Department of Mathematics and Statistics Sobolev Spaces Exercise 1

Solutions to the exercises are to be returned by Tuesday Jan. 26. to Petri Ola, office D329.

1. If u(x) = |x|, $x \in (-1, 1)$, show that u does not have the weak second order derivative u'' in $\Omega = (-1, 1)$.

[Recall that as discussed in the lectures, the weak first order derivative exists, u'(x) = sign(x).]

Mollifiers: Let $0 \leq \eta \in C_c^{\infty}(\mathbb{R}^n)$ with $\operatorname{supp}(\eta) \subset B(0,1)$ and $\int_{\mathbb{R}^n} \eta(x) dx = 1$. (such exist by Real Analysis, or Evans, Appendix C.4.). Set

$$\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \eta\left(\frac{x}{\varepsilon}\right), \qquad \varepsilon > 0.$$

2. If $u \in W^{k,p}(\Omega)$ and $\Omega_{\varepsilon} = \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) > \varepsilon\}$, set

$$u^{\varepsilon}(x) = (\eta_{\varepsilon} * u)(x) = \int_{\mathbb{R}^n} \eta_{\varepsilon}(y - x)u(y)dy, \qquad x \in \Omega_{\varepsilon}.$$

Show that $u^{\varepsilon}(x)$ is a well defined C^{∞} -function in Ω_{ε} and that

 $D^{\alpha}u^{\varepsilon} = \eta_{\varepsilon} * D^{\alpha}u$ pointwise in Ω_{ε} .

3. If u_{ε} and Ω_{ε} are as in the previous problem, show that $u_{\varepsilon} \in W^{k,p}(\Omega_{\varepsilon})$ and that $u^{\varepsilon} \to u$ in $W^{k,p}_{loc}(\Omega)$. That is: if $U \subset \Omega$ is an open subset with compact closure $\overline{U} \subset \Omega$, then $u^{\varepsilon} \to u$ in $W^{k,p}(U)$ as $\varepsilon \to 0$.

4. If $u \in W^{1,p}(\Omega)$ and the weak derivative Du = 0, show that u(x) = C for a.e. x, for some constant C.

5. [Evans, problem 5.10.6] If $u \in W^{1,p}(0,1)$ for some $1 , show that <math>|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{p}} \left(\int_0^1 |u'|^p \, dt \right)^{1/p}$ for *a.e.* $x, y \in [0,1]$.

[Hint: Recall that in dimension n = 1 we have a characterisation of $W^{1,p}(0,1)$ in terms of absolutely continuous functions]