SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 3

Exercise 1. Show that u(z) = loglog (1 + ﬁ) € Wh(B), where B = B(0,1) is the unit ball
in R".

Solution 1. We calculate first that
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Since this function is radially symmetric, we can use polar coordinates to compute that
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We will show that the right hand side is finite. The only issue is the singularity at r» = 0.
Note that

log"(1+7r"1) = o0

as r — 0. Thus we might as well lower the exponent n > 2 and replace log(1 + r~!) by
log(r~') = —log(r) since both terms are comparable. It is enough to show that
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for some §; > 0. Make a substitution 7 = e~*. Thus the integral becomes
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This is finite so we are done. It is also easy to check that

/ lu(z)["dz < oo,
B(0,1)

since the function u has a better singularity at x = 0 than its derivatives. This shows that
u € W for n > 2.

Exercise 2. a) Show that WP(R") = W, ?(R"), 1 < p < oco.

b) Prove the generalised Holder’s inequality: If 1 < py,...p, < ocoand p%—i_piﬁ" . ~—|—i =1,

then
m 1/pj
/|ulu2...um|dx <11 (/ |uj\mdx) :
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Solution 2. a) Let u € WYP(R™). If u has compact support, then we can approximate it with
smooth functions of compact support by Exercise 3 of set 1 - just choose a slightly larger
compact subset where you can approximate it. Thus it is enough to show that we can
approximate u by Sobolev functions of compact support.

Let ¢ be a smooth function supported in B(0,1) with ¢(0) = 1 and [, ¢(z)dz = 1.
Define

ue(r) = p(ex)u(x).
We claim that u, — u in WYP(R™). It is easy to see that u, — u in LP(R™), so we only
check the convergence of the derivatives. For this one can compute that

On; (plex)u(z)) = epq, (ex)u(r) 4+ (€T )y,
We can now use dominated convergence to see that the first term goes to zero and the
second term goes to u,, in LP(R™) as e — 0. This finishes the proof.

b) Due to laziness, we refer the reader to Wikipedia -> Holder’s inequality -> Generalized
Holder’s inequality -> proof.

Exercise 3. If Q = (a,b) C R, how do you define the trace operator T on W'P(Q) ? If
u € WHP(Q), show that T(u) = 0 if and only if the absolutely continuous representative
of u satisfies u(a) = u(b) = 0.

Solution 3. The trace operator in 1-dimensional space is defined as in Evans’ book - one just
has to interpret the space L*(0[a,b]) correctly. The set Oa,b] = {a, b} is a measure space
with the counting measure, so we can define L”(0[a,b]) in the usual sense. In this case
LP({a,b}) will be equivalent to R? with the norm |(x,y)| = (|z|? + |y[?)"/?. All norms on
R? are equivalent though so we may as well use the L'-norm instead.

Let now v € W'?([a,b]). Denote by @ its absolutely continuous representative. Then
we define an operator )
T : W"(la, b)) — LP(d]a, b])
by 3
Tu = (a(a), @(b)).
We first show that this operator is continuous. Let ¢1 be a C*°-function on [a, b], supported
on [a,a + €] and such that p;(a) = 1. Let similarly ¢, be supported on [b — €,b] and

w2(b) = 1. Then ¢1a and @@ are also absolutely continuous on [a,b] (not difficult to
check directly). Thus

a(a)] = lp1(b)u(b) — ¢1(a)(a)l

[
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Similarly [@(b)| < C||t|[w1.r(fap), 5O

T (@) £ opap) = l(a)| + |@(b)| < 2C||u|lwio(ay)-

This proves the continuity of T'.

The conclusion now comes from thg fact that 7' must be the same as the usual trace
operator T'. This is because clearly Tu = T'u when u € C*°([a, b]). In the general case we
have some approximating sequence of smooth functions u,, of u and

Tu = lim Tun = lim Tu,, = Tu.
n—oo n—oo

This is the unique extension property of continuous linear operators: Every continuous
extension of a linear operator from a dense subset is the same. Thus we have found an
expression for the trace in the 1-dimensional case: Tu = (@(a), @(b)). In particular, Tu = 0

iff 4(a) = u(b) = 0.
Exercise 4. Let 0 < n € C*(R") be a standard mollifier, with supp(n) C B(0,1) and
Jrrn(z)dz = 1. Set n.(z) = =0 (£), e >0, and let e, := (0,...,0,1) € R™.

If u e WH(R%) and u.(x) = u(x + 2¢e,) show that w. := 7. * u. is well defined in R,
and

w. € C*°(RY})  with ||u—w£||W1’p(R —0 as —0.

)

Solution 4. Recall that if f is in LP(R"), then [, |f(z 4+ h) — f(z)|Pdz — 0 as |h| — 0. This
can be used to find that
ue(x) = u(x + 2ee,) = u(w)

in W'P(R") as € — 0. The convolution w, = 7 * u, is well-defined since

we(z) = / u(x —y + 2¢en)n:(y)dy,

and in the integral we have 7(y) = 0 unless |y| < ¢, in which case x — y + 2¢e, € R"} and
there is no problem. To see the convergence of w, to u, we split:

U—Ne kU = (U —Ue) + (Ue — e * Ug).

The term u — u. converges to zero in WP, For the next term, we have to estimate the
LP-norms of the expressions

Ue — Ne ¥ Ue  and Oy Ue — N * O Ue.

For this we refer to Reaalianalyysi 1, page 31 for the formula

15 = x ol < [ o) ([ 1760) = sl =i ) ay.
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In the proof one can choose to only integrate over R’} to get:

||f—f*9||72p(m) < /Rng(y) (/R

Let us apply this for f = u. and g = 7., giving that:

e = 1 1| s/ ne(y) /
Lr®RL) Rn R

Since 7. is supported in the set |y| < €, we also have |y| < € in the inner integral. This
converges to zero as € — 0 so we can estimate the inner integral as

[f(x) — f(z - y)|de> dy.

n
+

|u(x + 2ee,) —u(x —y + 266n)]pda:> dy.

n
+

/R |u(x + 2ee,,) — u(x — y + 2ee,)|Pde < sup {/R lu(z) — u(x + h)|pd$} :

n |h|<e n

The key point is that we can see now that the right hand side goes to zero as € — 0. This

shows that
|[te — e * u6||}£p(Ri) — 0.

If we put 0,,u. in place of u, we also get that
|0 e — Me * axju€||’£p(Ri) — 0.

Thus
||U/E — wele,p(Ri) — 0.

Exercise 5. Suppose u € W'P(R"}) with weak derivatives D*u € LP(R"), |o = 1, and let
p € CY(RY).
Suppose ¢(z) = 0 if v € OR? = R"' or if |z| > M. Show that

L

+

u(z) D%p(x) de = — /R" D%u(x) o(x) dx.

[Hint: Use e.g. ideas from proof of Theorem 2/Section 5.5/Evans]

Solution 5. Note that ¢ € W™(R?) N C(R%), 110 + % = 1. Thus we can take the trace of ¢
and must have that T'p = 0. By Evans, ¢ can be approximated by Cg°-functions ¢, in
WH(R™). By Hélder’s inequality we find that

/R u(x)D%op(z)dr — u(x)D%p(z)dx

t RY
and
— Du(z)pm(x)de — — D%u(x)p(x)dz.

R? R7

This proves the result.



