

b) In this case, the Euler-Lagrange equations read

$$
\left(x^{2} u^{\prime}(x)\right)^{\prime}=0 .
$$

Equivalently

$$
x^{2} u^{\prime}(x)=C, \Leftrightarrow u(x)=A / x+B .
$$

However, one should note that if $A \neq 0$ this function is not in $\mathcal{W}^{1,2}$.
Exercise 2. [Evans 8.6.1.b] Consider weakly converging sequences $\left(u_{k}\right)_{k=1}^{\infty} \subset L^{p}(0,1)$, where $1<p<\infty$; see notes/Section 8 , on homepage.
If $a, b \in \mathbb{R}$ and $0<\lambda<1$, let

$$
u_{k}(x)=\left\{\begin{array}{ll}
a, & \text { if } \quad j / k \leq x<\lambda(j+1) / k, \\
b, & \text { if } \quad \lambda(j+1) / k \leq x<(j+1) / k .
\end{array} \quad(j=0, \ldots, k-1)\right.
$$

[Draw a picture] Show that $\left(u_{k}\right)_{k=1}^{\infty}$ converges weakly to $u(x) \equiv \lambda a+(1-\lambda) b$ in $L^{p}(0,1)$.
Solution 2. We need to show that

$$
\lim _{k \rightarrow \infty} \int_{0}^{1} u_{k}(x) g(x) d x=\int_{0}^{1} u(x) g(x) d x
$$

for all $g \in L^{q}(0,1)$. It is enough to prove this for $g \in C_{0}^{\infty}(0,1)$, since they are dense in $L^{q}(0,1)$. The functions u_{k} alternate between the values a and b rapidly. The intervals on
which u_{k} takes the value a are of length λ / k and on which it takes the value b have length $(1-\lambda) / k$. The smoothness of g will imply that this averages out to taking the integral of a weighted average $\lambda a+(1-\lambda) b$ of a and b multiplied by g. We give a short proof of this.

We may as well assume that $b=0$, otherwise replace u_{k} by $u_{k}-b$. Denote by $U_{\lambda}=U_{\lambda}(k)$ the union of the intervals on which $u_{k}=a$. We wish to show that

$$
\lim _{k \rightarrow \infty} \int_{U_{\lambda}} g(x) d x=\lambda \int_{0}^{1} g(x) d x
$$

To prove this, split the interval $[0,1]$ into subintervals $I_{j}=[j / k,(j+1) / k]$. On each such subinterval, make the change of variables

$$
y=j / k+\lambda(x-j / k)
$$

essentially squeezing each interval to an interval of length λ / k with the same left endpoint. In this way, we see that

$$
\lambda \int_{0}^{1} g(x) d x=\sum_{j=1}^{k} \int_{I_{j}} g\left(\lambda^{-1}(y-j / k)+j / k\right) d y .
$$

Meanwhile,

$$
\int_{U_{\lambda}} g(x) d x=\sum_{j=1}^{k} \int_{I_{j}} g(y) d y .
$$

Now, the distance between the numbers $\lambda^{-1}(y-j / k)+j / k$ and y is at most $1 / k$. Thus by uniform continuity of g we see that the above two expressions must converge to each other as $k \rightarrow \infty$. This finishes the proof.

Exercise 3. [Evans 8.6.2] Find $L=L(p, z, x)$ so that the PDE

$$
-\Delta u+D \phi \cdot D u=f \quad \text { in } \Omega
$$

is the Euler-Lagrange equation corresponding to the functional $I(w)=\int_{\Omega} L(D w, w, x) d x$. Here ϕ, f are given functions smooth in $\bar{\Omega}$.

Solution 3. Consider first L of the form

$$
L(D u, u, x)=\psi(x)|D u|^{2} .
$$

Then the Euler-Lagrange equations are of the form

$$
-\sum_{j=1}^{n}\left(\psi(x) u_{x_{i}}\right)_{x_{i}}=-\psi \Delta u-D \psi \cdot D u=0
$$

In order for this to be equivalent to the original equation, we must have that

$$
\psi_{x_{i}}=-\phi_{x_{i}} \psi
$$

for every j. This is satisfied by choosing $\psi=e^{-\phi}$. Thus $L=e^{-\phi}|D u|^{2}$.

Exercise 4. [Evans 8.6.3] The elliptic regularisation of the heat equation is the PDE

$$
\text { (*) } \quad \partial_{t} u-\Delta u-\varepsilon \partial_{t}^{2} u=0 \quad \operatorname{in} \frac{1}{2} \Omega_{T},
$$

where $\varepsilon>0, \Omega_{T}=\Omega \times(0, T]$ and $\Omega \subset \mathbb{R}^{n}$. Show that $\left(^{*}\right)$ is the Euler-Lagrange equation corresponding to an energy integral

$$
I_{\varepsilon}(w)=\int_{\Omega_{T}} L_{\varepsilon}\left(D w, \partial_{t} w, w, x, t\right) d x d t
$$

[Here $D u=\left(\partial_{x_{1}} u, \ldots, \partial_{x_{n}} u\right)$ is the space gradient of u]

Solution 4. The $\epsilon \partial_{t}^{2} u$ term suggests that we should try

$$
L=\psi\left(|D u|^{2}+\epsilon\left|\partial_{t} u\right|^{2}\right)
$$

This gives the equation

$$
-\sum_{j=1}^{n}\left(\psi u_{x_{i}}\right)_{x_{i}}-\epsilon\left(\psi \partial_{t} u\right)_{t}=0 .
$$

Let us look for ψ that only depend on the variable t. In this case the equation above takes the form

$$
-\psi(t) \Delta u-\epsilon \psi(t) \partial_{t}^{2} u-\epsilon \psi^{\prime}(t) \partial_{t} u=0
$$

Thus we must choose ψ such that $\epsilon \psi^{\prime}(t)=-\psi(t)$, giving $\psi(t)=e^{-t / \epsilon}$. Thus $L=$ $e^{-t / \epsilon}\left(|D u|^{2}+\epsilon\left|\partial_{t} u\right|^{2}\right)$.
Exercise 5. [Evans 6.6.2] A function $u \in W_{0}^{2,2}(\Omega)=H_{0}^{2}(\Omega)$ is a weak solution of the following boundary value problem for the biharmonic equation

$$
\begin{cases}\Delta^{2} u=f, & \text { in } \Omega \tag{1}\\ u=\frac{\partial u}{\partial \nu}=0, & \text { on } \partial \Omega\end{cases}
$$

provided

$$
\int_{\Omega} \Delta u \Delta v d x=\int_{\Omega} f v d x \quad \forall v \in W_{0}^{2,2}(\Omega)
$$

Given $f \in L^{2}(\Omega)$, prove that there always exists a weak solution to (1).
Solution 5. We apply the Lax-Milgram theorem. Choose $H=\mathcal{W}_{0}^{2,2}(\Omega)$ as the Hilbert space.
In particular, the boundary condition $u=\frac{\partial u}{\partial \nu}=0$ is satisfied for any $u \in H$. We only need to find $u \in H$ such that

$$
B(u, v)=\int_{\Omega} f v d x, \quad \text { where } \quad B(u, v)=\int_{\Omega} \Delta u \Delta v d x
$$

By Cauchy-Schwarz, we have

$$
|B(u, v)| \leq\|u\|_{H}\|v\|_{H}
$$

For the opposite direction, we may apply the Poincare inequality to get

$$
\|u\|_{L^{2}(\Omega)} \leq C\left\|D^{2} u\right\|_{L^{2}(\Omega)} \quad \text { and } \quad\|D u\|_{L^{2}(\Omega)} \leq C\left\|D^{2} u\right\|_{L^{2}(\Omega)} .
$$

Thus to prove that

$$
\|u\|_{H}^{2} \leq c|B(u, u)| \text { for some } c>0
$$

we only need to establish an inequality of the form $\left\|D^{2} u\right\|_{L^{2}(\Omega)} \leq C\|\Delta u\|_{L^{2}(\Omega)}$. We claim, in fact, that

$$
\left\|D^{2} u\right\|_{L^{2}(\Omega)}=\|\Delta u\|_{L^{2}(\Omega)}, \quad u \in \mathcal{W}_{0}^{2,2}(\Omega)
$$

By approximation, it is enough to verify this for smooth u. We compute that

$$
\begin{aligned}
\int_{\Omega}\left|D^{2} u\right|^{2} d x & =\sum_{i, j=1}^{n} \int_{\Omega} u_{x_{i} x_{j}} u_{x_{i} x_{j}} d x \\
& =\sum_{i, j=1}^{n} \int_{\Omega} u u_{x_{i} x_{j} x_{i} x_{j}} d x \\
& =\sum_{i, j=1}^{n} \int_{\Omega} u_{x_{i} x_{i}} u_{x_{j} x_{j}} d x \\
& =\int_{\Omega}\left(\sum_{j=1}^{n} u_{x_{j} x_{j}}\right)^{2} d x \\
& =\int_{\Omega}|\Delta u|^{2} d x .
\end{aligned}
$$

Applying Lax-Milgram with the functional $\langle f, v\rangle=\int_{\Omega} f v d x$ finishes the proof.

