SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 3

Exercise 1. Show that $u(x)=\log \log \left(1+\frac{1}{|x|}\right) \in W^{1, n}(B)$, where $B=B(0,1)$ is the unit ball in \mathbb{R}^{n}.

Solution 1. We calculate first that

$$
\partial_{x_{j}} u(x)=\frac{1}{\log \left(1+|x|^{-1}\right)} \frac{1}{1+|x|^{-1}} \frac{-1}{|x|^{2}} \frac{x_{j}}{|x|} .
$$

Thus

$$
|\nabla u(x)|=\frac{1}{\log \left(1+|x|^{-1}\right)} \frac{1}{1+|x|} \frac{1}{|x|} .
$$

Since this function is radially symmetric, we can use polar coordinates to compute that

$$
\int_{B(0,1)}|\nabla u(x)|^{n} d x=C_{1} \int_{0}^{1} \frac{1}{\log ^{n}\left(1+r^{-1}\right)} \frac{1}{(1+r)^{n}} \frac{1}{r^{n}} r^{n-1} d r \leq C_{2} \int_{0}^{1} \frac{1}{\log ^{n}\left(1+r^{-1}\right)} \frac{1}{r} d r
$$

We will show that the right hand side is finite. The only issue is the singularity at $r=0$. Note that

$$
\log ^{n}\left(1+r^{-1}\right) \rightarrow \infty
$$

as $r \rightarrow 0$. Thus we might as well lower the exponent $n \geq 2$ and replace $\log \left(1+r^{-1}\right)$ by $\log \left(r^{-1}\right)=-\log (r)$ since both terms are comparable. It is enough to show that

$$
\int_{0}^{\delta_{1}} \frac{1}{\log ^{2}(r)} \frac{1}{r} d r<\infty
$$

for some $\delta_{1}>0$. Make a substitution $r=e^{-t}$. Thus the integral becomes

$$
\int_{\delta_{2}}^{\infty} \frac{1}{t^{2}} d t
$$

This is finite so we are done. It is also easy to check that

$$
\int_{B(0,1)}|u(x)|^{n} d x<\infty,
$$

since the function u has a better singularity at $x=0$ than its derivatives. This shows that $u \in \mathcal{W}^{1, n}$ for $n \geq 2$.

Exercise 2. a) Show that $W^{1, p}\left(\mathbb{R}^{n}\right)=W_{0}^{1, p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$.
b) Prove the generalised Hölder's inequality: If $1 \leq p_{1}, \ldots p_{m} \leq \infty$ and $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{m}}=1$, then

$$
\int_{\Omega}\left|u_{1} u_{2} \cdots u_{m}\right| d x \leq \prod_{j=1}^{m}\left(\int_{\Omega}\left|u_{j}\right|^{p_{j}} d x\right)^{1 / p_{j}}
$$

Solution 2. a) Let $u \in \mathcal{W}^{1, p}\left(\mathbb{R}^{n}\right)$. If u has compact support, then we can approximate it with smooth functions of compact support by Exercise 3 of set 1 - just choose a slightly larger compact subset where you can approximate it. Thus it is enough to show that we can approximate u by Sobolev functions of compact support.
Let φ be a smooth function supported in $B(0,1)$ with $\varphi(0)=1$ and $\int_{\mathbb{R}^{n}} \varphi(x) d x=1$. Define

$$
u_{\epsilon}(x)=\varphi(\epsilon x) u(x) .
$$

We claim that $u_{\epsilon} \rightarrow u$ in $\mathcal{W}^{1, p}\left(\mathbb{R}^{n}\right)$. It is easy to see that $u_{\epsilon} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{n}\right)$, so we only check the convergence of the derivatives. For this one can compute that

$$
\partial_{x_{j}}(\varphi(\epsilon x) u(x))=\epsilon \varphi_{x_{j}}(\epsilon x) u(x)+\varphi(\epsilon x) u_{x_{j}} .
$$

We can now use dominated convergence to see that the first term goes to zero and the second term goes to $u_{x_{j}}$ in $L^{p}\left(\mathbb{R}^{n}\right)$ as $\epsilon \rightarrow 0$. This finishes the proof.
b) Due to laziness, we refer the reader to Wikipedia -> Hölder's inequality -> Generalized Hölder's inequality -> proof.

Exercise 3. If $\Omega=(a, b) \subset \mathbb{R}$, how do you define the trace operator T on $W^{1, p}(\Omega)$? If $u \in W^{1, p}(\Omega)$, show that $T(u)=0$ if and only if the absolutely continuous representative of u satisfies $u(a)=u(b)=0$.

Solution 3. The trace operator in 1-dimensional space is defined as in Evans' book - one just has to interpret the space $L^{p}(\partial[a, b])$ correctly. The set $\partial[a, b]=\{a, b\}$ is a measure space with the counting measure, so we can define $L^{p}(\partial[a, b])$ in the usual sense. In this case $L^{p}(\{a, b\})$ will be equivalent to \mathbb{R}^{2} with the norm $|(x, y)|=\left(|x|^{p}+|y|^{p}\right)^{1 / p}$. All norms on \mathbb{R}^{2} are equivalent though so we may as well use the L^{1}-norm instead.

Let now $u \in \mathcal{W}^{1, p}([a, b])$. Denote by \tilde{u} its absolutely continuous representative. Then we define an operator

$$
\tilde{T}: \mathcal{W}^{1, p}([a, b]) \rightarrow L^{p}(\partial[a, b])
$$

by

$$
\tilde{T} u=(\tilde{u}(a), \tilde{u}(b)) .
$$

We first show that this operator is continuous. Let φ_{1} be a C^{∞}-function on $[a, b]$, supported on $[a, a+\epsilon]$ and such that $\varphi_{1}(a)=1$. Let similarly φ_{2} be supported on $[b-\epsilon, b]$ and $\varphi_{2}(b)=1$. Then $\varphi_{1} \tilde{u}$ and $\varphi_{2} \tilde{u}$ are also absolutely continuous on $[a, b]$ (not difficult to check directly). Thus

$$
\begin{aligned}
|\tilde{u}(a)| & =\left|\varphi_{1}(b) \tilde{u}(b)-\varphi_{1}(a) \tilde{u}(a)\right| \\
& =\left|\int_{a}^{b}\left(\varphi_{1} \tilde{u}\right)^{\prime}(t) d t\right| \\
& \leq \int_{a}^{b}\left|\varphi_{1}^{\prime}(t)\left\|\tilde{u}(t)\left|d t+\int_{a}^{b}\right| \varphi_{1}(t)\right\| \tilde{u}^{\prime}(t)\right| d t \\
& \leq\left\|\varphi_{1}^{\prime}\right\|_{q}\|\tilde{u}\|_{p}+\left\|\varphi_{1}\right\|_{q}\left\|\tilde{u}^{\prime}\right\|_{p} \\
& \leq C\|\tilde{u}\|_{\mathcal{W}^{11, p}([a, b])} .
\end{aligned}
$$

Similarly $|\tilde{u}(b)| \leq C| | \tilde{u} \|_{\mathcal{W}^{1, p}([a, b])}$, so

$$
\|\tilde{T}(\tilde{u})\|_{L^{1}(\partial[a, b])}=|\tilde{u}(a)|+|\tilde{u}(b)| \leq 2 C\|u\|_{\mathcal{W}^{1, p}([a, b])} .
$$

This proves the continuity of \tilde{T}.
The conclusion now comes from the fact that \tilde{T} must be the same as the usual trace operator T. This is because clearly $\tilde{T} u=T u$ when $u \in C^{\infty}([a, b])$. In the general case we have some approximating sequence of smooth functions u_{n} of u and

$$
\tilde{T} u=\lim _{n \rightarrow \infty} \tilde{T} u_{n}=\lim _{n \rightarrow \infty} T u_{n}=T u
$$

This is the unique extension property of continuous linear operators: Every continuous extension of a linear operator from a dense subset is the same. Thus we have found an expression for the trace in the 1-dimensional case: $T u=(\tilde{u}(a), \tilde{u}(b))$. In particular, $T u=0$ iff $\tilde{u}(a)=\tilde{u}(b)=0$.

Exercise 4. Let $0 \leq \eta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ be a standard mollifier, with $\operatorname{supp}(\eta) \subset B(0,1)$ and $\int_{\mathbb{R}^{n}} \eta(x) d x=1$. Set $\eta_{\varepsilon}(x)=\frac{1}{\varepsilon^{n}} \eta\left(\frac{x}{\varepsilon}\right), \varepsilon>0$, and let $e_{n}:=(0, \ldots, 0,1) \in \mathbb{R}^{n}$.

If $u \in W^{1, p}\left(\mathbb{R}_{+}^{n}\right)$ and $u_{\varepsilon}(x)=u\left(x+2 \varepsilon e_{n}\right)$ show that $w_{\varepsilon}:=\eta_{\varepsilon} * u_{\varepsilon}$ is well defined in \mathbb{R}_{+}^{n}, and

$$
w_{\varepsilon} \in C^{\infty}\left(\overline{\mathbb{R}_{+}^{n}}\right) \quad \text { with } \quad\left\|u-w_{\varepsilon}\right\|_{W^{1, p}\left(\mathbb{R}_{+}^{n}\right)} \rightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Solution 4. Recall that if f is in $L^{p}\left(\mathbb{R}^{n}\right)$, then $\int_{\mathbb{R}^{n}}|f(x+h)-f(x)|^{p} d x \rightarrow 0$ as $|h| \rightarrow 0$. This can be used to find that

$$
u_{\epsilon}(x)=u\left(x+2 \epsilon e_{n}\right) \rightarrow u(x)
$$

in $\mathcal{W}^{1, p}\left(\mathbb{R}_{+}^{n}\right)$ as $\epsilon \rightarrow 0$. The convolution $w_{\epsilon}=\eta_{\epsilon} * u_{\epsilon}$ is well-defined since

$$
w_{\epsilon}(x)=\int_{\mathbb{R}^{n}} u\left(x-y+2 \epsilon e_{n}\right) \eta_{\epsilon}(y) d y
$$

and in the integral we have $\eta_{\epsilon}(y)=0$ unless $|y| \leq \epsilon$, in which case $x-y+2 \epsilon e_{n} \in \mathbb{R}_{+}^{n}$ and there is no problem. To see the convergence of w_{ϵ} to u, we split:

$$
u-\eta_{\epsilon} * u_{\epsilon}=\left(u-u_{\epsilon}\right)+\left(u_{\epsilon}-\eta_{\epsilon} * u_{\epsilon}\right)
$$

The term $u-u_{\epsilon}$ converges to zero in $\mathcal{W}^{1, p}$. For the next term, we have to estimate the L^{p}-norms of the expressions

$$
u_{\epsilon}-\eta_{\epsilon} * u_{\epsilon} \quad \text { and } \quad \partial_{x_{j}} u_{\epsilon}-\eta_{\epsilon} * \partial_{x_{j}} u_{\epsilon} .
$$

For this we refer to Reaalianalyysi 1 , page 31 for the formula

$$
\|f-f * g\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p} \leq \int_{\mathbb{R}^{n}} g(y)\left(\int_{\mathbb{R}^{n}}|f(x)-f(x-y)|^{p} d x\right) d y
$$

In the proof one can choose to only integrate over \mathbb{R}_{+}^{n} to get:

$$
\|f-f * g\|_{L^{p}\left(\mathbb{R}_{+}^{n}\right)}^{p} \leq \int_{\mathbb{R}^{n}} g(y)\left(\int_{\mathbb{R}_{+}^{n}}|f(x)-f(x-y)|^{p} d x\right) d y
$$

Let us apply this for $f=u_{\epsilon}$ and $g=\eta_{\epsilon}$, giving that:

$$
\left\|u_{\epsilon}-\eta_{\epsilon} * u_{\epsilon}\right\|_{L^{p}\left(\mathbb{R}_{+}^{n}\right)}^{p} \leq \int_{\mathbb{R}^{n}} \eta_{\epsilon}(y)\left(\int_{\mathbb{R}_{+}^{n}}\left|u\left(x+2 \epsilon e_{n}\right)-u\left(x-y+2 \epsilon e_{n}\right)\right|^{p} d x\right) d y .
$$

Since η_{ϵ} is supported in the set $|y|<\epsilon$, we also have $|y|<\epsilon$ in the inner integral. This converges to zero as $\epsilon \rightarrow 0$ so we can estimate the inner integral as

$$
\int_{\mathbb{R}_{+}^{n}}\left|u\left(x+2 \epsilon e_{n}\right)-u\left(x-y+2 \epsilon e_{n}\right)\right|^{p} d x \leq \sup _{|h|<\epsilon}\left\{\int_{\mathbb{R}_{+}^{n}}|u(x)-u(x+h)|^{p} d x\right\} .
$$

The key point is that we can see now that the right hand side goes to zero as $\epsilon \rightarrow 0$. This shows that

$$
\left\|u_{\epsilon}-\eta_{\epsilon} * u_{\epsilon}\right\|_{L^{p}\left(\mathbb{R}_{+}^{n}\right)}^{p} \rightarrow 0
$$

If we put $\partial_{x_{j}} u_{\epsilon}$ in place of u_{ϵ} we also get that

$$
\left\|\partial_{x_{j}} u_{\epsilon}-\eta_{\epsilon} * \partial_{x_{j}} u_{\epsilon}\right\|_{L^{p}\left(\mathbb{R}_{+}^{n}\right)}^{p} \rightarrow 0
$$

Thus

$$
\left\|u_{\epsilon}-w_{\epsilon}\right\|_{\mathcal{W}^{1, p}\left(\mathbb{R}_{+}^{n}\right)} \rightarrow 0
$$

Exercise 5. Suppose $u \in W^{1, p}\left(\mathbb{R}_{+}^{n}\right)$ with weak derivatives $D^{\alpha} u \in L^{p}\left(\mathbb{R}_{+}^{n}\right),|\alpha|=1$, and let $\varphi \in C^{1}\left(\overline{\mathbb{R}_{+}^{n}}\right)$.
Suppose $\varphi(x)=0$ if $x \in \partial \mathbb{R}_{+}^{n}=\mathbb{R}^{n-1}$ or if $|x|>M$. Show that

$$
\int_{\mathbb{R}_{+}^{n}} u(x) D^{\alpha} \varphi(x) d x=-\int_{\mathbb{R}_{+}^{n}} D^{\alpha} u(x) \varphi(x) d x
$$

[Hint: Use e.g. ideas from proof of Theorem 2/Section 5.5/Evans]
Solution 5. Note that $\varphi \in \mathcal{W}^{1, q}\left(\mathbb{R}_{+}^{n}\right) \cap C\left(\overline{\mathbb{R}_{+}^{n}}\right), \frac{1}{p}+\frac{1}{q}=1$. Thus we can take the trace of φ and must have that $T \varphi \equiv 0$. By Evans, φ can be approximated by C_{0}^{∞}-functions φ_{m} in $\mathcal{W}^{1, q}\left(\mathbb{R}_{+}^{n}\right)$. By Hölder's inequality we find that

$$
\int_{\mathbb{R}_{+}^{n}} u(x) D^{\alpha} \varphi_{m}(x) d x \rightarrow \int_{\mathbb{R}_{+}^{n}} u(x) D^{\alpha} \varphi(x) d x
$$

and

$$
-\int_{\mathbb{R}_{+}^{n}} D^{\alpha} u(x) \varphi_{m}(x) d x \rightarrow-\int_{\mathbb{R}_{+}^{n}} D^{\alpha} u(x) \varphi(x) d x
$$

This proves the result.

