Department of Mathematics and Statistics Sobolev Spaces, Spring 2016 Exercise 2

Solutions to the exercises are to be returned by Tuesday Feb. 2. to Petri Ola, office D329.

1. If dimension n = 2, consider the domain $\Omega = B(0, 1) \setminus [0, 1]$, i.e. the disk minus a slit. Show that in this domain, $C^{\infty}(\overline{\Omega})$ is not dense in $W^{1,p}(\Omega)$.

2. Integrate by parts and approximate, to prove the interpolation inequality

$$\int_{\Omega} |Du|^2 dx \le C \left(\int_{\Omega} u^2 dx \right)^{1/2} \left(\int_{\Omega} |D^2 u|^2 dx \right)^{1/2}$$

for all $u \in W_0^2(\Omega)$, the closure of $C_c^{\infty}(\Omega)$ in $W^2(\Omega)$.

3. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded domain, and assume that every point $x_0 \in \partial \Omega$ has a neighbourhood V such that $C^{\infty}(\overline{\Omega \cap V})$ is dense in $W^{1,p}(\Omega \cap V)$. Show that $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$.

4. Suppose $f \in C^1(\mathbb{R})$ with $f' \in L^{\infty}$ and f(0) = 0. If $u \in W^{1,p}(\Omega)$, $1 \leq p < \infty$, show that $f \circ u \in W^{1,p}(\Omega)$ and we have the chain rule

$$D^{\alpha}(f \circ u)(x) = f'(u)D^{\alpha}u(x), \qquad |\alpha| = 1,$$

almost everywhere in Ω .

[Hint: Approximation can be useful also in this problem]

5. Suppose $\Phi: U \to V$ is a C^1 -diffeomorphism between domains $U, V \subset \mathbb{R}^n$; in particular, $\Phi^{-1}: V \to U$ is also a C^1 -smooth homeomorphism.

If $\Omega \subset \subset U$ and $\Omega' = \Phi(\Omega)$, show that

$$u \in W^{1,p}(\Omega') \Leftrightarrow u \circ \Phi \in W^{1,p}(\Omega),$$

with $c_1 \|u\|_{W^{1,p}(\Omega')} \le \|u \circ \Phi\|_{W^{1,p}(\Omega)} \le c_2 \|u\|_{W^{1,p}(\Omega')}.$