Department of Mathematics and Statistics

Sobolev Spaces, Spring 2016
Exercise 6

Solutions to the exercises are to be returned by Tuesday March 8 to Petri Ola, office D329.

1. Recall the continuous (i.e bounded) linear operators $T: X \rightarrow Y$ between Banach spaces X and Y, equipped with norm $\|T\|=\sup \{\|T x\|:\|x\| \leq 1\}$. If $T_{k}: X \rightarrow Y$ are compact linear operators and $\left\|T-T_{k}\right\| \rightarrow 0$, show that $T: X \rightarrow Y$ is compact.
[Hint: Recall the different characterisations of compactness in Banach spaces]
2. Let $B=B(0,1) \subset \mathbb{R}^{2}$. Then as discussed later, for $f \in L^{p}(B)$

$$
u(x):=(T f)(x)=\int_{B} \log |x-y| f(y) d y
$$

is a solution to the Poisson equation $\Delta u=f$ in B. Show that for $2<p<\infty$, $T: L^{p}(B) \rightarrow W^{1, p}(B)$ is a continuous linear operator. Deduce that T is compact as an operator $T: L^{p}(B) \rightarrow L^{p}(B)$.
[Hint: One approach is to prove $\|T f\|_{W^{1, p}(B)} \leq C\|f\|_{L^{p}(B)}$ first for $f \in$ $C_{c}^{\infty}(B)$. Another approach is to use difference quotients and Young's inequality]
[Note: Claim true also for $1 \leq p \leq 2$, but requires some more "machinery"]
3. Suppose $u \in W^{1, p}(\Omega)$, for some $1<p<\infty$. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitzcontinuous with $f(0)=0$, use difference quotients to show that $f \circ u \in$ $W^{1, p}(\Omega)$.

This is a (strong !) generalisation of Problem 4/Exercises 2. As an application, show that the positive part $u^{+} \in W^{1, p}(\Omega)$; here $u^{+}(x)=u(x)$ if $u(x) \geq 0$ and $u^{+}(x)=0$ otherwise.
4. Suppose $1<s \leq p<\infty$ and $|\Omega|<\infty$, so that $L^{p}(\Omega) \subset L^{s}(\Omega)$. If $\left\|f_{k}\right\|_{L^{p}(\Omega)} \leq 1, k=1,2, \ldots$ and if $f_{k} \rightarrow f$ weakly in $L^{s}(\Omega)$, show that

$$
f \in L^{p}(\Omega) \quad \text { and } \quad\|f\|_{L^{p}(\Omega)} \leq 1
$$

[Hint: Recall the $L^{p}-L^{q}$ duality; c.f. proof of "Lemma on weak limits in $L^{p}(\Omega) "$ in notes on course web-page]
5. (Evans, problem 5.10.11) Recall the difference quotients $D_{j}^{h} u(x)$ and the difference gradient $D^{h} u(x)=\left(D_{1}^{h} u(x), D_{2}^{h} u(x), \ldots, D_{n}^{h} u(x)\right)$.

Prove that Theorem 3 in Evans/Section 5.8 does not hold at $p=1$: That is, show by an example that if we have $\left\|D^{h} u\right\|_{L^{1}\left(\Omega^{\prime}\right)} \leq C$ for all $\Omega^{\prime} \subset \subset \Omega$ and for all $\left.|h| \leq \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)\right) / 2$, it does not necessarily hold that $u \in W^{1,1}(\Omega)$.

