
SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 3

Exercise 1. Suppose Ω ⊂ Rn is an arbitrary bounded subdomain. If u ∈ W 1,p
0 (Ω), set

u(x) =

{
u(x), x ∈ Ω
0, x /∈ Ω.

Show that u ∈ W 1,p(Rn).

Solution 1. The only issue here is to check whether the weak partial derivatives of u are
well-defined in the whole space and if they can be calculated from the formula

∂xju(x) =

{
∂xju(x), x ∈ Ω
0, x ∈ Rn \ Ω

.

Let φ ∈ C∞0 (Rn) be a test function. We have to verify that∫
Rn

u(x)∂xjφ(x)dx = −
∫

Ω

∂xju(x)φ(x)dx.

Let um be a sequence in C∞0 (Ω) tending to u in the Sobolev sense. Then by smoothness
the above formula holds for each um. Going to the limit also gives the formula for u,
especially since by definition∫

Rn

u(x)∂xjφ(x)dx =

∫
Ω

u(x)∂xjφ(x)dx.

Exercise 2. Let 0 ≤ η ∈ C∞c (Rn), with supp(η) ⊂ B(0, 1) and
∫
Rn η(x)dx = 1, be a standard

mollifier and set ηε(x) = ε−nη(x/ε).

If f ∈ L1
loc(R

n), show that we have

(ηε ∗ f)(x)→ f(x) as ε→ 0

at every Lebesgue point of f .

[Recall: x Lebesgue point of f if limε→0
1

|B(x,ε)|

∫
B(x,ε)

|f(y)− f(x)|dy = 0.]

Solution 2. Without loss of generality we may assume that f(0) = 0, otherwise replace f by
f − f(0). We can now estimate that

|f ∗ ηε(x)| ≤
∫
|x−y|<ε

|f(y)||ηε(x− y)|dx

≤
∫
|x−y|<ε

|f(y)|ε−n|η((x− y)/ε)|dx

≤ C||η||∞
|B(x, ε)|

∫
B(x,ε)

|f(y)|dy,

where the last expression converges to zero due to x being a Lebesgue point.
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Exercise 3. Suppose Ω ⊂ Rn is a bounded domain with C1-boundary ∂Ω and with trace
operator T : W 1,p(Ω)→ Lp(∂Ω). If ψ ∈ C∞( Ω ), show that

ψT (u) = T (ψu), for all u ∈ W 1,p(Ω).

Solution 3. Let Aφ denote the following operator on W1,p(Ω)

Aφu = φu

and Bφ the following operator on Lp(∂Ω)

Bφu = φu.

Then both the operators Aφ : W1,p(Ω) → W1,p(Ω) and Bφ : Lp(∂Ω) → Lp(∂Ω) are
bounded. We need to prove that

BφTu = TAφu

for all u ∈ W1,p(Ω). But this identity is valid in the dense set C∞(Ω) ⊂ W1,p(Ω). By
the unique linear extension of bounded operators we must have that the identity is valid
everywhere, since the operators AφT and BφT are bounded from W1,p(Ω) to Lp(∂Ω).

Exercise 4. If u ∈ W 1,p(Ω), show that then |u| ∈ W 1,p(Ω).

[Hint: Apply Problem 4 in Exercises 2, with the function f(x) = fε(x) =
√
x2 + ε2 − ε,

and let ε→ 0.]

Solution 4. As in Exercise 4 in set 2, all we need to do is verify the following equation for the
weak derivatives

∂xjf ◦ u = f ′(u)∂xju,

where f(x) = |x| and f ′(x) = sgn(x), in particular we must define f ′(0) = 0. Let
fε(x) =

√
x2 + ε2 − ε. Then by Exercise 4 of set 2 we have∫

Ω

fε(u(x))∂xjg(x)dx = −
∫

Ω

u(x)√
u(x)2 + ε2

∂xju(x)g(x)dx.

Note now that
u(x)√

u(x)2 + ε2
→ sgn(u(x))

pointwise in x and ε as ε→ 0. We can then use dominated convergence to take the limit
and see that ∫

Ω

f(u(x))∂xjg(x)dx = −
∫

Ω

sgn(u(x))∂xju(x)g(x)dx.

2



Exercise 5. Show that there are bounded domains Ω ⊂ R2 where the Gagliardo-Nirenberg-
Sobolev inequality fails: At least for some 1 ≤ p < n = 2 and p∗ = 2p

2−p , there are functions

u ∈ W 1,p(Ω) \ Lp∗(Ω).

One possible class of such domains Ω, called ”rooms and corridors”, is described on the
next page.

Rooms and corridors. Let Ω ⊂ R2 be a domain such as in the picture above,

Ω =
∞⋃
k=1

(Dk ∪ Pk) ,

where the ’fat’ sets Dk, the rooms, and the ’thin’ sets Pk, the corridors, k = 0, 1, 2, . . ., are
defined as follows:

Let first dk = 1− 2−k, k = 0, 1, 2, . . ., and define then the rooms as cubes

Dk = (d2k, d2k+1)×
(
−2−2k−2, 2−2k−2

)
and the corridors as rectangles

Pk = [d2k+1, d2k+2]×
(
−εk2−2k−2, εk2

−2k−2
)
.

[Hint for solving Problem 5: Choose u to be constant ck in each room Dk, and let it grow
linearly in each corridor Pk. Choose the constants ck so that u ∈ Lp(Ω) \Lp∗(Ω), and then
the thinnesses εk suitably to have u ∈ W 1,p(Ω)]

Solution 5. We construct the function and the domain as in the hint, so let our domain Ω be
a union of corridors Pk and rooms Dk.

Let us first estimate the integral of |f(x)|q over Ω for a general exponent q ≥ 1. If f is the
constant ck in the room Dk, the integral over the room amounts to cqk|Dk|. The part of
the integral corresponding to the corridors will not matter if the corridor Pk has an area
less than |Dk|, a choice that we will make later. Thus for f to be in Lq we must have that

∞∑
k=1

cqk|Dk| <∞.

Let us then estimate the Lp-norm of the derivative. On each room Dk the derivatives
of f are zero. On the corridors we may define f linearly, in which case the derivative is
comparable to the slope of the function. This slope is equal to (ck+1 − ck)/`(Pk), where
`(Pk) denotes the length of the corridor Pk. Thus for the function to be in the Sobolev
space W1,p(Ω) we must have that

∞∑
k=1

|ck+1 − ck|p

`(Pk)p
|Pk| <∞.
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Choose ck = rk1 for some number r1 > 1. Then ck+1 − ck and ck are comparable to
each other. Let the length of each Pk be rk2 and their width be rk3 for some numbers
1 > r2 > r3 > 0. Let the rooms Dk be square with side length rk2 . Then the Sobolev
condition becomes

∞∑
k=1

(rp1r
1−p
2 r3)k <∞,

in other words rp1r
1−p
2 r3 < 1. Similarly the Lq-condition becomes

rq1r
2
2 < 1.

We can always choose r3 small enough so that the first condition holds. If we are given any
q ≥ 1, we can choose r1 and r2 so that rq1r

2
2 = 1. In this case f ∈ Lq′ only for exponents

q′ < q. Choosing q ≤ p∗ shows that the Gagliado-Nirenberg-Sobolev inequality can’t be
true in Ω.

Note that the area of Pk is now less than that of Dk since we could choose r3 < r2. The
domain Ω is also bounded since r2 < 1, which gives that the lengths of the rooms and
corridors add to a finite number.
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