Department of Mathematics and Statistics

Sobolev Spaces, Spring 2016

Exercise 9

Solutions to the exercises are to be returned by Thursday May 19 to Petri Ola, office D329.

Recall that a smooth $L(P, z, x)$ is a null Lagrangian, if either of the following two equivalent conditions hold,
a. Every $f \in C^{\infty}\left(\Omega ; \mathbb{R}^{m}\right)$ satisfies the Euler-Lagrange equations

$$
-\nabla_{x} \cdot D_{P^{k}} L(D f, f, x)+D_{z^{k}} L(D f, f, x)=0 \quad \text { in } \Omega, \quad k=1, \ldots, m .
$$

b.

$$
\int_{\Omega} L(D f, f, x) d x=\int_{\Omega} L(D g, g, x) d x
$$

whenever $f, g \in C^{\infty}\left(\bar{\Omega} ; \mathbb{R}^{m}\right)$ with $f=g$ on $\partial \Omega$.

1. Consider maps $f=(u, v, w) \in C^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ with differential matrix

$$
D f(x)=\left(\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right)
$$

Show that the 2×2 minor $L(D f):=\operatorname{det}\left(\begin{array}{cc}v_{y} & v_{z} \\ w_{y} & w_{z}\end{array}\right)=v_{y} w_{z}-v_{z} w_{y} \quad$ is a null-Lagrangian.
2. [Evans, Problem 8.7.7] Prove that $L(P):=\operatorname{trace}\left(P^{2}\right)-\operatorname{trace}(P)^{2} \quad$ is a null Lagrangian. Here the trace of an $n \times n$ matrix $A=\left(a_{i, j}\right)_{i, j=1}^{n}$ is defined by $\operatorname{trace}(A)=\sum_{j=1}^{n} a_{j j}$.
3. [Evans, Problem 8.7.4] Assume $\eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{1}.
(i) Show that $L(P, z, x):=\eta(z) \operatorname{det} P$ is a null Lagrangian; here $P \in \mathbb{M}^{n \times n}, z \in \mathbb{R}^{n}$.
(ii) Deduce that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is C^{1}, then

$$
\int_{\Omega} \eta(f) \operatorname{det}(D f) d x
$$

depends only on $f_{\mid \partial \Omega}$.
4. [Evans, Problem 8.7.5] If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is as in Problem 3, fix $x_{0} \notin$ $f(\partial \Omega)$. If r is so small that $B\left(x_{0}, r\right) \cap f(\partial \Omega)=\emptyset$, choose a C^{1}-map η so that $\int_{\mathbb{R}^{n}} \eta(z) d z=1$ and $\eta(x)=0$ when $\left|x-x_{0}\right| \geq r$.

Define

$$
\operatorname{deg}\left(f, x_{0}\right)=\int_{\Omega} \eta(f) \operatorname{det}(D f) d x
$$

the degree of f relative to x_{0}. Prove that the degree is an integer.
5. In geometric function theory one studies the distortion of a map $f: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2}. Writing $f=(u, v)$ and assuming that the Jacobian $\operatorname{det}(D f(x))>0$ is positive almost everywhere, the distortion is defined by

$$
K(f):=\frac{\left|\partial_{x} u\right|^{2}+\left|\partial_{y} u\right|^{2}+\left|\partial_{x} v\right|^{2}+\left|\partial_{y} v\right|^{2}}{\operatorname{det}(D f)}
$$

Show that the functional $L(D f):=K(f)$ is polyconvex; do this by first showing that $F(x, y)=x^{2} / y$ is convex on $(0, \infty) \times(0, \infty)$.
[Hint: You need to show that $F(x, y)-F(a, b) \geq 2 a b^{-1}(x-a)-a b^{-2}(y-b)$]

Note. In higher dimensions the distortion of a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by

$$
K(f):=\frac{\left[\sum_{j, k=1}^{n}\left|\partial_{x_{j}} f^{k}\right|^{2}\right]^{n / 2}}{\operatorname{det}(D f)}
$$

so that $K(t f)=K(f)$ for all $t \in \mathbb{R}$. Also in higher dimensions the distortion is polyconvex, but the algebra to prove this is a little more difficult.

