
SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 1

Exercise 1. If dimension n = 2, consider the domain Ω = B(0, 1) \ [0, 1], i.e. the disk minus
a slit. Show that in this domain, C∞(Ω) is not dense in W 1,p(Ω).

Solution 1. The philosophical reason why C∞(Ω) is not dense in W1,p(Ω) is the following: If
a function is in C∞(Ω), then it is smooth in the whole closed unit disc B(0, 1). However,
a function in the Sobolev space W1,p(Ω) may even have a jump discontinuity on the line
segment [0, 1] - the limit as x approaches from above and below may not be the same at
all. A short way to rigorously prove that C∞(Ω) is not dense is to check that the following
two facts are true:

1. There is a function in the Sobolev space W1,p(Ω), but not in W1,p(B(0, 1)).

2. If a sequence of C∞(Ω)-functions converges in W1,p(Ω), then it also converges in
W1,p(B(0, 1)).

These two points clearly imply that C∞(Ω) cannot be dense, since the second point implies
that any Sobolev-limit of C∞(Ω)-functions is in W1,p(B(0, 1)).

We prove the second fact first. If a function is in C∞(Ω) = C∞(B(0, 1)), then it is also in
the Sobolev space W1,p(B(0, 1)). If we have a sequence (um) of such functions converging
in W1,p(Ω), then it is also a Cauchy sequence in W1,p(Ω). However, since the segment
[0, 1] is of zero measure we have that∫

Ω

|um − un|pdx =

∫
B(0,1)

|um − un|pdx.
∫

Ω

|Dum −Dun|pdx =

∫
B(0,1)

|Dum −Dun|pdx.

The above two equalities show that (um) is also a Cauchy sequence onW1,p(B(0, 1)). Note
also a very important point: The weak derivative of each um as defined on the set Ω is the
same as the weak derivative on the set B(0, 1). This fact is almost trivial but it is essential
to notice that the weak derivatives of um are actually well defined on B(0, 1). This fact
does not hold for general Sobolev functions as we shall soon see.

Let us now prove the point number 1. To construct such a function, it is enough to find
a function in W1,p(Ω) which does not have weak derivatives on the disc B(0, 1). Take a
compactly contained subinterval [a, b] ⊂ [0, 1]. Let f be a smooth function on the closed
upper half plane which is equal to the constant 1 on [a, b] and in a small neighbourhood of
this interval. Let f be such that it is positive on a slightly larger neighbourhood of [a, b]
but zero everywhere else. Extend f as zero to the lower half plane. Then one can check
that f is in W1,p(Ω) but has a jump discontinuity on the interval [a, b]. This implies that
f does not have a weak derivative, essentially by the same arguments as in Exercise 1 of
Set 1. Thus we are done.
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Exercise 2. Integrate by parts and approximate, to prove the interpolation inequality∫
Ω

|Du|2dx ≤ C

(∫
Ω

u2dx

)1/2(∫
Ω

|D2u|2dx
)1/2

for all u ∈ W 2
0 (Ω), the closure of C∞c (Ω) in W 2(Ω).

Solution 2. Let first Ω ∈ C∞0 (Ω). Integration by parts gives the identity∫
Ω

|Du|2dx =

∫
Ω

n∑
j=1

uxjuxjdx = −
∫

Ω

n∑
j=1

uuxjxjdx.

We can now estimate the right hand side with Cauchy-Schwartz:

−
∫

Ω

n∑
j=1

uuxjxjdx ≤
(∫

Ω

|u|2dx
)1/2

∫
Ω

∣∣∣∣∣
n∑
j=1

uxjxj

∣∣∣∣∣
2

dx

1/2

.

We now use the following basic inequality: There is a constant Cn > 0 such that

(a1 + a2 + · · ·+ an)2 ≤ Cn
(
a2

1 + a2
2 + · · ·+ a2

n

)
for any positive real numbers a1, . . . , an. Applying this gives that∫

Ω

∣∣∣∣∣
n∑
j=1

uxjxj

∣∣∣∣∣
2

dx ≤ Cn

∫
Ω

n∑
j=1

∣∣uxjxj ∣∣2 dx ≤ Cn

∫
Ω

|D2u|2dx.

Combining everything gives the desired inequality∫
Ω

|Du|2dx ≤
√
Cn

(∫
Ω

|u|2dx
)1/2(∫

Ω

|D2u|2dx
)1/2

. (1)

Take now any u ∈ W2,2
0 (Ω), and approximate u by C∞0 -functions um in the Sobolev norm.

Thus we find that ∫
Ω

|Dum|2dx→
∫

Ω

|Du|2dx∫
Ω

|um|2dx→
∫

Ω

|u|2dx∫
Ω

|D2um|2dx→
∫

Ω

|D2u|2dx

as m→∞. Since inequality (1) holds for each um, it must then also hold for u. Thus we
are done.

Exercise 3. Suppose Ω ⊂ Rn is a bounded domain, and assume that every point x0 ∈ ∂Ω has
a neighbourhood V such that C∞(Ω ∩ V ) is dense in W 1,p(Ω ∩ V ). Show that C∞(Ω) is
dense in W 1,p(Ω).
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Solution 3. Since Ω is bounded its boundary is compact. Choose a finite cover V1, . . . , VN of
∂Ω such that C∞(Ω ∩ Vj) is dense in W1,p(Ω ∩ Vj) for each j. Choose also a compactly
contained open set V0 ⊂⊂ Ω such that V0, V1, . . . , VN is a cover of the whole set Ω. Let
ψ0, . . . , ψN be a partition of unity on the sets Vj.

Take now any u ∈ W1,p(Ω). For each j, choose a sequence u
(j)
m ∈ C∞(Ω ∩ Vj) converging

to u|Vj in W1,p(Ω ∩ Vj) (possible also for j = 0 due to exercise 3 of set 1). Define

um =
N∑
j=0

u(j)
m ψj.

Then um ∈ C∞(Ω). Moreover,

||u− um||W1,p(Ω) ≤
N∑
j=0

∥∥ψj(u− u(j)
m )
∥∥
W1,p(Ω∩Vj)

.

The right hand side goes to zero as m→∞, which shows that C∞(Ω) is dense inW1,p(Ω).

Exercise 4. Suppose f ∈ C1(R) with f ′ ∈ L∞ and f(0) = 0. If u ∈ W 1,p(Ω), 1 ≤ p < ∞,
show that f ◦ u ∈ W 1,p(Ω) and we have the chain rule

Dα(f ◦ u)(x) = f ′(u)Dαu(x), |α| = 1,

almost everywhere in Ω.

[Hint: Approximation can be useful also in this problem]

Solution 4. We first prove that the formula

∂xj(f ◦ u) = f ′(u)∂xju (2)

holds for Sobolev functions u, where both of the derivatives are interpreted as the weak
derivatives. When u is in C∞0 (Ω), we have the pointwise formula ∂xj(f◦u)(x) = f ′(u(x))∂xju(x)
and thus we also have the weak version of the formula,∫

Ω

(f ◦ u)∂xjφ dx = −
∫

Ω

f ′(u)(∂xju)φ dx,

for any test function φ. Let us now try to prove that this formula holds for general
u ∈ W1,p(Ω) by approximation. Let φ be fixed, and approximate u by smooth compactly
supported functions um in W1,p(suppφ). We need to prove that∫

Ω

(f ◦ um)∂xjφ dx→
∫

Ω

(f ◦ u)∂xjφ dx∫
Ω

f ′(um)(∂xjum)φ dx→
∫

Ω

f ′(u)(∂xju)φ dx
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as m → ∞. For the first limit, we estimate by the mean value theorem and Hölder’s
inequality that∣∣∣∣∫

Ω

(f ◦ u)∂xjφ dx−
∫

Ω

(f ◦ um)∂xjφ dx

∣∣∣∣ ≤ ∫
Ω

|(f ◦ u)− (f ◦ um)||∂xjφ| dx

≤
∫

Ω

||f ′||∞|u− um||∂xjφ| dx

≤ ||f ′||∞
(∫

suppφ

|u− um|p
)1/p(∫

suppφ

|∂xjφ|q
)1/q

.

The fact that um → u in Lp gives that the right hand side converges to zero.

For the second limit, we estimate that∣∣∣∣∫
Ω

f ′(u)(∂xju)φ dx−
∫

Ω

f ′(um)(∂xjum)φ dx

∣∣∣∣
≤
∫

Ω

|f ′(u)− f ′(um)||∂xju||φ| dx+

∫
Ω

|f ′(um)||∂xju− ∂xjum||φ| dx

The terms on the right hand side can be dealt with as follows. For the first term it is
enough to use dominated convergence. We may assume without loss of generality that
um → u pointwise almost everywhere. This can be justified by two reasons: The first
reason is that um may be defined via mollifiers as in the last exercise set, and pointwise
a.e. convergence holds for the mollified sequence (as proven in the course Reaalianalyysi I).
The second reason is that a Lp converging sequence always has a pointwise a.e. converging
subsequence, again by Reaalianalyysi I.

The fact that f ′ is continuous and that um → u pointwise a.e. implies that

|f ′(u)− f ′(um)||∂xju||φ| → 0

pointwise a.e. Since we also have the bound

|f ′(u)− f ′(um)||∂xju||φ| ≤ 2||f ′||∞|∂xju||φ|

and the right hand side is in L1(Ω), dominated convergence gives that∫
Ω

|f ′(u)− f ′(um)||∂xju||φ| dx→ 0.

For our second term we estimate by Hölder’s inequality that∫
Ω

|f ′(um)||∂xju− ∂xjum||φ| dx ≤ ||f ′||∞||φ||∞
∫

suppφ

|∂xju− ∂xjum| dx

≤ ||f ′||∞||φ||∞| suppφ|1−1/p

(∫
suppφ

|∂xju− ∂xjum|p dx
)1/p

.

The right hand side converges to zero so we are done. This proves our formula (2), and
from this it is easy to deduce that f ◦ u ∈ W1,p(Ω).
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Exercise 5. Suppose Φ : U → V is a C1-diffeomorphism between domains U, V ⊂ Rn; in
particular, Φ−1 : V → U is also a C1-smooth homeomorphism.

If Ω ⊂⊂ U and Ω′ = Φ(Ω), show that

u ∈ W 1,p(Ω′)⇔ u ◦ Φ ∈ W 1,p(Ω),

with c1‖u‖W 1,p(Ω′) ≤ ‖u ◦ Φ‖W 1,p(Ω) ≤ c2‖u‖W 1,p(Ω′).

Solution 5. Suppose first that u(y1, . . . , yn) is in C∞0 (Ω′). Then we have the formula

∂xj(u ◦ Φ) =
n∑
k=1

(uyk ◦ Φ) Φ(k)
xj
, (3)

where Φ = (Φ(1), . . . ,Φ(n)) is our C1-diffeomorphism. The weak version of this formula is∫
Ω

(u ◦ Φ)∂xjg dx =

∫
Ω

g

n∑
k=1

(uyk ◦ Φ) Φ(k)
xj
dx, (4)

where g is a test function. Let Ψ = Φ−1. Making a change of variables x 7→ Ψ(y) gives∫
Ω′
u(y)(∂xjg ◦Ψ(y))|JΨ(y)| dy =

∫
Ω′

(g ◦Ψ)(y)

(
n∑
k=1

uyk(y)
(

Φ(k)
xj
◦Ψ(y)

))
|JΨ(y)| dy.

These integrals are still over compact sets, so we may use approximation to prove that
this formula also holds when u is in the Sobolev class W1,p(Ω′). The formula may look
daunting but it can be split into terms of the form∫

Ω′
u(y)G1(y)dy and

∫
Ω′
uxj(y)G2(y)dy,

where G1 and G2 are continuous functions. Approximating such terms is a simple appli-
cation of Hölder’s inequality as in Exercise 4.

We may now apply the change of variables formula (valid also when u and its derivatives are
only measurable) backwards to conclude that identity (4) also holds when u is inW1,p(Ω′).
Thus formula (3) holds for Sobolev functions when the derivatives are interpreted in the
weak sense. We also have the estimate∫

Ω

|∂xj(u ◦ Φ)|pdx =

∫
Ω

∣∣∣∣∣
n∑
k=1

(uyk ◦ Φ) Φ(k)
xj

∣∣∣∣∣
p

dx

≤ C1

∫
Ω

n∑
k=1

| (uyk ◦ Φ) |p|Φ(k)
xj
|pdx

= C1

∫
Ω′

n∑
k=1

|uyk |p|Φ(k)
xj
◦Ψ|p|JΨ|dy

≤ C2

n∑
k=1

∫
Ω′
|uyk |pdy.
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The last estimate comes from the fact that derivatives of Φ and Ψ are bounded on compact
subsets (such as Ω and Ω′). Similarly∫

Ω

|(u ◦ Φ)|pdx ≤ C3

∫
Ω′
|u|pdy.

Combining these we obtain that

||u ◦ Φ||W1,p(Ω) ≤ C||u||W1,p(Ω′).

Since the same estimates hold for the inverse Ψ, we also have that

c||u||W1,p(Ω′) ≤ ||u ◦ Φ||W1,p(Ω).

This concludes the proof.

6


