
SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 6

Exercise 1. Recall the continuous linear operators T : X → Y between Banach spaces X and
Y ; and that these have the norm ‖T‖ := sup{‖Tx‖ : ‖x‖ ≤ 1}.
If Tk : X → Y are compact linear operators and ‖T − Tk‖ → 0, show that T : X → Y is
compact.

[Hint: Recall the different characterisations of compactness in Banach spaces]

Solution 1. Recall the following notion of precompactness: A set is precompact iff for every
ε > 0 it admits a finite cover of balls with radius ε.

We prove now that T (B) is precompact, where B is the unit ball in X. Let ε > 0. Take
m so large that ||T − Tm|| < ε/2, and choose by compactness a finite cover of Tm(B) with
balls of radius ε/2. Let the centers of these balls be y1, . . . , yM . It is enough to prove that
the balls B(y1, ε), . . . , B(yM , ε) cover T (B). Let x ∈ B. Then Tm(x) ∈ Tm(yj, ε/2) for
some j. Thus

||T (x)− yj||Y ≤ ||T (x)− Tm(x)||Y + ||Tm(x)− yj||Y < ε/2 + ε/2 = ε.

This proves the claim.

Exercise 2. Let B = B(0, 1) ⊂ R2. Then, as will be discussed later,

u(x) := (Tf)(x) =

∫
B

log |x− y|f(y)dy

is a solution to the Poisson equation ∆u = f . Show that for 2 < p < ∞, T : Lp(B) →
W 1,p(B) is a continuous linear operator. Deduce that T ı̈¿1

2
is compact as an operator

T : Lp(B)→ Lp(B).

Solution 2. Will be added later.

Exercise 3. Suppose u ∈ W 1,p(Ω), for some 1 < p <∞. If f : R→ R is Lipschitz-continuous
with f(0) = 0, use difference quotients to show that f ◦ u ∈ W 1,p(Ω).

This is a (strong !) generalisation of Problem 4/Exercises 2. As an application, show that
the positive part u+ ∈ W 1,p(Ω); here u+(x) = u(x) if u(x) ≥ 0 and u+(x) = 0 otherwise.

Solution 3. We use Theorem 3 from Evans’ book, section 5.8. Suppose that u ∈ W1,p(Ω).
Then by Evans’ theorem, we have the following bound for the difference quotients

||Dhu||Lp(V ) ≤ C||Du||Lp(Ω),
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where one can check that the constant C does not depend on the compact subset V ⊂⊂ Ω.
If L is the Lipschitz constant of f , then we may now estimate that∣∣∣∣f(u(x+ hej))− f(u(x))

h

∣∣∣∣ ≤ L

∣∣∣∣u(x+ hej)− u(x)

h

∣∣∣∣ ,
and thus

||Dh(f ◦ u)||Lp(V ) ≤ L||Dhu||Lp(V ) ≤ C1||Du||Lp(Ω).

Letting V → Ω gives that D(f ◦ u) ∈ Lp(Ω). The estimate

|f(u(x))| = |f(u(x))− f(0)| ≤ L|u(x)|

also gives that f ◦ u ∈ Lp(Ω). Thus f ◦ u ∈ W1,p(Ω). Applying this result to the Lipschitz
function f(x) = max(x, 0) proves the second part of the exercise too.

Exercise 4. Suppose 1 < s ≤ p <∞ and |Ω| <∞, so that Lp(Ω) ⊂ Ls(Ω). If ‖fk‖Lp(Ω) ≤ 1,
k = 1, 2, . . . and if fk → f weakly in Ls(Ω), show that

f ∈ Lp(Ω) and ‖f‖Lp(Ω) ≤ 1.

[Hint: Recall the Lp − Lq duality; c.f. proof of ”Lemma on weak limits in Lp(Ω)” in notes
on course web-page]

Solution 4. We denote the Hölder-conjugates of p and s by p′ and s′ respectively. Recall from
the duality of Lp spaces that

||f ||Lp = sup

{∣∣∣∣∫
Ω

fg dx

∣∣∣∣ : ||g||Lp′ ≤ 1

}
.

Let g ∈ Ls′ be such that ||g||Lp′ ≤ 1. Then by weak convergence,∣∣∣∣∫
Ω

fg dx

∣∣∣∣ =

∣∣∣∣ lim
k→∞

∫
Ω

fkg dx

∣∣∣∣ ≤ ||fk||p ≤ 1.

Now since s ≤ p, we have s′ ≥ p′ and thus Ls′ ⊂ Lp′ . The above inequality proves that

sup

{∣∣∣∣∫
Ω

fg dx

∣∣∣∣ : g ∈ Ls′ , ||g||Lp′ ≤ 1

}
≤ 1.

However, Ls′ is dense in Lp′ , which shows that we must also have

sup

{∣∣∣∣∫
Ω

fg dx

∣∣∣∣ : ||g||Lp′ ≤ 1

}
≤ 1.

This concludes the proof that ||f ||Lp ≤ 1.
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Exercise 5. (Evans, problem 5.10.11) Recall the difference quotients Dh
j u(x) and the difference

gradient Dhu(x) = (Dh
1u(x), Dh

2u(x), . . . , Dh
nu(x)).

Prove that Theorem 3 in Evans/Section 5.8 does not hold at p = 1: That is, show by an
example that if we have ‖Dhu‖L1(Ω′) ≤ C for all Ω′ ⊂⊂ Ω and for all |h| ≤dist(Ω′, ∂Ω)), it
does not necessarily hold that u ∈ W 1,1(Ω).

Solution 5. Note that the statement of this Exercise differs quite a bit from the actual
Problem 11 in Evans, as Evans doesn’t require the “for all Ω′ ⊂⊂ Ω”. Nevertheless, our
counterexample will be local so it solves both questions.

For the counterexample, choose u(x) as the characteristic function of some set V ⊂⊂ Ω.
It’s enough if the set V has C1-boundary, so a ball for example. Then Dhu will be bounded
in the L1-norm uniformly in h. This is because the difference quotient

u(x+ hej)− u(x)

h

may only attain the values ±1/h and 0. The set in which it attains the values ±1/h is
contained in the set

{x ∈ Ω : dist(x, ∂V ) ≤ h}.

The above set has measure at most Ch for some constant C. Thus

||Dhu||L1(Ω) ≤
∫

dist(x,∂V )≤h

1

h
dx ≤ C.

However, u is not in W1,1(Ω) even locally since it doesn’t have proper weak derivatives.
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