Department of Mathematics and Statistics Sobolev Spaces, Spring 2016 Exercise 5

Solutions to the exercises are to be returned by Thursday Feb. 25. to Petri Ola, office D329.

Let X and Y be Banach spaces, $B_X = \{x \in X : ||x|| \le 1\}$ be the (closed) unit ball of X and $T : X \to Y$ be a linear map. Recall that T is *continuous* if $||Tx|| \le C||x||, x \in X$, for some constant C, and that T is *compact* if, in addition, $T(B_X)$ is relatively compact/precompact in Y, see notes on the home page for more information, including the Ascoli-Arzela theorem.

1. a) Show that if $S: X \to Y$ and $T: X \to Y$ are compact operators, then $S + T: X \to Y$ is a compact operator.

b) If $T: X \to Y$ is a compact operator, and $S: Z \to X, R: Y \to W$ are continuous operators, for some Banach spaces Z and W, show that $TS: Z \to Y$ and $RT: X \to W$ are compact operators.

2. Suppose $\Omega \subset \mathbb{R}^n$ is an arbitrary bounded subdomain. a) Show that we have the compact embedding

$$W_0^{1,p}(\Omega) \subset L^p(\Omega), \qquad 1 \le p < \infty.$$

b) If $\phi \in C_c^{\infty}(\Omega)$ is given, show that

$$T: W^{1,p}(\Omega) \to L^p(\Omega), \qquad (Tu)(x) = \phi(x)u(x),$$

is a compact operator.

3. Suppose $f : [0,1] \to \mathbb{R}$ is continuous, and let $f_s(x) = f(sx)$ for $s, x \in [0,1]$. Determine whether the set $H = \{f_s : 0 \le s \le 1\}$ is relatively compact in the space $C[0,1] = \{g : [0,1] \to \mathbb{R} \text{ continuous}\}.$

4. If $K : [0,1] \times [0,1] \to \mathbb{C}$ is continuous, and $T : C[0,1] \to C[0,1]$ is given by

$$(Tf)(x) = \int_0^1 K(x,t)f(t)dt,$$

show that T is a compact operator.

5. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded domain with C^1 -boundary $\partial \Omega$. If

$$k < \frac{n}{p}$$
 and $\frac{1}{q_0} = \frac{1}{p} - \frac{k}{n}$,

show that we have the compact embedding $W^{k,n}(\Omega) \subset L^q(\Omega)$ for every $1 \leq q < q_0$.