Department of Mathematics and Statistics

 Sobolev Spaces, Spring 2016
Exercise 8

Solutions to the exercises are to be returned by Thursday April 28 to Petri Ola, office D329.

1. Suppose $f \in L^{2}(\Omega)$ and $g \in W^{1,2}(\Omega)$, where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with C^{1}-boundary. Assume also that $A(x)=\left(a_{i, j}(x)\right)$ is symmetric and uniformly elliptic, so that $\lambda|\xi|^{2} \leq \xi \cdot A(x) \xi \leq \Lambda|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$.

We know from the lectures that the variational integral

$$
I(u)=\int_{\Omega} D u(x) \cdot A(x) D u(x)+f(x) u(x) d x
$$

has a minimizer in the set $\mathcal{A}(g):=\left\{v \in W^{1,2}(\Omega): v-g \in W_{0}^{1,2}(\Omega)\right\}$. Prove that $I\left(\frac{1}{2}(u+v)\right)<\frac{1}{2} I(u)+\frac{1}{2} I(v)$ for $u, v \in W^{1,2}(\Omega)$ unless $u=v$ almost everywhere, and use this to show that the minimiser is unique.
2. [Evans, Problem 8.7.8] Explain why the methods studied in the lectures, i.e. Evans Chapter 8.2, will not work for the integral representing the area of the graph of a function,

$$
I(w)=\int_{\Omega}\left(1+|D w|^{2}\right)^{1 / 2} d x
$$

over $\mathcal{A}(g)=\left\{w \in W^{1,2}(\Omega): w-g \in W_{0}^{1,2}(\Omega)\right\}$ for any $1 \leq q<\infty$.
3. Given $g \in W^{1,2}(\Omega)$ show that the Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u+u^{3}=0 \\
u-g \in W_{0}^{1,2}(\Omega)
\end{array}\right.
$$

has at least one weak solution $u \in W^{1,2}(\Omega)$, if $\Omega \subset \mathbb{R}^{4}$ is bounded with C^{1}-boundary.
[Hint: Express u as a solution to the Euler-Lagrange equation of a suitable variational integral.]
4. If $a, b \in \mathbb{R}$ and $0<t<1$, define $w: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
w(s)= \begin{cases}a s, & \text { if } \quad 0 \leq s<t \\ b s+t(a-b), & \text { if } \quad t \leq s \leq 1, \\ w(s-n)+n w(1), & \text { if } \quad n<s \leq n+1, \quad n \in \mathbb{N} .\end{cases}
$$

Given $0 \neq x_{0} \in \mathbb{R}^{n}$ let then $u_{k}(x)=w\left(k x \cdot x_{0}\right) / k$.
If $\Omega \subset \mathbb{R}^{n}$ is a bounded domain, show that the sequence $u_{k}(x):=w(k x) \in$ $W^{1, q}(\Omega)$, for every $1 \leq q \leq \infty$ and $k \in \mathbb{N}$. Furthermore, show that for $1<$ $q<\infty$ the sequence $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ converges weakly in $W^{1, q}(\Omega)$, and determine its weak limit $u \in W^{1, q}(\Omega)$.
[Hint: Draw the graph of $w(s)$ and recall Problem 2 in Exercises 7]
5. Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is not convex, so that there are $z_{0}, y_{0} \in \mathbb{R}^{n}$ and $0<t<1$ so that $F\left(t z_{0}+(1-t) y_{0}\right)>t F\left(z_{0}\right)+(1-t) F\left(y_{0}\right)$ and assume that F is bounded. Let $\Omega=B(0,1)$ be the unit ball of \mathbb{R}^{n}.

Show that the variational integral

$$
I(u)=\int_{\Omega} F(D u) d x
$$

is not weakly lower semicontinuous in any $W^{1, q}(\Omega), 1<q<\infty$.
[Hint: Consider first the case $t z_{0}+(1-t) y_{0}=0$; use here Problem 4]

