SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 1

Exercise 1. If u(x) = |x|, $x \in (-1, 1)$, show that u does not have the weak second order derivative u'' in $\Omega = (-1, 1)$.

[Recall that as discussed in the lectures, the weak first order derivative exists, u'(x) = sign(x).]

Solution 1. From the lectures we remember that $u'(x) = \operatorname{sign}(x)$ in the sense of weak derivatives. It remains to show that $\operatorname{sign}(x)$ does not have a locally integrable weak derivative. If this were not the case there would be $v \in L^1_{loc}$ such that

$$\int_{\mathbb{R}} v(x)g(x)dx = -\int_{\mathbb{R}} \operatorname{sign}(x)g'(x)dx$$

for every test function g. We compute that

$$-\int_{\mathbb{R}} \operatorname{sign}(x) g'(x) dx = -\int_{0}^{\infty} g'(x) dx - \int_{-\infty}^{0} g'(x) dx = -2g(0)$$

Thus

$$\int_{\mathbb{R}} v(x)g(x)dx = -2g(0)$$

for all test functions g. But we can choose a uniformly bounded sequence (g_n) of test functions such that $g_n(0) = 1$ and $\lim_{n\to\infty} g_n(x) = 0$ for $x \neq 0$. Dominated convergence gives that

$$0 = \lim_{n \to \infty} \int_{\mathbb{R}} v(x)g_n(x)dx = \lim_{n \to \infty} -2g_n(0) = -2g_n(0)$$

a contradiction.

Exercise 2. If $u \in W^{k,p}(\Omega)$ and $\Omega_{\varepsilon} = \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) > \varepsilon\}$, set

$$u^{\varepsilon}(x) = (\eta_{\varepsilon} * u)(x) = \int_{\mathbb{R}^n} \eta_{\varepsilon}(y - x)u(y)dy, \qquad x \in \Omega_{\varepsilon}$$

Show that $u^{\varepsilon}(x)$ is a well defined C^{∞} -function in Ω_{ε} and that

$$D^{\alpha}u^{\varepsilon} = \eta_{\varepsilon} * D^{\alpha}u$$
 pointwise in Ω_{ε} .

Solution 2. The smoothness of $\eta_{\epsilon} * u$ was proven in the course Reaalianalyysi 1 (see Lause 2.26). It also included the formula

$$\partial_{x_j} \left(\eta_\epsilon * u \right) = \left(\partial_{y_j} \eta_\epsilon \right) * u,$$

which essentially comes from differentiation under the integral sign. We now use the definition of weak derivatives to see that

$$\left(\partial_{y_j}\eta_{\epsilon}\right)*u = \int_{\mathbb{R}^n} \partial_{y_j}\eta_{\epsilon}(x-y)u(y) = \int_{\mathbb{R}^n} \eta_{\epsilon}(x-y)\partial_{y_j}u(y) = \eta_{\epsilon}*\left(\partial_{y_j}u\right).$$

By induction we find that $D^{\alpha}u_{\epsilon} = \eta_{\epsilon} * D^{\alpha}u$.

- **Exercise 3.** If u_{ε} and Ω_{ε} are as in the previous problem, show that $u_{\varepsilon} \in W^{k,p}(\Omega_{\varepsilon})$ and that $u^{\varepsilon} \to u$ in $W^{k,p}_{loc}(\Omega)$. That is: if $U \subset \Omega$ is an open subset with compact closure $\overline{U} \subset \Omega$, then $u^{\varepsilon} \to u$ in $W^{k,p}(U)$ as $\varepsilon \to 0$.
- **Solution 3.** Let $U \subset \Omega$ be a fixed open subset with compact closure. Then for sufficiently small ϵ we have $U \subset \Omega_{\epsilon}$, which makes the functions u_{ϵ} well-defined on U. By the previous exercise we have

$$||D^{\alpha}u - D^{\alpha}u_{\epsilon}||_{L^{p}(U)} = ||D^{\alpha}u - \eta_{\epsilon} * D^{\alpha}u||_{L^{p}(U)}$$

We now appeal to the course Reaalianalyysi 1, where it was proven that

$$\lim_{\epsilon \to 0} ||f - \eta_{\epsilon} * f||_{L^p(U)} = 0$$

for all $f \in L^p(U)$. Applying this result for $f = D^{\alpha}u$ with $|\alpha| \leq k$ gives what we wanted.

- **Exercise 4.** If $u \in W^{1,p}(\Omega)$ and the weak derivative Du = 0, show that u(x) = C for a.e. x, for some constant C.
- **Solution 4.** Let Du = 0 in the weak sense. Let η_{ϵ} be a sequence of mollifiers, and define $u_{\epsilon} = \eta_{\epsilon} * u$. Then by Exercise 2 we have

$$\partial_{x_i} u_{\epsilon} = \eta_{\epsilon} * \partial_{x_i} u = 0.$$

Thus $Du_{\epsilon} = 0$. Since u_{ϵ} is smooth, it must be a constant function $u_{\epsilon} = c_{\epsilon}$. We know that $u_{\epsilon} \to u$ in $\mathcal{W}^{1,p}(U)$ for each compact $U \subset \Omega$. We may now choose a subsequence u_{ϵ_n} that converges pointwise almost everywhere (any L^p -converging sequence has such a subsequence). Thus we have $u(x) = \lim_{n \to \infty} c_{\epsilon_n}$ almost everywhere, showing that u is constant.

Exercise 5. [Evans, problem 5.10.6] If $u \in W^{1,p}(0,1)$ for some 1 , show that

$$|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{p}} \left(\int_0^1 |u'|^p \, dt \right)^{1/p} \quad \text{for } a.e. \ x, y \in [0, 1].$$

[Hint: Recall that in dimension n = 1 we have a characterisation of $W^{1,p}(0,1)$ in terms of absolutely continuous functions]

Solution 5. By the lectures, we know that u is absolutely continuous. This lets us write

$$u(x) - u(y) = \int_y^x u'(t)dt.$$

We now use Hölder's inequality to estimate that

$$|u(x) - u(y)| \le \int_y^x 1 \cdot |u'| dt \le \left(\int_y^x 1 dt\right)^{(p-1)/p} \left(\int_y^x |u'|^p dt\right)^{1/p} \le |x - y|^{1 - 1/p} \left(\int_0^1 |u'|^p dt\right)^{1/p}.$$