Department of Mathematics and Statistics Sobolev Spaces, Spring 2016 Exercise 4

Solutions to the exercises are to be returned by Thursday Feb. 18. to Petri Ola, office D329.

1. Suppose $\Omega \subset \mathbb{R}^n$ is an arbitrary bounded subdomain. If $u \in W_0^{1,p}(\Omega)$, set

$$\overline{u}(x) = \begin{cases} u(x), & x \in \Omega \\ 0, & x \notin \Omega. \end{cases}$$

Show that $\overline{u} \in W^{1,p}(\mathbb{R}^n)$.

2. Let $0 \leq \eta \in C_c^{\infty}(\mathbb{R}^n)$, with $\operatorname{supp}(\eta) \subset B(0,1)$ and $\int_{\mathbb{R}^n} \eta(x) dx = 1$, be a standard mollifier and set $\eta_{\varepsilon}(x) = \varepsilon^{-n} \eta(x/\varepsilon)$.

If $f \in L^1_{loc}(\mathbb{R}^n)$, show that we have

$$(\eta_{\varepsilon} * f)(x) \to f(x) \qquad \text{as } \varepsilon \to 0$$

at every Lebesgue point of f.

[Recall: x Lebesgue point of f if $\lim_{\varepsilon \to 0} \frac{1}{|B(x,\varepsilon)|} \int_{B(x,\varepsilon)} |f(y) - f(x)| dy = 0.$]

3. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded domain with C^1 -boundary $\partial \Omega$ and with trace operator $T: W^{1,p}(\Omega) \to L^p(\partial \Omega)$. If $\psi \in C^{\infty}(\overline{\Omega})$, show that

$$\psi T(u) = T(\psi u), \quad \text{for all} \quad u \in W^{1,p}(\Omega).$$

4. If $u \in W^{1,p}(\Omega)$, show that then $|u| \in W^{1,p}(\Omega)$.

[Hint: Apply Problem 4 in Exercises 2, with the function $f(x) = f_{\varepsilon}(x) = \sqrt{x^2 + \varepsilon^2} - \varepsilon$, and let $\varepsilon \to 0$.]

5. Show that there are bounded domains $\Omega \subset \mathbb{R}^2$ where the Gagliardo-Nirenberg-Sobolev inequality fails: At least for some $1 \leq p < n = 2$ and $p^* = \frac{2p}{2-n}$, there are functions $u \in W^{1,p}(\Omega) \setminus L^{p^*}(\Omega)$.

One possible class of such domains Ω , called "rooms and corridors", is described on the next page.

Rooms and corridors. Let $\Omega \subset \mathbb{R}^2$ be a domain such as in the picture above,

$$\Omega = \bigcup_{k=1}^{\infty} \left(D_k \cup P_k \right),\,$$

where the 'fat' sets D_k , the rooms, and the 'thin' sets P_k , the corridors, $k = 0, 1, 2, \ldots$, are defined as follows:

Let first $d_k = 1 - 2^{-k}$, k = 0, 1, 2, ..., and define then the rooms as cubes

$$D_k = (d_{2k}, d_{2k+1}) \times (-2^{-2k-2}, 2^{-2k-2})$$

and the corridors as rectangles

$$P_{k} = [d_{2k+1}, d_{2k+2}] \times \left(-\varepsilon_{k} 2^{-2k-2}, \varepsilon_{k} 2^{-2k-2}\right).$$

[Hint for solving Problem 5: Choose u to be constant c_k in each room D_k , and let it grow linearly in each corridor P_k . Choose the constants c_k so that $u \in L^p(\Omega) \setminus L^{p^*}(\Omega)$, and then the thinnesses ε_k suitably to have $u \in W^{1,p}(\Omega)$]