SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 6

Exercise 1. Recall the continuous linear operators $T: X \rightarrow Y$ between Banach spaces X and Y; and that these have the norm $\|T\|:=\sup \{\|T x\|:\|x\| \leq 1\}$.
If $T_{k}: X \rightarrow Y$ are compact linear operators and $\left\|T-T_{k}\right\| \rightarrow 0$, show that $T: X \rightarrow Y$ is compact.
[Hint: Recall the different characterisations of compactness in Banach spaces]
Solution 1. Recall the following notion of precompactness: A set is precompact iff for every $\epsilon>0$ it admits a finite cover of balls with radius ϵ.

We prove now that $T(B)$ is precompact, where B is the unit ball in X. Let $\epsilon>0$. Take m so large that $\left\|T-T_{m}\right\|<\epsilon / 2$, and choose by compactness a finite cover of $T_{m}(B)$ with balls of radius $\epsilon / 2$. Let the centers of these balls be y_{1}, \ldots, y_{M}. It is enough to prove that the balls $B\left(y_{1}, \epsilon\right), \ldots, B\left(y_{M}, \epsilon\right)$ cover $T(B)$. Let $x \in B$. Then $T_{m}(x) \in T_{m}\left(y_{j}, \epsilon / 2\right)$ for some j. Thus

$$
\left\|T(x)-y_{j}\right\|_{Y} \leq\left\|T(x)-T_{m}(x)\right\|_{Y}+\left\|T_{m}(x)-y_{j}\right\|_{Y}<\epsilon / 2+\epsilon / 2=\epsilon
$$

This proves the claim.
Exercise 2. Let $B=B(0,1) \subset \mathbb{R}^{2}$. Then, as will be discussed later,

$$
u(x):=(T f)(x)=\int_{B} \log |x-y| f(y) d y
$$

is a solution to the Poisson equation $\Delta u=f$. Show that for $2<p<\infty, T: L^{p}(B) \rightarrow$ $W^{1, p}(B)$ is a continuous linear operator. Deduce that $T \ddot{i} \frac{1}{2}$ is compact as an operator $T: L^{p}(B) \rightarrow L^{p}(B)$.

Solution 2. Will be added later.
Exercise 3. Suppose $u \in W^{1, p}(\Omega)$, for some $1<p<\infty$. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz-continuous with $f(0)=0$, use difference quotients to show that $f \circ u \in W^{1, p}(\Omega)$.
This is a (strong !) generalisation of Problem 4/Exercises 2. As an application, show that the positive part $u^{+} \in W^{1, p}(\Omega)$; here $u^{+}(x)=u(x)$ if $u(x) \geq 0$ and $u^{+}(x)=0$ otherwise.

Solution 3. We use Theorem 3 from Evans' book, section 5.8. Suppose that $u \in \mathcal{W}^{1, p}(\Omega)$. Then by Evans' theorem, we have the following bound for the difference quotients

$$
\left\|D_{h} u\right\|_{L^{p}(V)} \leq C\|D u\|_{L^{p}(\Omega)},
$$

where one can check that the constant C does not depend on the compact subset $V \subset \subset \Omega$. If L is the Lipschitz constant of f, then we may now estimate that

$$
\left|\frac{f\left(u\left(x+h e_{j}\right)\right)-f(u(x))}{h}\right| \leq L\left|\frac{u\left(x+h e_{j}\right)-u(x)}{h}\right|
$$

and thus

$$
\left\|D_{h}(f \circ u)\right\|_{L^{p}(V)} \leq L\left\|D_{h} u\right\|_{L^{p}(V)} \leq C_{1}\|D u\|_{L^{p}(\Omega)}
$$

Letting $V \rightarrow \Omega$ gives that $D(f \circ u) \in L^{p}(\Omega)$. The estimate

$$
|f(u(x))|=|f(u(x))-f(0)| \leq L|u(x)|
$$

also gives that $f \circ u \in L^{p}(\Omega)$. Thus $f \circ u \in \mathcal{W}^{1, p}(\Omega)$. Applying this result to the Lipschitz function $f(x)=\max (x, 0)$ proves the second part of the exercise too.

Exercise 4. Suppose $1<s \leq p<\infty$ and $|\Omega|<\infty$, so that $L^{p}(\Omega) \subset L^{s}(\Omega)$. If $\left\|f_{k}\right\|_{L^{p}(\Omega)} \leq 1$, $k=1,2, \ldots$ and if $f_{k} \rightarrow f$ weakly in $L^{s}(\Omega)$, show that

$$
f \in L^{p}(\Omega) \quad \text { and } \quad\|f\|_{L^{p}(\Omega)} \leq 1
$$

[Hint: Recall the $L^{p}-L^{q}$ duality; c.f. proof of "Lemma on weak limits in $L^{p}(\Omega)$ " in notes on course web-page]

Solution 4. We denote the Hölder-conjugates of p and s by p^{\prime} and s^{\prime} respectively. Recall from the duality of L^{p} spaces that

$$
\|f\|_{L^{p}}=\sup \left\{\left|\int_{\Omega} f g d x\right|:\|g\|_{L^{p^{\prime}}} \leq 1\right\} .
$$

Let $g \in L^{s^{\prime}}$ be such that $\|g\|_{L^{p^{\prime}}} \leq 1$. Then by weak convergence,

$$
\left|\int_{\Omega} f g d x\right|=\left|\lim _{k \rightarrow \infty} \int_{\Omega} f_{k} g d x\right| \leq\left\|f_{k}\right\|_{p} \leq 1
$$

Now since $s \leq p$, we have $s^{\prime} \geq p^{\prime}$ and thus $L^{s^{\prime}} \subset L^{p^{\prime}}$. The above inequality proves that

$$
\sup \left\{\left|\int_{\Omega} f g d x\right|: g \in L^{s^{\prime}},\|g\|_{L^{p^{\prime}}} \leq 1\right\} \leq 1 .
$$

However, $L^{s^{\prime}}$ is dense in $L^{p^{\prime}}$, which shows that we must also have

$$
\sup \left\{\left|\int_{\Omega} f g d x\right|:\|g\|_{L^{p^{\prime}}} \leq 1\right\} \leq 1 .
$$

This concludes the proof that $\|f\|_{L^{p}} \leq 1$.

Exercise 5. (Evans, problem 5.10.11) Recall the difference quotients $D_{j}^{h} u(x)$ and the difference gradient $D^{h} u(x)=\left(D_{1}^{h} u(x), D_{2}^{h} u(x), \ldots, D_{n}^{h} u(x)\right)$.
Prove that Theorem 3 in Evans/Section 5.8 does not hold at $p=1$: That is, show by an example that if we have $\left\|D^{h} u\right\|_{L^{1}\left(\Omega^{\prime}\right)} \leq C$ for all $\Omega^{\prime} \subset \subset \Omega$ and for all $\left.|h| \leq \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)\right)$, it does not necessarily hold that $u \in W^{1,1}(\Omega)$.

Solution 5. Note that the statement of this Exercise differs quite a bit from the actual Problem 11 in Evans, as Evans doesn't require the "for all $\Omega^{\prime} \subset \subset \Omega^{\prime}$ ". Nevertheless, our counterexample will be local so it solves both questions.

For the counterexample, choose $u(x)$ as the characteristic function of some set $V \subset \subset \Omega$. It's enough if the set V has C^{1}-boundary, so a ball for example. Then $D_{h} u$ will be bounded in the L^{1}-norm uniformly in h. This is because the difference quotient

$$
\frac{u\left(x+h e_{j}\right)-u(x)}{h}
$$

may only attain the values $\pm 1 / h$ and 0 . The set in which it attains the values $\pm 1 / h$ is contained in the set

$$
\{x \in \Omega: \operatorname{dist}(x, \partial V) \leq h\} .
$$

The above set has measure at most $C h$ for some constant C. Thus

$$
\left\|D_{h} u\right\|_{L^{1}(\Omega)} \leq \int_{\operatorname{dist}(x, \partial V) \leq h} \frac{1}{h} d x \leq C
$$

However, u is not in $\mathcal{W}^{1,1}(\Omega)$ even locally since it doesn't have proper weak derivatives.

