
SOBOLEV SPACES. (spring 2016)

MODEL SOLUTIONS FOR SET 1

Exercise 1. If u(x) = |x|, x ∈ (−1, 1), show that u does not have the weak second order
derivative u′′ in Ω = (−1, 1).

[Recall that as discussed in the lectures, the weak first order derivative exists, u′(x) =
sign(x). ]

Solution 1. From the lectures we remember that u′(x) = sign(x) in the sense of weak deriva-
tives. It remains to show that sign(x) does not have a locally integrable weak derivative.
If this were not the case there would be v ∈ L1

loc such that∫
R
v(x)g(x)dx = −

∫
R

sign(x)g′(x)dx

for every test function g. We compute that

−
∫
R

sign(x)g′(x)dx = −
∫ ∞
0

g′(x)dx−
∫ 0

−∞
g′(x)dx = −2g(0)

Thus ∫
R
v(x)g(x)dx = −2g(0)

for all test functions g. But we can choose a uniformly bounded sequence (gn) of test
functions such that gn(0) = 1 and limn→∞ gn(x) = 0 for x 6= 0. Dominated convergence
gives that

0 = lim
n→∞

∫
R
v(x)gn(x)dx = lim

n→∞
−2gn(0) = −2,

a contradiction.

Exercise 2. If u ∈ W k,p(Ω) and Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}, set

uε(x) = (ηε ∗ u)(x) =

∫
Rn

ηε(y − x)u(y)dy, x ∈ Ωε.

Show that uε(x) is a well defined C∞-function in Ωε and that

Dαuε = ηε ∗Dαu pointwise in Ωε.
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Solution 2. The smoothness of ηε ∗ u was proven in the course Reaalianalyysi 1 (see Lause
2.26). It also included the formula

∂xj (ηε ∗ u) =
(
∂yjηε

)
∗ u,

which essentially comes from differentiation under the integral sign. We now use the
definition of weak derivatives to see that(

∂yjηε
)
∗ u =

∫
Rn

∂yjηε(x− y)u(y) =

∫
Rn

ηε(x− y)∂yju(y) = ηε ∗
(
∂yju

)
.

By induction we find that Dαuε = ηε ∗Dαu.

Exercise 3. If uε and Ωε are as in the previous problem, show that uε ∈ W k,p(Ωε) and that
uε → u in W k,p

loc (Ω). That is: if U ⊂ Ω is an open subset with compact closure U ⊂ Ω,
then uε → u in W k,p(U) as ε→ 0.

Solution 3. Let U ⊂ Ω be a fixed open subset with compact closure. Then for sufficiently
small ε we have U ⊂ Ωε, which makes the functions uε well-defined on U . By the previous
exercise we have

||Dαu−Dαuε||Lp(U) = ||Dαu− ηε ∗Dαu||Lp(U).

We now appeal to the course Reaalianalyysi 1, where it was proven that

lim
ε→0
||f − ηε ∗ f ||Lp(U) = 0

for all f ∈ Lp(U). Applying this result for f = Dαu with |α| ≤ k gives what we wanted.

Exercise 4. If u ∈ W 1,p(Ω) and the weak derivative Du = 0, show that u(x) = C for a.e. x,
for some constant C.

Solution 4. Let Du = 0 in the weak sense. Let ηε be a sequence of mollifiers, and define
uε = ηε ∗ u. Then by Exercise 2 we have

∂xjuε = ηε ∗ ∂xju = 0.

Thus Duε = 0. Since uε is smooth, it must be a constant function uε = cε. We know
that uε → u in W1,p(U) for each compact U ⊂ Ω. We may now choose a subsequence
uεn that converges pointwise almost everywhere (any Lp-converging sequence has such a
subsequence). Thus we have u(x) = limn→∞ cεn almost everywhere, showing that u is
constant.

Exercise 5.[Evans, problem 5.10.6] If u ∈ W 1,p(0, 1) for some 1 < p <∞, show that

|u(x)− u(y)| ≤ |x− y|1−
1
p

(∫ 1

0

|u′|p dt
)1/p

for a.e. x, y ∈ [0, 1].

[Hint: Recall that in dimension n = 1 we have a characterisation of W 1,p(0, 1) in terms of
absolutely continuous functions]
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Solution 5. By the lectures, we know that u is absolutely continuous. This lets us write

u(x)− u(y) =

∫ x

y

u′(t)dt.

We now use Hölder’s inequality to estimate that

|u(x)−u(y)| ≤
∫ x

y

1·|u′|dt ≤
(∫ x

y

1dt

)(p−1)/p(∫ x

y

|u′|pdt
)1/p

≤ |x−y|1−1/p
(∫ 1

0

|u′|pdt
)1/p

.
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