
SET THEORETICAL FORCING

Spring 2016

Tapani Hyttinen

Forcing is a method of proving that some claim φ is not provable from ZFC i.e.
from the standard axiomatization of set theory (assuming the consistency of ZFC).
If one also proves that ¬φ is not provable from ZFC i.e. φ is independent of ZFC,
then one has shown that the truth of the claim φ can not be decided using generally
accepted principles of mathematics as they stand today.

In these lectures we will be more interested in how to use forcing than all the
details of the proofs of the validity of the method. We will follow the approach of
K. Kunen’s excellent book [Ku], which is also the recommended reference for anyone
wanting to learn more.
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1. Preliminaries

When one studies forcing it is necessary to take a formal approach to set theory.
So our set theory ZFC is a first-order theory in a vocabulary {∈} , where ∈ is a binary
predicate symbol. However, for an obvious reason, we often avoid using first-order
expressions (there are cases in which first-order formulas give the most convenient
way of expressing claims) and instead use English (or something that looks a bit
like English) and assume that, if needed, everyone can translate the sentences to
the formal first-order language. Also we assume that we have a universe of (all)
sets called V , that is a model of ZFC and we work inside V (until we construct a
generic extension). In this first section, this assumption can be seen just as a normal
practice of precenting proofs in mathematics. However later we really need V and
this is a potential problem, since ZFC (and thus current mathematics) can not prove
the existence of V (by Gödel’s second incompleteness theorem). Later for partially
ordered sets P , we will also assume the existence of so called P -generic filter G over
V . In general ZFC can not prove the existence of G either. In Section 5 we will look
at the question, why these assumptions are not a problem.

Elements of V are called sets and subsets of V , which are first-order definable
with parameters, are called classes. If φ(v0, ..., vn) is a first-order {∈} -formula and
a1, .., an are sets, then the expression φ(v0, a1, ..., an) is called a property and for
a set x , we write φ(x, a1, ..., an) (in this section, from Section 2 on, we need to be
more specific) if, using the notation from Matemaattinen Logiikka course,

V |=s(x/0)(a1/1),...,(an/n) φ

and say that x has the property φ(v0, a1, ..., an) . Often we do not mention the
parameters and just say that x has the property φ and write just φ(x) . So the
classes are families of sets that have some fixed property φ .

1.1 Axioms

We sart by giving the axioms of ZFC.

I Extensionality: If sets a and b have the same elements, then a = b .

Notice, that also the inverse of the implication in Extensionality holds. And that
from now on to determine a set, it is enough to describe its elements, e.g. {3, 8, i} ,
{n ∈ IN| n is even} ,..., and of course ∅ . Also we extend the idea in Extensionality to
classes i.e. two classes are considered the same if they have the same elements and a
class and a set are considered the same if they have the same elements.

1.1.1 Exercise. Show that every set is a class.

II Foundation: Every non-empty set a has an ∈-minimal element i.e. there is
x ∈ a such that for all y ∈ a , y 6∈ x .
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III Pairing: For any sets a and b , {a, b} is a set.

Notice, that from Pairing it follows that for every set a , {a} is a set.

1.1.2 Exercise. Show that there is no set a such that a ∈ a or sets a and b
such that a ∈ b ∈ a .

IV Separation (aka Comprehension): If a is a set and φ is a property, then {x ∈
a| φ(x)} is a set.

V Union: For every set a , the union ∪a of the elements of a is a set (x ∈ ∪a if
x ∈ b for some b ∈ a).

1.1.3 Exercise.

(i) Show that if a, b, c, d and e are sets, then {a, b, c, d, e} is a set.
(ii) We write (a, b) for the set {a, {a, b}} . Show that
(a) (a, b) is indeed a set,
(b) if (a, b) = (c, d) , then a = c and b = d .

VI Power Set: For every set a , the power set P (a) of a is a set (x ∈ P (a) if x ⊆ a
i.e. for every set y , if y ∈ x , then y ∈ a).

So far we have had no axiom that states that there exists even a single set. The
next axiom says that there is an infinite set. However, it seems to assume that the
empty set already exists. So should we not have an axiom that says this? There is
no need for this: Even without any assumptions, in first-order logic one can always
prove that there exists x such that x = x . So in the case of set theory, one can
always prove the existence of at least one set.

1.1.4 Exercise.

(i) Show that the empty set ∅ exists.
(ii) For sets a and b , show that a× b = {(x, y)| x ∈ a, y ∈ b} is a set.

VII Infinity: There exists an inductive set i.e. a set a such that ∅ ∈ a and if x ∈ a ,
then also x ∪ {x} ∈ a (exercise: show that x ∪ {x} is a set).

When we talk about functions f from a set a to a set b , we always mean that
f = {(x, f(x))| x ∈ a} is a set. We talk also about class functions:

1.1.5 Definition. Let C be a class. We say that a function F : C → V is a
class function if the graph of F is a class i.e. there is a property φ such that for all
sets x , x has the property φ iff x = (a, F (a)) for some set a ∈ C .
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VIII Replacement: If a is a set and F : a→ V is a class function, then {F (x)| x ∈
a} is a set.

1.1.6 Exercise.

(i) Show that if a is a set and F : a→ V is a class function, then F is a set.
(ii) Show that if a and b are sets and f : a → b is a function, then it is a class

function.

IX Choice: If a is a set and every x ∈ a is non-empty, then there is a function
f : a→ ∪a such that for all x ∈ a , f(x) ∈ x .

The theory that consists of all these axioms is called ZFC. If the Choice is left
out, the resulting theory is called just ZF. Unless we state otherwise, we work in
ZFC.

1.2 Recursive definitions

1.2.1 Definition.

(i) If C is a class, then a class < is called a partial ordering of C if the elements
of < are of the form (x, y) , x, y ∈ C , and the following holds: if (x, y), (y, z) ∈< ,
then (x, z) ∈< and (y, x) 6∈< . Instead of writing (x, y) ∈< , we will simply write
x < y .

(ii) A partial ordering < is a linear ordering, if in addition, for all x, y ∈ C ,
x < y or x = y or y < x .

(iii) A partial ordering is well-founded if for all x ∈ C , {y ∈ C| y < x} is a set
and if a is a non-empty set such that every element of it belongs to C , then a has
a <-minimal element. If in addition the partial ordering is a linear ordering, it is
called a well-ordering.

If < is a partial ordering of C , then by ≤ we mean the relation a ≤ b if a < b
or a = b .

1.2.2 Theorem. Suppose C is a class and < is a well-founded partial ordering
of C . Let φ be a property and assume that for all x ∈ C , if every element of
{y ∈ C| y < x} has the property φ , then also x has it. Then every element of C
has the property φ .

Proof. Suppose not. Let x ∈ C be such. We show first that we can choose x
so that it is <-minimal element of C among those that do not have the property φ :
If x is not such then the class a of all element of C which are smaller than x and
do not have the property φ is non-empty and a set. Since < is well founded, a has
a <-minimal element. Clearly this is as wanted.

But if x is a minimal among those that do not have the property φ , then every
element of {y ∈ C| y < x} has the property, and so also x has it, a contradiction.
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1.2.3 Theorem. Suppose C is a class, < is a well-founded partial ordering
of C and G : V → V is a class function. Then there is a unique class function
F : C → V such that for all x ∈ C , F (x) = G(F ↾ Cx) , where Cx = {y ∈ C| y < x} .

Proof. We say that A ⊆ C is downward closed if x < y ∈ A implies x ∈ A .
We start with an exercise:

1.2.3.1 Exercise. Suppose that a set A ⊆ C is downward closed and f, g :
A → V (recall Exercise 1.1.6) are such that for all z ∈ A , f(z) = G(f ↾ Cz) and
g(z) = G(g ↾ Cz) (notice that Cz ⊆ A). Show that f = g . Conclude that if F
exists, it is unique.

Now let φ the following property of sets a : a is of the form (x, y) where x ∈ C
and y is such that there is a function fx : Cx → V such that y = G(fx) and for all
z ∈ Cx , f(z) = G(fx ↾ Cz) . We will show that for every x ∈ C , there is a set y such
that (x, y) has the property φ . Then since by Exercise 1.2.3.1, such y is unique, φ
defines a class function C → V .

To see that y exists, it is enough to show that fx exists. We prove this by
induction i.e. by using Theorem 1.2.2. So suppose that the claim holds for every
z ∈ Cx . We notice

(*) if z, w ∈ C and fz and fw exist, then fz ↾ (Cz ∩ Cw) and fw ↾ (Cz ∩ Cw)
satisfy the requirements of Exercise 1.2.3.1 for A = (Cz ∩ Cw) and thus fz ↾ (Cz ∩
Cw) = fw ↾ (Cz ∩ Cw) .
So by (*), if Cx does not have maximal elements (z ∈ Cx is maximal if there
are no y ∈ Cx such that z < y ) fx =

⋃
z<x fz is as wanted. (Notice that we use

replacement axiom here.) On the other hand, if Cx has maximal elements, we simply
let fx = (

⋃
z<x fz)∪{(z, G(fz))| z ∈ Cx is maximal} . Again by (*), fx is as wanted.

So we are left to prove that for all x , F (x) = G(F ↾ Cx) . So suppose that this
holds for all z ∈ Cx and let fx be as in the definition of φ . Then by Exercise 1.2.3.1,
F ↾ Cx = fx and thus F (x) = G(fx) = G(F ↾ Cx) .

1.3 Ordinals

1.3.1 Definition.

(i) We say that a set a is transitive if x ∈ y ∈ a implies x ∈ a (i.e. ∪a ⊆ a and
notice that if a and b are transitive, then so is a ∩ b).

(ii) We say that a set α is an ordinal if it is transitive and linearly ordered by
∈ . For ordinals α and β , one usually writes α < β instead of α ∈ β and α ≤ β for
α < β or α = β .

(iii) The class of all ordinals is denoted by On .

1.3.2 Exercise.

(i) Show that ordinals are well-ordered by ∈ .
(ii) Show that 0 = ∅ is an ordinal.
(iii) Show that if α is an ordinal, then also α+ 1 = α ∪ {α} is an ordinal.
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(iv) Show that if a is a set of ordinals and for all α, β ∈ a , either α ⊆ β or
β ⊆ α , then ∪a is an ordinal.

(v) Show that if α is an ordinal and β ∈ α , then β is an ordinal.

(vi) Show that if α and β are ordinals, then so is α ∩ β .

1.3.3 Lemma. Let α and β be ordinals.

(i) If α ⊆ β , then either α = β or α ∈ β .

(ii) Either α ⊆ β or β ⊆ α .

Proof. (i): Suppose α 6= β . Then β − α is not empty and thus it has the least
element γ . If δ ∈ γ , then δ ∈ β and so by the choice of γ , δ ∈ α . On the other
hand, if δ ∈ α , then γ 6≤ δ , because otherwise γ ∈ α and this is against our choice
of γ . Thus since ∈ linearly orders β , δ ∈ γ . It follows that α = γ and so α ∈ β .

(ii): Now by Exercise 1.3.2 (vi), γ = α ∩ β is an ordinal. Then γ = α or γ = β
because otherwise by (i), γ ∈ α ∩ β = γ . In the first case α ⊆ β and in the other
case β ⊆ α .

1.3.4 Exercise.

(i) Show that On is well-ordered by ∈ .

(ii) Show that α+ 1 is the least ordinal strictly greater than the ordinal α .

(iii) For a set a of ordinals show that ∪a is the supremum of a (in particular,
∪a is an ordinal).

1.3.5 Definition.

(i) We say that an ordinal α is a successor ordinal if α = β+1 for some ordinal
β and otherwise α is called a limit ordinal. However, 0 is usually not considered a
limit ordinal.

(ii) By ω we denote the least limit ordinal 6= 0 (if such ordinal exists).

1.3.6 Lemma. For every ordinal β there is a limit ordinal α > β .

Proof. We show first that ω exists. By Infinity, there is an inductive set b . Let
a = b ∩ On and α = ∪a . By Exercise 1.3.4 (iii), α is an ordinal. Also it is easy to
see that a is inductive and thus α can not be a successor ordinal. So in particular
ω exists.

Now for given ordinal β , choose a function f : ω → On so that f(0) = β and
for successor ordinals γ + 1 ∈ ω , f(γ + 1) = f(γ) + 1 (exercise: show that f exists
and rng(f) ⊆ On , keep in mind that every ordinal in ω excluding 0, is a successor
ordinal). Let α = ∪rng(f) . Clearly α is as wanted.

1.3.7 Exercise. Show that there is no class function f : ω → V such that for
all n ∈ ω , f(n+ 1) ∈ f(n) .

1.3.8 Theorem. For every set a there is an ordinal α and a one-to-one and
onto function f : α→ a .
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Proof. Let b be the set of all non-empty subsets of a and g be the choice
function for b . We define a class function G : V → V so that for all ordinals β and
functions h : β → a with rng(h) 6= a , G(h) = g(a − rng(h)) and for all other sets
x , G(x) = a . Let F : On→ V be such that for all ordinals γ , F (γ) = G(F ↾ γ) (by
Theorem 1.2.3) and suppose that for some ordinal γ , F (γ) = a . Then by letting α
be the least such ordinal, α and f = F ↾ α are clearly as wanted.

So it is enough to show that for some γ , F (γ) = a . Suppose not. Then
(by Separation) F−1 is a class function from a subset of a onto On . Thus by
Replacement On is a set. Thus β = ∪On is an ordinal. So β ∈ β + 1 ∈ On and
thus β ∈ β , a contradiction.

1.3.9 Exercise. (Zermelo’s well-ordering theorem) Every set can be well-
ordered.

In fact, under e.g. ZF, Zermelo’s well-ordering theorem is equivalent with Choice:
To get Choice, simply choose a well-ordering < for ∪a and then for every x ∈ a , let
f(x) be the <-least element of x .

The sets Vα in the next exercise form so called cumulative hierarchy.

1.3.10 Exercise. We define Vα for all ordinals α as follows: V0 = ∅ , Vα+1 =
P (Vα) , and for limit ordinals α , Vα = ∪γ<αVγ . Show that

(i) α 7→ Vα is a class functions,
(ii) for γ < α , Vγ ⊆ Vα ,
(iii) for all sets a there is an ordinal α such that a ∈ Vα .

1.3.11 Exercise. For all x let TC(x) be the class of those y for which there
are 0 < n < ω and xi , i ≤ n , such that x0 = y , xn = x and for all i < n , xi ∈ xi+1

(i.e. TC(x) is the least transitive set a such that x ⊆ a). Show that for all x ,
TC(x) is a set.

1.4 Cardinals

1.4.1 Definition. We say that sets a and b have the same cardinality, if there
is a one-to-one and onto function f : a→ b .

1.4.2 Exercise.

(i) Show that the equicardinality relation from Definition 1.4.1 is an equivalence
relation.

(ii) Show that if there is an onto function f : a → b , then there is a one-to-one
function g : b→ a and vice versa assuming that b 6= ∅ .

1.4.3 Theorem. (Cantor-Bernstein) For all sets a and b , if there are one-to-
one functions f : a→ b and g : b→ a , then a and b have the same cardinality.

Proof. For all n ∈ ω , we define sets An and Bn as follows: A0 = a , B0 = b ,
An+1 = g(f(An)) and Bn+1 = f(g(Bn)) . Finally, let A =

⋂
n<ω An and B =⋂

n<ω Bn . Clearly, for n < ω , An+1 ⊆ An and Bn+1 ⊆ Bn . Also (e.g. draw a
picture) f ↾ (An−g(Bn)) is one-to-one function from An−g(Bn) onto f(An)−Bn+1 ,
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g−1 ↾ (g(Bn) − An+1) is one-to-one function from g(Bn) − An+1 onto Bn − f(An)
and f ↾ A is one-to-one function from A onto B . By putting these together, the
required one-to-one and onto function is found.

1.4.4 Definition.

(i) We say that an ordinal α is a cardinal if there are no β < α and a one-to-one
function from α to β .

(ii) We say that a set a is finite, if for all one-to-one functions f : a → a ,
rng(f) = a .

1.4.5 Lemma. ω and every n ∈ ω are cardinals. In fact, every n ∈ ω is
finite.

Proof. We start by proving the claim for the elements of ω . Clearly it is enough
to show that they are finite. We prove this by induction (i.e. using Theorem 1.2.2,
keeping in mind that all elements of ω , excluding 0, are successor ordinals and, in
fact, the claim we prove is that every ordinal α is either finite or ≥ ω ).

For n = 0, this is clear. So suppose that this holds for n and let f : n+1 → n+1
be one-to-one. For a contradiction suppose that rng(f) 6= n + 1. By applying a
transposition, we may assume that n 6∈ rng(f) . But then f ↾ n is a one-to-one
function from n to a proper subset of n , a contradiction.

If ω is not a cardinal, then there are n ∈ ω and a one-to-one function f : ω → n .
But then f ↾ n+ 1 contradicts what we just proved.

1.4.6 Exercise.

(i) Show that an ordinal α is finite iff α ∈ ω .
(ii) Show that all infinite cardinals are limit ordinals.
(iii) Show that if a is a set of cardinals, then ∪a is a cardinal.

1.4.7 Lemma. For every set a , there is a unique cardinal κ for which there
is a one-to-one function from κ onto a .

Proof. Clearly there cannot be more than one such cardinal. So we prove just
the existence: Let κ be the least ordinal such that there is a one-to-one function f
from κ onto a (such κ exists by Theorem 1.3.8). It is enough to show that κ is
a cardinal. If not, then there is α < κ and a one-to-one function g : κ → α . By
Cantor-Bernstein, we can choose g so that it is also onto. But then α and f ◦ g−1

witness that κ was not minimal.

1.4.8 Definition. Let a be a set. The unique cardinal κ for which there is a
one-to-one function from κ onto a , is called the cardinality of a and is denoted by
|a| . If the cardinality of a set is ≤ ω , we say that the set is countable.

1.4.9 Exercise.

(i) Show that a set a is finite iff |a| ∈ ω .
(ii) Show that |a| ≤ |b| iff there is a one-to-one function f : a→ b .
(iii) Show that if a and b are finite, then so is a ∪ b .
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The elements of ω are called natural numbers and thus ω is called also the
set of natural numbers i.e. IN. We also write 0 = ∅ as already mentioned and
1 = 0 + 1 = 0 ∪ {0} , 2 = 1 + 1, 3 = 2 + 1 etc. Recall that for all n ∈ ω ,
n = {0, 1, ..., n− 1} .

1.4.10 Theorem. For all non-empty sets a and b , if one of them is infinite,
then |a× b| = max{|a|, |b|} .

Proof. Clearly, it is enough to prove that for all infinite cardinals κ , |κ×κ| = κ .
For this it is enough to find a one-to-one function from κ × κ to κ . We order the
elements of On×On so that (α, β) < (γ, δ) if one of the following holds:

(i) max{α, β} < max{γ, δ} ,
(ii) α < γ ≤ max{α, β} = max{γ, δ} ,
(iii) α = max{α, β} = max{γ, δ} = γ and β < δ .

1.4.10.1 Exercise. Show that < is a well-ordering of On×On .

Using Theorem 1.2.3, define Γ : On × On → On so that for all x ∈ On × On ,
Γ(x) is the least ordinal (strictly) greater than every element in rng(Γ ↾ (On×On)x)
(for this notation, see Theorem 1.2.3).

1.4.10.2 Exercise. Show that F is strictly increasing and that if Γ(α, β) = γ
and γ′ < γ , then there is (α′, β′) < (α, β) such that Γ(α′, β′) = γ′ .

By Exercise 1.4.10.2, it is enough to show that for infinite cardinals κ , rng(Γ ↾

(κ× κ)) ⊆ κ . We do this by induction. The case when κ = ω is left as an exercise.
So suppose κ > ω . For a contradiction suppose that there are α, β < κ such that
Γ(α, β) ≥ κ . Let λ = max{|α|, |β|} < κ . Then by Exercise 1.4.10.2, Γ−1 ↾ κ : κ →
(On×On)(α,β) is one-to-one and by the induction assumption (from which it follows
that if |a|, |b| ≤ λ , then |a× b| ≤ λ), |(On×On)(α,β)| ≤ |max{α, β}×max{α, β}| =
|λ× λ| = λ , a contradiction.

As a hint for the item (i) in next exercise we want to mention that the claim in
the item can not be proved without Choice. If Choice is not assumed, it is possible
that the set of reals is a countable union of countable sets and we will see later that
the set of reals is not countable and this can be proved without Choice.

Also, instead of talking about functions f : I → X for some sets I and X , it
is sometimes notationally convenient to talk about indexed sequences (xi)i∈I . So by
an indexed sequence (xi)i∈I we simply mean a function f : I → V such that for all
i ∈ I , f(i) = xi . Thus for x : a→ V , we sometimes also write xi in place of x(i) .

1.4.11 Exercise.

(i) Suppose κ is an infinite cardinal and a is a set of cardinality ≤ κ such that
also every element of it is of cardinality ≤ κ . Show that | ∪ a| ≤ κ . In particular,
for all sets a and b , if one of them is infinite, then |a ∪ b| = max{|a|, |b|} .

(ii) For all infinite cardinals κ , show that there are sets Xi ⊆ κ , i ∈ κ , such
that for all i , the cardinality of Xi is κ and for all i 6= j , Xi ∩Xj = ∅ .

(iii) Show that the set of rational numbers is countable.
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For sets a and b , by ab we mean the set of all functions from b to a (e.g. INn ).
If b = β is an ordinal we also write a<β for

⋃
α<β a

α and a≤β for
⋃
α≤β a

α . On the
level of notation, we also identify f : 2 → X with (f(0), f(1)) and thus think that
X ×X is the same as X2 , see the discussion on indexed sequences above.

1.4.12 Lemma. For all cardinals κ , |P (κ)| = |2κ| and if κ is infinite, then
|2κ| = |(2κ)κ| = |2(κ×κ)| = |κκ| .

Proof. For |P (κ)| = |2κ| , just map every a ⊆ ω to its characteristic function.
|2κ| = |2κ×κ| is clear by Lemma 1.4.10. To find a one-to-one function F from 2κ×κ

onto (2κ)κ , simply for η ∈ 2κ×κ let ξ = F (η) be such that for all n,m < κ ,
(ξ(n))(m) = η(n,m) . Since 2κ ⊆ κκ , |2κ| ≤ |κκ| . Finally since κ ≤ |2κ| , it is easy
to see that |κκ| ≤ |(2κ)κ| .

One often denotes |2κ| by just 2κ . It is clear from the context which possibility
we mean.

1.4.13 Theorem. For all sets a , |P (a)| > |a| .

Proof. Clearly it is enough to prove the claim in the cases when a is some
cardinal κ , i.e. that 2κ > κ . For finite cardinals the claim is clear and so suppose
κ is infinite. For a contradiction, suppose 2κ ≤ κ . Clearly, 2κ ≥ κ and thus, under
the counter assumption, there is a one-to-one function f from κ onto 2κ . Denote
f(α) by ξα .

Let g : κ → 2 be such that for all α < κ , g(α) = 1 − ξα(α) . Then g ∈ 2κ and
so for some α < κ , g = ξγ . Now g(γ) = 1− ξγ(γ) = 1− g(γ) , a contradiction.

1.4.14 Definition. Let γ be a limit ordinal.
(i) The cofinality cf(γ) of γ is the least ordinal α such that there is a function

f : α→ γ such that ∪rng(f) = γ .
(ii) γ is called regular if cf(γ) = γ .

1.4.15 Exercise.

(i) Show that for all limit ordinals γ , cf(γ) is a regular cardinal. Conclude that
regular ordinals are cardinals.

(ii) Show that ω is a regular cardinal.

1.4.16 Definition. If κ is a cardinal, then the least cardinal λ greater that
κ is denoted by κ+ . If κ is λ+ for some cardinal λ , it is called a successor cardinal
and otherwise it is a limit cardinal.

1.4.17 Exercise.

(i) Show that for all ordinals α , there is a cardinal κ > α .
(ii) Show that every infinite successor cardinal is regular.
(iii) Let X , Y , I and αi and fi , i ∈ I , be as in Definition 1.5.1 (ii). Sup-

pose further that κ is a regular cardinal such that for all i ∈ I , αi < κ . Then
C(Y, fi)i∈I = Cκ(Y, fi)i∈I .

We finish this section by defining a class function α 7→ ωα (sometimes ωα is
also denoted by ℵα ).
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1.4.18 Definition. We define ωα for all ordinals α as follows: ω0 = ω ,
ωα+1 = ω+

α and for limit ordinals α , ωα = ∪γ<αωγ .

1.5 Recursive definitions revisited

1.5.1 Definition. Suppose X is a set.

(i) Suppose α is an ordinal, f : Xα → X is a function and C ⊆ X . We say
that C is closed under f if for all x ∈ Cα , f(x) ∈ C .

(ii) Suppose Y ⊆ X and for all i ∈ I , αi is an ordinal and fi : X
αi → X is

a function. Then by C(Y, fi)i∈I we mean the ⊆-least subset C of X such that it
contains Y and is closed under every fi , i ∈ I (if such C exists).

1.5.2 Lemma. Let X , Y , I and αi and fi , i ∈ I , be as in Definition 1.5.1
(ii). Then C(Y, fi)i∈I exists.

Proof. Just let C(Y, fi)i∈I be the intersection of all sets C ⊆ X which contain
Y and are closed under every fi (notice that X is such a set).

1.5.3 Lemma. Let X , Y , I and αi and fi , i ∈ I , be as in Definition 1.5.1
(ii). Suppose that φ is a property, every element of Y has it and for all k ∈ I and
x ∈ C(Y, fi)

αk

i∈I the following holds: If every xj , j < αk , has the property, then also
fk(x) has the property. Then every element of C(Y, fi)i∈I has the property φ .

Proof. Let C be the set of all elements of C(Y, fi)i∈I that have the property
φ . Then C contains Y and is closed under every fi . Thus C(Y, fi)i∈I ⊆ C .

1.5.4 Definition. Let X , Y , I and αi and fi , i ∈ I , be as in Definition
1.5.1 (ii). For all ordinals α , we define Cα(Y, fi)i∈I as follows:

(i) C0(Y, fi)i∈I = Y ,

(ii) Cα+1(Y, fi)i∈I = Cα(Y, fi)i∈I ∪ {fi(x)| i ∈ I, x ∈ (Cα(Y, fi)i∈I)
αi} ,

(iii) if α is limit, then Cα(Y, fi)i∈I =
⋃
β<αCβ(Y, fi)i∈I .

1.5.5 Exercise. Show that α 7→ Cα(Y, fi)i∈I is a class function from On
to P (X) and that for all ordinals α < β , Y ⊆ Cα(Y, fi)i∈I ⊆ Cβ(Y, fi)i∈I ⊆
C(Y, fi)i∈I .

1.5.6 Lemma. Let X , Y , I and αi and fi , i ∈ I , be as in Definition 1.5.1
(ii) and κ be a regular cardinal. Suppose further that for all i ∈ I , αi < κ . Then
C(Y, fi)i∈I = Cκ(Y, fi)i∈I .

Proof. By Exercise 1.5.5, it is enough to show that Cκ(Y, fi)i∈I is closed under
every fk , k ∈ I . For this let x ∈ (Cκ(Y, fi)i∈I)

αk . Since κ is regular, there is γ < κ
such that x ∈ (Cγ(Y, fi)i∈I)

αk (Exercise, think of function g : αk → ω1 such that
for all β < αk , g(β) is the least ordinal δ for which xβ ∈ Cδ(Y, fi)i∈I ). But then
fi(x) ∈ Cγ+1(Y, fi)i∈I ⊆ Cκ(Y, fi)i∈I .
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2. Generic extension

The strategy to show that some first-order sentence φ is not provable from ZFC
is to first find a suitable partial-order P = (P,<) (i.e. a set P together with a
partial-ordering < of it) and a P -generic filter G over V and then construct a
generic extension V [G] and finally show that V [G] is a model of ZFC together with
¬φ . However, this construction can not be done inside V . It follows that we work
outside V .

So the picture is as follows: We have two versions of ZFC. One is our meta
theory (’the real ZFC’) i.e. our foundations of mathematics, which can be though as
a formal first-order theory but also as any other theory in mathematics in every day
language (if a bit care is taken). For notational reasons, we think the meta theory
also as a first-order theory. The other one is our object theory which is a coded
version of the formal theory (we do not give the coding explicitly but assume that it
is a natural one). The meta theory talks about the object theory as e.g. in the proof
of Gödel’s incompleteness theorem for PA in the course Matemaattinen logiikka; only
now it is easier to think the formulas of the object theory as real formulas since in
mathematics we are used to code mathematical object as sets much better than as
natural numbers. In fact, we do not distinguish formulas from their codes. This is
much what we do every time when we work with formal theories, only now we make
this explicit. However, a bit care is needed here. On the object side existence means
that our meta theory proves the existence and nothing else. Still we often follow the
common practice in mathematics and talk about the object side as if we are working
in a model of the meta theory.

To be able to talk about V in the meta theory, we think it as a constant and
in meta theory assume that it satisfies the object ZFC i.e. that ”V |= φ” belongs
to the meta theory for all axioms φ of (meta) ZFC. Of course, in set theory we can
express everything that is needed about the object side e.g. to be a formula, to be
an axiom of ZFC, to be true in a model, to be a proof etc. We simply write out the
usual definitions in the meta theory. It is useful to notice that if on the meta side
ZFC proves some sentence, then ZFC proves that the same is true on the object side.
In particular, everything provable on the meta level is true in V .

In order to be able to do the constructions, we need to assume that the meta
theory thinks that V is well-founded in the following sense (below when we talk
about well-founded partial orderings of classes we mean in the sense of Definition
1.2.1): there are no ai ∈ V , i < ω , such that for all i < ω , ai+1 ∈ ai in V . We
also assume that the meta theory thinks that V is transitive in the following sense:
Every element x of V is the set of all elements y that V thinks are elements of x . In
particular, then every element of V is a subset of V . This simplifies our definitions.

2.1 Exercise. Show that the transitivity assumption can be made without
loss of generality.

Finally, we are going to assume that V is countable. Recall that in Section 5,
we will look at the questions: why all our additional assumptions are harmless and
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why finding V [G] such that V [G] |= ¬φ shows that ZFC does not prove φ .
Let φ be a sentence (with possible parameters). Since we do not distinguish

formulas and their codes and, as pointed out above, the truth in V is expressible in
ZFC, we can talk about the truth of φ in V . We use φV as a shorthand for the
sentence that says that φ is true in V . And so we can e.g. claim that φV → φ . And
we can do the same for formulas as well. E.g. claim ∀v0(v0 ∈ V → (φ(v0)

V → φ(v0))
makes sense. For a formula φ(v0) with only v0 free (but possibly with parameters
from V ), by φV we mean also the set of all a ∈ V such that V |= φ(a) . If φV

contains just one element, we use φV also to denote that element e.g. ωV is the
element of V that satisfies the definition of ω .

Since we have assumed that V is transitive, for many sentences φ (with param-
eters from V ), φV ↔ φ is true (i.e. provable from in our meta theory) and when
this is the case, we say that φ is absolute for V .

2.2 Exercise. Let a, b ∈ V . Show that
(i) (a ∈ b)V ↔ (a ∈ b) .
(ii) (”a is a partial order”)V ↔ (”a is a partial order”) .
(iii) (a ∈ On)V ↔ (a ∈ On) .
(iv) ωV = ω .
(v) V Vω = Vω
(vi) ∀x(”x is a formula” ↔ (x ∈ V ∧ (”x is a formula”)V ).

For this and the next section, we fix a partial order P = (P,<) ∈ V with a
largest element 1 (these are often called po-sets). For a, b ∈ P , we write a||b if there
is c ∈ P such that c ≤ a, b . If there is no such c , we write a⊥b .

2.3 Definition.

(i) We say that D ∈ V is dense in P if D ⊆ P and for all a ∈ P , there is b ∈ D
such that b ≤ a .

(ii) We say that G ⊆ P is a filter if the following holds:
(a) 1 ∈ G ,
(b) if a ∈ G and b ≥ a , then b ∈ G ,
(c) if a, b ∈ G , then there is c ∈ G such that c ≤ a, b .
(iii) We say that G is P -generic over V if it is a filter and for all D ∈ V , if D

is dense in P , then G ∩D 6= ∅ .

2.4 Exercise.

(i) For all D ∈ V , (”D is dense in P”)V ↔ (”D is dense in P”) .
(ii) Show that if G is P -generic over V and p ∈ P is such that for all q ∈ G ,

p||q , then p ∈ G .
(iii) Suppose that for all a ∈ P , there are b, c ∈ P such that b, c < a and b⊥c .

Show that if G is P -generic over V , then G 6∈ V .
(iv) Show that for all p ∈ P , there exists a P -generic G over V such that

p ∈ G .
(v) Suppose G is P -generic over V , p ∈ G and C ⊆ P is such that that for all

q ≤ p there is r ≤ q such that r ∈ C . Show that C ∩G 6= ∅ .

14



2.5 Definition. The set V P of P -names is defined as follows:
(i) ∅ is a P -name.
(ii) For all α ∈ OnV , and pi ∈ P , i < α , if for all i < α , τi is a P -name and

τ = {(τi, pi)| i < α} ∈ V , then τ is a P -name.

2.6 Exercise.

(i) Show that V P is a class in V .
(ii) Show that the following ordering <∗ of elements of V P is well-founded:

τ <∗ σ if there are n < ω , τi ∈ V P , i ≤ n , and pi ∈ P , i < n , such that τ0 = τ ,
τn = σ and for all i < n , (τi, pi) ∈ τi+1 .

(iii) Show that <∗ is a class in V .

2.7 Definition. Let G be P -generic over V .
(i) For all τ ∈ V P , τG is defined as follows: (∅G = ∅ and) τG = {σG| ∃p ∈

G((σ, p) ∈ τ)} .
(ii) V [G] = {τG| τ ∈ V P } .

We think V [G] as a {∈} -model letting the interpretation of ∈ be the natural
one that makes V [G] a transitive model (τG ∈V [G] σG if τG ∈ σG ). We use the same
notations with V [G] as with V . So e.g. φV [G] denotes the sentence that says that
φ is true in V [G] .

If a ∈ V [G] , then it has a name τ i.e. a P -name such that a = τG . This name
is often denoted by ȧ (or â , see below), but we are not very strict with this.

2.8 Definition. For each a ∈ V , we define the standard name â for a as

follows: ( ∅̂ = ∅ and) â = {(b̂, 1)| b ∈ a} .

2.9 Exercise. Show that for all P -generic G over V , âG = a and conclude
that V ⊆ V [G] .

We finish this section by defining the forcing notion 
 . In the next section we
give another definition for 
 and we prove that the two definitions are equivalent as
well as the very basic properties of this notion.

We start by defining the forcing language, This is a language that works on
the object side only, it does not have a counterpart on the meta side. So in the
definition below we describe a sentence of the meta language that expresses what
it means to be a formula in the forcing language. By a forcing language we mean
the first-order logic in the vocabulary {∈} ∪ {τ | τ ∈ V P } , where the P -names τ
are considered as constants. When we write a formula of this forcing language, we
usually point out what are the constants. So φ(τ1, ..., τn) means a formula in which
no other constants than τ1, ..., τn appear. Notice that then for a P -generic G over
V , φ((τ1)G, ..., (τn)G) is a {∈} -formula with parameters from V [G] .

2.10 Definition. Let φ(τ1, ..., τn) be a sentence in the forcing language and
p ∈ P . We say that p forces φ(τ1, ..., τn) and write p 
 φ(τ1, ..., τn) (or, if needed,
p 
P φ(τ1, ..., τn)), if for all P -generic G over V , the following holds: If p ∈ G , then
V [G] |= φ((τ1)G, ..., (τn)G) .
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2.11 Exercise.

(i) Suppose p 
 φ and q ≤ p . Show that q 
 φ .
(ii) Show that p 
 φ ∧ ψ iff p 
 φ and p 
 ψ .
(iii) Suppose p 
 φ and ⊢ φ→ ψ . Show that p 
 ψ .

By Ġ we denote the P -name {(p̂, p)| p ∈ P} .

2.12 Exercise. Show that ĠG = G and conclude that G ∈ V [G] .

3. Forcing

We define an ordering ≤∗ to (V P )2 so that (τ, σ) ≤∗ (τ ′, σ′) if τ ≤∗ τ ′ and
σ ≤∗ σ′ (see Exercise 2.6 (ii)).

3.1 Exercise. Show that ≤∗ is well-founded.

3.2 Definition. For p ∈ P and P -names τ and σ , the relation p 
∗ τ = σ
is defined as follows: p 
∗ τ = σ if both (a) and (b) below hold:

(a) for all q ≤ p and (τ ′, s) ∈ τ , if q ≤ s , then there are r ≤ q and (σ′, t) ∈ σ
such that r ≤ t and r 
∗ τ ′ = σ′ .

(b) for all q ≤ p and (σ′, t) ∈ σ , if q ≤ t , then there are r ≤ q and (τ ′, s) ∈ τ
such that r ≤ t and r 
∗ τ ′ = σ′ .

3.3 Exercise.

(i) Show that the set {(p, τ, σ)| p 
∗ τ = σ} is a class in V .
(ii) Show that if for all q ≤ p there is r ≤ q such that r 
∗ τ = σ , then

p 
∗ τ = σ .

3.4 Lemma. Suppose G is P -generic over V .
(i) If p ∈ G and p 
∗ τ = σ , then τG = σG .
(ii) If τG = σG , then there is p ∈ G such that p 
∗ τ = σ .

Proof. (i): By symmetry it is enough to show that τG ⊆ σG . For this it is
enough to show the following: If (τ ′, s) ∈ τ and s ∈ G , then τ ′G ∈ σG . Let p′ ∈ G
be such that p′ ≤ p, s . By the definition of 
∗ and the definition of a P -generic
set over V , we can find (σ′, t) ∈ σ and r ∈ G such that r ≤ p′, t and r 
∗ τ ′ = σ′

(exercise, hint: find a suitable dense set, the proof of (ii) may help). By the induction
assumption, τ ′G = σ′

G and thus τ ′G ∈ σG .
(ii): We show there is p ∈ G such that (a) from Definition 3.2 holds. Similarly

we see that there is p ∈ G such that (b) from Definition 3.2 holds. This suffices
(exercise). For a contradiction suppose that there is no such p ∈ G .

For all p ∈ P , let q(p) and (τ ′(p), s(p)) witness the failure of (a) in the case
that these elements exists. If they do not exists, we say that p is good. Now
{q ∈ P | ∃p ∈ P (q ≤ q(p))} ∪ {q ∈ P | q is good} is dense in P (exercise). Since we
assumed that there is no good p ∈ G , there must be p ∈ G (since G is a filter) such
that q(p) ∈ G and thus we may assume that q(p) = p .

But then for all (σ′, t) ∈ σ such that t ∈ G , for no r ∈ G , r 
∗ τ ′(p) = σ′ .
Thus by the induction assumption, for all (σ′, t) ∈ σ such that t ∈ G , τ(p)G 6= σ′

G .
Since τ ′(p)G ∈ τG , we have a contradiction.
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3.5 Definition. Suppose p ∈ P and τ and σ are P -names. We define
p 
∗ τ ∈ σ as follows: p 
∗ τ ∈ σ if for all q ≤ p , there are r ≤ q and (σ′, t) ∈ σ
such that r ≤ t and r 
∗ τ = σ′ .

3.6 Exercise.

(i) Show that the set {(p, τ, σ)| p 
∗ τ ∈ σ} is a class in V .
(ii) Show that if for all q ≤ p there is r ≤ q such that r 
∗ τ ∈ σ , then

p 
∗ τ ∈ σ .

3.7 Lemma. Suppose G is P -generic over V .
(i) If p ∈ G and p 
∗ τ ∈ σ , then τG ∈ σG .
(ii) If τG ∈ σG , then there is p ∈ G such that p 
∗ τ ∈ σ .

Proof. As the proof of Lemma 3.4.

3.8 Definition. Let p ∈ P and φ = φ(τ1, ..., τn) be a sentence in the forcing
language. We define p 
∗ φ as follows:

(i) If φ is an atomic formula, we have already defined p 
∗ φ .
(ii) If φ = ¬ψ , then p 
∗ φ if there is no q ≤ p such that q 
∗ ψ .
(iii) If φ = ψ ∧ θ , then p 
∗ φ if p 
∗ ψ and p 
∗ θ .
(iv) If φ = ∃vkψ(vk, τ1, ..., τn) , then p 
∗ φ if for all q ≤ p there are a P -name

τ and r ≤ q such that r 
∗ ψ(τ, τ1, ..., τn) .

3.9 Exercise.

(i) Show that the set {(p, φ)| p 
∗ φ} is a class in V .
(ii) Show that if for all q ≤ p there is r ≤ q such that r 
∗ φ , then p 
∗ φ .
(iii) Show that if p 
∗ φ and q ≤ p , then q 
∗ φ .

3.10 Theorem. Suppose G is P -generic over V .
(i) If p ∈ G and p 
∗ φ(τ1, ..., τn) , then V [G] |= φ((τ1)G, ..., (τn)G) .
(ii) If V [G] |= φ((τ1)G, ..., (τn)G) , then for some p ∈ G , p 
∗ φ(τ1, ..., τn) .

Proof. We prove the claims simultaneously by induction on φ . If φ is an atomic
formula, then we have already proved this. We prove the claims in the case φ = ¬ψ ,
the two other cases are left as an exercise.

(i): For a contradiction suppose V [G] |= ψ . Then by the induction assumption,
there is q ∈ G such that q 
∗ ψ . By Exercise 3.9, we may assume that q ≤ p , a
contradiction.

(ii): For a contradiction, suppose that there is no such p ∈ G i.e. for all p ∈ G
there is qp ∈ P such that qp ≤ p and qp 
∗ ψ . But then as in the proof of Lemma
3.4, we can find p ∈ G such that qp ∈ G . By the induction assumption V [G] |= ψ ,
a contradiction.

3.11 Corollary. p 
 φ iff p 
∗ φ .

Proof. From right to left the claim follows immediately from Theorem 3.10 (i).
For the other direction, by Exercise 3.9 (ii), it is enough to show that for all q ≤ p ,
there is r ≤ q such that r 
∗ φ . But this is clear by Theorem 3.10 (ii).

We finish this section by showing that V [G] satisfies all the axioms of ZFC.
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3.12 Theorem. Let φ be an axiom of ZFC. Then φV [G] holds.

Proof. For extensionality, foundation and infinity, the claim is immediate by
our construction of V [G] . We prove separation, the rest are similar.

Let τ and τ1, ..., τn be P -names and φ(v0, ..., vn) be a formula. Let G be
P -generic over V . We need to show that the set

a = {x ∈ τG| φ(x, (τ1)G, ..., (τn)G)
V [G]}

is in V [G] . For this we need to find a P -name for a .
We let σ be the set of all pairs (δ, p) such that
(i) p ∈ P and for some q ≥ p , (δ, q) ∈ τ ,
(ii) p 
 φ(δ, τ1, ..., τn) .

Notice that by Exercise 3.9 (i), σ is a P -name (i.e. is in V ). We are left to show
that σG = a .

σG ⊆ a : Suppose δ′G ∈ σG . Then there are p ∈ G and δ such that (δ, p) ∈ σ
and p 
 δ′ = δ . But then δ′G = δG ∈ τG and φ(δG, (τ1)G, ..., (τn)G)

V [G] holds i.e.
δ′G ∈ a .

a ⊆ σG : Suppose δ′G ∈ a . Then δ′G ∈ τG and so there are p ∈ G and δ such that
p 
 δ′ = δ and (δ, q) ∈ τ for some q ≥ p . Also for some p′ ∈ G , p′ 
 φ(δ′, τ1, ..., τn) .
Clearly we may assume that p′ = p . But then by Exercise 2.11, p 
 φ(δ, τ1, ..., τn)
and thus δG ∈ σG and so also δ′G ∈ σG .

3.13 Exercise. Show that the pairing axiom is true in V [G] .

3.14 Exercise.

(i) Show that if p 
 ∃vkψ(vk, τ1, ..., τn) , then there is a P -name τ such that
p 
 ψ(τ, τ1, ..., τn) . Hint: Definition 4.1 and Exercise 4.2 below.

(ii) Suppose C ∈ V [G] is a set of P -names. Show that in V [G] there is a
function f : C → V [G] such that for all τ ∈ C , f(τ) = τG .

3.15 Lemma. Let G be P -generic over V . Then OnV [G] = OnV .

Proof. Clearly OnV ⊆ OnV [G] . So for a contradiction, suppose that there is
α ∈ OnV [G] such that α 6∈ OnV . Then OnV ⊆ α . Let τ be a P -name such that
τG = α and let A be the set of all P -names σ such that (σ, q) ∈ τ for some q ∈ P .
Let κ ∈ V be a cardinal for which there is a bijection f : A × P → κ (in V ). Let
κ+ be the successor of κ in V .

Then there is some p ∈ P such that p 
 κ̂+ ⊆ τ . And so for all γ ∈ κ+ there
is (δγ , pγ) ∈ A × P such that pγ 
 δγ = γ̂ . By Corollary 3.11 and Exercise 3.9 (i),
we can choose δγ and pγ so that the function g : κ+ → A × P , g(γ) = (δγ , pγ)
is in V and clearly it is an injection. Thus f ◦ g is an injection from κ+ to κ , a
contradiction.

4. Negation of continuum hypothesis

In this section we prove the consistency of the negation of the continuum hy-
pothesis.
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4.1 Definition. Let P = (P,<) be a partial order.
(i) We say that A ⊆ P is an antichain if for all p, q ∈ A , if p 6= q , then p⊥q .

We say that A is a maximal antichain if no antichain is a proper extension of A .
(ii) For a cardinal κ , we say that P has κ-cc (chain condition) if |A| < κ for

all antichains A ⊆ P .

4.2 Exercise.

(i) Suppose A ⊆ P is an antichain (in V ). Show that A is maximal iff D =
{p ∈ P | ∃q ∈ A(p ≤ q)} is dense in P .

(ii) Show that if A ⊆ P is a maximal antichain (in V ) and G is P -generic over
V , then G ∩ A is a singleton.

Recall that by ω1 we denote the least cardinal > ω i.e. ω+ . ω1 -cc is usually
called ccc (countable chain condition).

4.3 Theorem. Suppose that in V the following holds: P has κ-cc and
cf(λ) = γ ≥ κ . Let G be P -generic over V . Then in V [G] , cf(λ) = γ .

Proof. For a contradiction, suppose that in V [G] there are θ < γ and f : θ → λ
such that ∪(rng(f)) = λ (notice that since γ ⊆ V , θ ∈ V ). Let ḟ be a P -name
such that ḟG = f . When this happens, we say that ḟ is a P -name for f .

4.3.1 Exercise. Show that there is a P -name τ and p ∈ G such that p 


τ = ḟ and 1 forces that τ is a function from θ̂ to λ̂ .

So we may assume that 1 forces that ḟ is a function from θ̂ to λ̂ .

4.3.2 Exercise. Show that for all α < θ , there is a maximal antichain Aα ⊆ P
such that for all p ∈ Aα , there is βp for which p 
 ḟ(α̂) = β̂p .

For all α < θ , let δα = ∪{βp + 1| p ∈ Aα} . By κ-cc and the assumption that
cf(λ) ≥ κ , δα < λ . Let δ = ∪{δα| α < θ} . Since θ < cf(λ) , δ < λ . But clearly,
rng(f) ⊆ δ , a contradiction.

4.4 Corollary. If in V , P has κ-cc, κ is regular and λ ≥ κ is a cardinal,
then λ is a cardinal also in V [G] .

Proof. Clearly it is enough to prove this under the additional assumption that
λ is regular (exercise). But then the claim follows immediately from Theorem 4.3.

Theorem 4.3 gives an alternative way of proving Lemma 3.15.

4.5 Corollary. Suppose in V , P is a partial order and G is P -generic over
V . Then for all α ∈ V [G] , (α ∈ On)V [G] iff α ∈ V and (α ∈ On)V .

Proof. By Exercise 2.2 (ii), it is enough to show that (α ∈ On)V [G] implies
that α ∈ V . For this it is enough to find a cardinal λ ∈ V such that in V [G] , α < λ
(as above). Let α̇ be such that α̇G = α . Then there are (in V ) a cardinal κ and a
function f such that dom(f) = κ and

rng(f) = {τ ∈ TC(α̇)| ∃p ∈ P ((τ, p) ∈ α̇)}.
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Now in V , choose a regular cardinal λ so that λ > κ and λ > |P | . Then By
Corollary 4.4, λ is a cardinal also in V [G] . Also by Exercise 3.14, in V [G] , there is
a function g such that dom(g) = κ and for all γ < κ , g(γ) = f(γ)G . Then clearly
α ⊆ rng(g) and thus |a| < λ . But then α < λ .

4.6 Definition. Let κ > ω be a regular cardinal.
(i) C ⊆ κ is called cub (closed and unbounded) if it is unbounded in κ (i.e. for

all α < κ there is β ∈ C such that β > α) and for all α < κ , if ∪(C ∩ α) = α , then
α ∈ C .

(ii) S ⊆ κ is stationary if for all cub C ⊆ κ , S ∩ C 6= ∅ .

4.7 Exercise. Suppose that for all α < κ , Cα ⊆ κ is cub. Show that

∆α<κCα = {α ∈ κ| ∀γ < α(α ∈ Cγ)}

is cub. Conclude that every cub set is stationary.

4.8 Lemma. (Fodor’s lemma) Suppose S ⊆ κ is stationary and f : S → κ is
such that for all α ∈ S , f(α) < α . Then there is a stationary S′ ⊆ S and α < κ
such that f(γ) = α for all γ ∈ S′ .

Proof. Suppose that there are no such S′ and α . Then for all α < κ , there is
cub Cα ⊆ κ such that for all γ ∈ Cα ∩ S , f(γ) 6= α . Let γ ∈ (∆α<κCα) ∩ S . Then
for all α < γ , f(γ) 6= α , a contradiction.

Recall that by |α|<κ we mean the cardinality of the set {f : β → |α| | β < κ}
which is the same as the cardinality of the set {f : β → α| β < κ} .

4.9 Lemma. (∆ -lemma) Suppose λ > κ are regular cardinals, for all α < λ ,
|α|<κ < λ and A be a set. For all i < λ , let Ai ⊆ A be a set of size < κ . Then
there is an unbounded X ⊆ λ and Y ⊆ A such that for all i, j ∈ X , if i 6= j , then
Ai ∩ Aj = Y .

Proof. Without loss of generality we may assume that A = λ . Let S = {γ <
λ| cf(γ) = κ} .

4.9.1 Exercise. Show that S is stationary.

Define f : S → λ so that f(γ) = ∪(Aγ∩γ) . Notice that for all γ ∈ S , f(γ) < γ .
By Fodor’s lemma, there is stationary S′ ⊆ S and α < λ such that f(γ) = α for all
γ ∈ S′ . By the pigeon hole principle and the assumption that |α + 1|<κ < λ , there
is Y ⊆ (α+ 1) and unbounded X ′ ⊆ S′ such that for all γ ∈ X ′ , Aγ ∩ γ = Y .

By induction on i < λ , we choose ordinals γi ∈ X ′ as follows:
(i) γ0 = min(X ′ − α) ,
(ii) for i > 0, γi = min(X ′ − ∪{(γj ∪

⋃
Aγj ) + 1| j < i}) .

Then Y and X = {γi| i < λ} are as wanted.

4.10 Definition. By CH (continuum hypothesis) we mean the claim 2ω = ω1 .
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Now we are ready to prove the consistency the the negation of continuum hy-
pothesis. We present the proof the way forcing constructions are usually presented
and in the next section we study the reason why the proof shows the claim (and what
it is that we claim).

4.11 Theorem. (Cohen) Con(ZFC) implies Con(ZFC+¬CH)

Proof. In V , let κ be a cardinal > ω1 and P be the partial order of all functions
p : Xp → 2, Xp ⊆ κ× ω finite, ordered by inverse inclusion i.e. p ≤ q if q ⊆ p .

4.11.1 Exercise. Show that (in V ) P has ccc. Hint: Suppose that {pi| i <
ω1} is an antichain and start by applying ∆ -lemma to the set {Xpi | i < ω1} .

Let G be P -generic over V and then from V [G] we find the function F = ∪G :
κ× ω → 2 and sets Xα = {n < ω| F (α, n) = 1} , α < κ .

4.11.2 Exercise.

(i) Show that, indeed, dom(∪G) = κ× ω .
(ii) Show that for all α < β < κ , Xα 6= Xβ .

By Corollaries 4.4 and 4.5, V and V [G] have the same cardinals and thus in
V [G] , 2ω ≥ κ > ω1 .

5. Why forcing works

The proof of Theorem 4.11 shows that if, on the meta level, there is a proof of
CH from ZFC, then on the meta level there is a proof of contradiction from ZFC
(and in fact there is a mechanical method of forming a proof of contradiction from
any proof of CH, making the forcing a constructive method). The reason for this is
the following:

So suppose that we are given a proof D of CH from ZFC. Let T be the finite set of
axioms of ZFC used in the proof D . Then, by looking at the proofs of Theorems 3.12
and 4.11, one can can find a finite set T ∗ of axioms of ZFC such that ZFC∪{φV | φ ∈
T ∗} ∪ {”V is countable and transitive”} proves ψV [G] for every ψ ∈ T ∪ {¬CH} .
Now using vakioiden lemma from the course Matemaattinen logiikka, we get that
ZFC proves

”∀V ((”V is countable and transitive” ∧
∧

φ∈T∗

φV ) → (
∧

ψ∈T∪{¬CH}

ψV [G]))”.

5.1 Fact. ([Ku]) For all finite T ′ ⊆ ZFC , ZFC proves that there exists
countable and transitive V such that for all φ ∈ T ′ , φV holds.

Thus by Fact 5.1, ZFC proves that there exists V ∗ such that for all φ ∈ T ∪
{¬CH} , φV

∗

holds.
On the other hand, since T proves CH, ZFC proves that ”T ⊢ CH” (as in the

proof of Gödel’s second incompleteness theorem in the course Matemaattinen logi-
ikka). Since ZFC also proves soundness (korrektisuuslause in the course Matemaat-

tinen logiikka), ZFC proves CHV
∗

. Thus ZFC proves that there is V ∗ in which
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a contradiction holds. As we saw in the course Matemaattinen logiikka, ZFC also
proves that there is no V ∗ which satisfies a contradiction and thus we have a proof
of a contradiction from ZFC.

5.2 Exercise. Does the proof of Theorem 4.11 show that ZFC+”ZFC ⊢ CH”
is inconsistent?

5.3 Exercise. What is wrong in the following deduction: By Fact 5.1, for
every finite subset T of ZFC, ZFC proves that T has a model. ZFC also proves the
compactness theorem, in particular, it proves that if every finite subset T of ZFC
has a model then ZFC has a model. Thus ZFC proves that ZFC has a model.

6. Continuum hypothesis

In this section we prove the consistency of CH. Originally this was proved by
Gödel. He did this by showing that CH is true in the universe of constructible sets.
This method is still used a lot to prove consistency results but often these results can
be proved also by using forcing. Consistency of CH is one such results.

6.1 Definition. We say that partial order P is κ-closed if for all α < κ and
all pi ∈ P , i < α , the following holds: If for all i < j < α , pj ≤ pi , then there is
p ∈ P such that p ≤ pi for all i < α .

6.2 Theorem. Suppose P is κ-closed, G is P -generic over V , X ∈ V ,
Y ∈ V [G] , Y ⊆ X and in V [G] , |Y | < κ . Then Y ∈ V .

Notice that above we do not yet know that κ is a cardinal in V [G] .
Proof. So in V [G] , there is λ < κ and f : λ → X such that Y = rng(f) and

let ḟ , Ẏ and Â be P -names for f , Y and A = P (X)V ∈ V . Then there is p ∈ P

which forces that Ẏ = rng(ḟ) and dom(ḟ) = λ̂ and Ẏ 6∈ Â and Ẏ ⊆ X̂ .
For all γ ≤ λ , we construct pγ ∈ P and xγ+1 ∈ X as follows:
(i) p0 = p ,
(ii) pγ+1 is such that pγ+1 ≤ pγ and for some xγ+1 ∈ X , pγ+1 forces that

ḟ(γ̂) = ˆxγ+1 ,
(iii) if γ is a limit ordinal, then pγ is any element of P such that pγ ≤ pi for

all i < γ .
Let Z = {xγ+1| γ < λ} ∈ V . Then pλ forces that rng(ḟ) = Ẑ ∈ Â , a contradiction.

6.3 Exercise. Suppose P is κ-closed, λ ≤ κ is a cardinal (in V ) and G is
P -generic over V . Show that λ is a cardinal in V [G] .

6.4 Theorem. Con(ZFC) implies Con(ZFC+CH).

Proof. Let κ = 2ω and let P be the set of all functions f : α → κ , α < ω1 ,
ordered by the inverse inclusion. Clearly P is ω1 -closed. Let G be P -generic over
V and f = ∪G ∈ V [G] .

6.4.1 Exercise. Show that f is a surjection from (ω1)
V onto κ .
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By Theorem 6.2, in V [G] there are no new subsets of ω and thus P (ω)V =
P (ω)V [G] . Also by Exercise 6.3, (ω1)

V = (ω1)
V [G] and so, in V [G] , |P (ω)| ≤ ω1 and

thus CH holds.

6.5 Exercise. Prove the consistency of the following claims:
(i) 2ω = ω1 and 2ω1 = ω2 ,
(ii) 2ω = 2ω1 = ω2 ,
(iii) 2ω = ω1 and 2ω1 > ω2 .

7. Iterated forcing - the starting point

In forcing, finding a suitable partial order is the main difficulty (keeping in mind
that one also has to show that the partial order works). From the literature one can
find several methods that are developed to help one to find these partial orders. The
most used method is iterated forcing. We start by going back to Exercise 6.5 and do
the constructions in a very complicated way. This helps in the next section.

In iterations the requirement that the partial order P = (P,≤, 1) must satisfy
that p ≤ q and q ≤ p implies that p = q , causes technical inconveniences. Thus
we lift this requirement i.e. we require only that ≤ is transitive and reflexive. Then
pEq if p ≤ q and q ≤ p is an equivalence relation and P/E is a partial order in the
old sense when one defines p/E ≤ q/E if p ≤ q and P and P/E work in forcing
exactly the same way (exercise). And if one wants, one can replace all partial orders
P with P/E everywhere below.

Thoughout this section P = (P,≤, 1) is a partial order (in V and in our new
sense).

7.1 Definition.

(i) We say that Q = (Q̇, ≤̇, 1̇) = (Q,≤, 1) is a P -name of a partial order if Q̇ ,
≤̇ and 1̇ are P -names and 1 forces that ≤̇ is a partial order of Q̇ with the largest
element 1̇ and (1̇, 1) ∈ Q . We will write Q for Q̇ etc. It should be clear from the
context what we mean.

(ii) P ⋆ Q is the set

{(p, τ)| p ∈ P, ∃q ∈ P ((τ, q) ∈ Q), p 
 τ ∈ Q}

ordered by the following partial order: (p, τ) ≤ (q, σ) if p ≤ q and p 
 τ ≤ σ . (The
largest element is (1, 1) .) The set of those P -names τ for which there is p ∈ P such
that (τ, p) ∈ Q is denoted by Dom(Q) .

(iii) i : P → P ⋆ Q is the function i(p) = (p, 1) .

From now on we let Q be a P -name for a partial order and i as in Definition
7.1 (iii).

7.2 Exercise. i is a complete embedding (see [Ku]), in particular,
(i) if p, q ∈ P and p ≤ q , then i(p) ≤ i(q) ,
(ii) if p, q ∈ P , then p⊥q iff i(p)⊥i(q) ,
(iii) if (p, τ) ∈ P ⋆ Q and q ≤ p , then (p, τ)||i(q) .
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7.3 Exercise. Suppose K is P ⋆Q -generic over V . Show that KP = i−1(K)
is P -generic over V . Hint: Use Exercise 7.2.

7.4 Definition.

(i) If G is a P -generic over V and H ⊆ QG , then G ⋆ H is the set of those
(p, τ) ∈ P ⋆ Q such that p ∈ G and τG ∈ H .

(ii) If K is P ⋆Q -generic over V and G = KP , then KQ is the set of those τG
such that for some q ∈ P , (q, τ) ∈ K .

7.5 Lemma. Suppose K is P ⋆ Q -generic over V , G = KP and H = KQ .
Then H is QG -generic over V [G] , K = G ⋆ H and V [K] = V [G][H] .

Proof. H is QG -generic over V [G] : The proof that H is a filter is left as an
exercise and so we prove only that H is generic. For this let δ be a P -name for a
dense subset of QG i.e. some p ∈ G forces that δ is a dense subset of Q . But then
D = {(q, τ) ∈ P ⋆ Q| q ≤ p, q 
 τ ∈ δ} ∪ {(q, τ) ∈ P ⋆ Q| q⊥p} is dense in P ⋆ Q
(exercise). Thus there is (q, τ) ∈ K∩D . Since K is a filter, q||p and so τG ∈ δG∩H .

K = G⋆H : The direction ⊆ is immediate by the definitions and so we prove only
that G⋆H ⊆ K : So suppose (p, τ) ∈ G⋆H . Then p ∈ G i.e. (p, 1) ∈ K and τG ∈ H
i.e. for some q ∈ P , (q, τ) ∈ K (and p forces that τ ∈ Q since G ⋆ H ⊆ P ⋆ Q).
Since K is a filter there is some (r, ρ) ∈ K such that (r, ρ) ≤ (p, 1), (q, τ) . But then
(r, ρ) ≤ (p, τ) and so (p, τ) ∈ K .

V [K] = V [G][H] is left as an exercise. (Hint: Show first that K ∈ V [G][H] and
G,H ∈ V [K] .)

7.6 Exercise. Suppose G is P -generic over V and H is QG -generic over
V [G] . Then G ⋆ H is P ⋆ Q -generic over V .

7.7 Exercise. Suppose P has ccc, X ∈ V and τ is a P -name of which 1
forces that τ ⊆ X̂ and that τ is countable. Show that there exists a countable
Y ⊆ X in V such that 1 
 τ ⊆ Ŷ . Hint: Choose a P -name ḟ such that 1 forces
that ḟ is a function from ω̂ onto τ and repeat the argument from the proof of
Theorem 4.3.

7.8 Lemma. If P has ccc and 1 forces that Q has ccc, then P ⋆ Q has ccc.

Proof. For a contradiction, suppose {(pi, τi) ∈ P ⋆ Q| i < ω1} is an antichain.
Let δ = {(p̂i, pi)| i < ω1} .

7.8.1 Exercise. Show that if G is P -generic over V , then δG is a countable
subset of P in V [G] . Hint: Any two elements of δG are compatible.

Thus by Exercise 7.7, there is countable Y ⊆ P such that 1 
 δ ⊆ Ŷ . But
since for all i < ω1 , pi 
 p̂i ∈ δ , the set {pi| i < ω1} is countable. Thus there is
an uncountable set X ⊆ ω1 such that for all i, j ∈ X , pi = pj = p . Since 1 forces
that Q has ccc, there are q ≤ p and i, j ∈ X , i 6= j , such that q 
 τi||τj . But then
(pi, τi)||(pj, τj) , a contradiction.
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8. Finite support iteration

Now we are ready to define finite support iterations:

8.1 Definition. We say that (Pγ , Qγ)γ≤α is a finite support iteration if the
following holds:

(i) P0 is the one element partial order {∅} .
(ii) Qγ = (Qγ ,≤, 1) is a Pγ -name for a partial order.
(iii) Pγ+1 is the set of all functions p with domain γ + 1 such that p ↾ γ ∈ Pγ

and τ = p(γ) is such that for some q ∈ Pγ , (τ, q) ∈ Qγ and p ↾ γ 
 τ ∈ Qγ . Pγ+1

is ordered so that p ≤ q if p ↾ γ ≤ q ↾ γ and p ↾ γ 
 p(γ) ≤ q(γ) . (Notice that then
Pγ+1 is isomorphic with Pγ ⋆ Qγ .)

(iv) For limit γ , Pγ is the set of all functions p with domain γ such that for all
β < γ , p ↾ β ∈ Pβ and the support

supp(p) = {β < dom(p)| p(β) 6= 1}

is finite. Pγ is ordered so that p ≤ q if for all β < γ , p ↾ β ≤ q ↾ β .

From now on, (Pγ, Qγ)γ≤α is a finite support iteration. Notice that Qα does
not play a role in the definition of Pα (it is there for notational reasons).

8.2 Definition. For γ ≤ β ≤ α , by iγβ we mean the function from Pγ to Pβ
such that for all p ∈ Pγ , iγβ(p) is the element q ∈ Pβ for which q ↾ γ = p and for
all δ ∈ β − γ , q(δ) = 1 .

8.3 Exercise. Suppose γ ≤ β ≤ α , p, p′ ∈ Pγ and q, q′ ∈ Pβ .
(i) If q ≤ q′ , then q ↾ γ, q′ ↾ γ ∈ Pγ and q ↾ γ ≤ q′ ↾ γ .
(ii) If p ≤ p′ , then iγβ(p) ≤ iγβ(p

′) .
(iii) If q ↾ γ⊥q′ ↾ γ , then q⊥q′ .
(iv) If supp(q) ∩ supp(q′) ⊆ γ , then q⊥q′ iff q ↾ γ⊥q′ ↾ γ .
(v) p⊥p′ iff iγβ(p)⊥iγβ(p

′) .
(vi) Suppose p = q ↾ γ and p′ ≤ p . Show that r = (q − p) ∪ p′ ∈ Pβ and r ≤ q .

8.4 Corollary. Suppose γ < β ≤ α , G is Pβ -generic over V and G′ =
i−1
γβ (G) . Then G′ is Pγ -generic over V .

Proof. As in the previous section. .

8.5 Exercise. Suppose that for all γ < α , 1 forces that Qγ has ccc. Show that
Pα has ccc. Hint: Prove by induction on β ≤ α that Pβ has ccc. The successor steps
follow immediately from Lemma 7.8 and for limit cases, make a counter assumption
and use Exercise 8.3 (iv) and (in the case cf(β) = ω1 ) ∆ -lemma for the supports of
the elements in the antichain.

8.6 Definition. Let γ < α and G be Pγ -generic over V . By P γG we mean
the set of all functions p with domain α − γ such that for some q ∈ G , q ∪ p ∈ Pα .
We partially order P γG so that p ≤ p′ if there is some q ∈ G , q ∪ p, q ∪ p′ ∈ Pα and
q ∪ p ≤ q ∪ p′
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By P γ we mean a Pγ -name (Ṗ γ, ≤̇, 1̇) for a partial order so that for all Pγ -
generic G over V , (P γ)G = P γG (exists by Exercise 3.14 (i)). We may always choose

Ṗ γ to be the set {(q̂, p)| p ∈ Pγ , dom(q) = α − γ, p ∪ q ∈ Pα} . As usually, by P γ

we denote also Ṗ γ etc.

8.7 Exercise. Suppose p, q ∈ Pα , γ < α , p0 = p ↾ γ ≤ q ↾ γ = q0 and denote
p1 = p ↾ (α − γ) and q1 = q ↾ (α − γ) . Show that if p0 forces that p̂1 ≤ q̂1 (in the
ordering of P γ ), then p ≤ q .

The following lemma is not the most useful form of splitting iterated forcing into
pieces but still gives some idea of what is going on and suffices for our purposes (in
fact we will need only the very first claim).

8.8 Lemma. Suppose γ < α , G is Pα -generic over V , Gγ = i−1
γα(K) and

Gγ = {p ∈ P γG| ∃q ∈ Pγ(q ∪ p ∈ K)} . Then Gγ is P γG -generic over V [Gγ ] and
V [G] = V [Gγ ][G

γ ] .

Proof. This is basically the same what was done in Section 7 and as there we
prove only that Gγ is P γG -generic over V [Gγ ] : For this, let τ be a Pγ -name such
that τGγ

is a dense subset of P γG . Then there is p′ ∈ Gγ such that it forces that
τ is a dense subset of P γ (keep in mind that P γGγ

= (P γ)Gγ
). As before, we may

assume that p′ = 1. Let p ∈ Pα . For any q ∈ Pα , we denote q0 = q ↾ γ and
q1 = q ↾ (α − γ) . As in the proof of lemma 7.5 it is enough to find q ≤ p such that
q0 forces that q̂1 ∈ τ . Since p0 forces that τ is dense in P γ , there is δ such that
p0 forces that δ ≤ p̂1 and δ ∈ τ (notice that p0 forces that p̂1 ∈ P γ , exercise). Let
H be Pγ -generic over V such that p0 ∈ H . Then in V [H] there are r ∈ P γH such
that τH = r . Let s ∈ H be such that s ∪ r ∈ Pα and s′ such that it forces that
δ = r̂ . By Exercise 8.3 (vi), we may assume that s = s′ ≤ p0 and then, by Exercise
8.7, q = s ∪ r is as wanted.

8.9 Lemma. Let G be Pα -generic over V and G(γ) = {p(γ)Gγ
| p ∈ G} .

Then G(γ) is (Qγ)Gγ
-generic over V [Gγ ] .

Proof. By Corollary 8.4, Gγ+1 is Pγ+1 -generic over V and by definitions, Pγ+1

is isomorphic with Pγ ⋆ Qγ . By checking the isomorphism and using Lemma 7.5,
G′(γ) = {p(γ)Gγ

| p ∈ Gγ+1} is (Qγ)Gγ
-generic over V [Gγ ] . But clearly G(γ) =

G′(γ) .

8.10 Exercise. Suppose that cf(α) ≥ ω1 , for all γ < α , 1 forces that Qγ
has ccc, p ∈ Pα forces that τ is a function from ω̂ to ω̂ and G is Pα -generic over
V such that p ∈ G . Show that there is γ < α such that τG ∈ V [Gγ ] . Hint: The
proof of Theorem 4.3.

9. Dominating number

As an application of iterated forcing, we look at dominating number.
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9.1 Definition.

(i) For f, g ∈ ωω , we write f <∗ g and say that g eventually dominates f , if
there is n ∈ ω such that for all n < m < ω , f(m) < g(m) .

(ii) We let D to be the set of all those A ⊆ ωω such that for all f ∈ ωω

there is g ∈ A which eventually dominates f . By d (dominating number) we mean
min{|A| | A ∈ D} .

9.2 Exercise.

(i) Show that d ≥ ω1 .
(ii) Suppose that CH holds in V and let P be the set of all p : Xp → ω such

that Xp ⊆ ω2 ×ω is finite. We partially order P by inverse inclusion (as before) i.e.
p ≤ q if q ⊆ p . Let G be P -generic over V . Show that d ≥ ω2 in V [G] . Hint: The
proof of Theorem 9.6 below may help.

Dominating number is one example of so called cardinal invariants. Another
example of such invariants is Cov(M) i.e. the least cardinal κ for which there are
meager (aka meagre aka of first category) subsets Ai , i < κ , of reals R such that⋃
i<κAi = R . It is known that Cov(M) ≤ d .

9.3 Definition. By Pd we mean the partial order (Pd,≤, (∅, ∅)) , where Pd

is the set of pairs p = (fp, Fp) such that fp : np → ω for some np < ω and Fp is a
finite set of functions from ω to ω . Pd is ordered so that p ≤ q if fq ⊆ fp , Fq ⊆ Fp
and for all nq ≤ i < np and h ∈ Fq , fp(i) > h(i) .

9.4 Exercise.

(i) Show that Pd has ccc.
(ii) Let G be Pd -generic over V and g =

⋃
p∈G fp . Show that g is a function

from ω to ω .

9.5 Lemma. Let G be Pd -generic over V and g =
⋃
p∈G fp . Then for all

h : ω → ω from V , h <∗ g .

Proof. Suppose not and let ġ be a Pd -name for g (i.e. for all Pd -generic H
over V , ġH =

⋃
p∈H fp ). Then there are h : ω → ω and p ∈ G such that p forces

the negation of ĥ <∗ ġ . Let q ∈ Pd be such that fq = fp and Fq = Fp ∪ {h} and
let H be Pd -generic over V such that q ∈ H . Then for all i ≥ np , h(i) < (ġH)(i) .
Since q ≤ p , we have a contradiction.

9.6 Theorem. Con(ZFC) implies Con(ZFC+d = ω1 < 2ω ).

Proof. By Theorem 4.11, we may assume that 2ω > ω1 in V . Let (Pg, Qγ)γ≤ω1

be a finite support iteration such that for all γ ≤ ω1 , Qγ is a Pγ -name for (Pd)
V [Gγ ]

(i.e. for all Pγ -generic G over V , (Qγ)Gγ
satisfies in V [Gγ ] the definition of Pd ).

Let G be Pω1
-generic over V . By Exercise 9.4 (i) and Lemma 7.8, Pω1

has ccc
and thus (ω1)

V = (ω1)
V [G] and in V [G] 2ω > ω1 by Corollary 4.4. Thus it is enough

to show that in V [G] , A = {fγ| γ < ω1} , where fγ =
⋃
p∈G(γ) fp , see Lemma 8.9,

has the property that for all g : ω → ω , there is f ∈ A such that g <∗ f . But this is
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clear: By Exercise 8.10, there is γ < ω1 such that g ∈ V [Gγ ] . By Lemma 8.9, G(γ)
is (Qγ)Gγ

-generic over V [Gγ ] and thus by Lemma 9.5, g <∗ fγ .

10. Further exercises

In this section, in the form of exercises we look at how to kill stationary subsets
of ω1 by forcing (killing stationary subsets of κ > ω1 is much harder). Recall that
by X<ω we mean the set of all functions f : n→ X , n < ω .

10.1 Definition. Let P = (P,≤, 1) be a partial order.
(i) Γ(P ) is a game of two players, I and II and it lasts ω rounds. At each round

n < ω first I chooses some pn ∈ P and then II chooses qn ∈ P . II must choose so
that qn ≤ pn and in rounds n > 0 , I must choose so that pn ≤ qn−1 . II wins if there
is q ∈ P such that for all n < ω , q ≤ qn .

(ii) Winning strategy for I in Γ(P ) is a function σ : P<ω → P such that no
matter how II plays I wins if at each round n < ω , I chooses σ(q0, ..., qn−1) .

(iii) We say that P is hopeless for II, if I has a winning strategy in Γ(P ) .

10.2 Exercise. Suppose that P is not hopeless for II and G is P -generic over
V .

(i) Suppose X ∈ V , Y ∈ V [G] , Y ⊆ X and Y is countable. Show that Y ∈ V .

(ii) Show that ωV1 = ω
V [G]
1 .

Fix S ⊆ ω1 so that ω1 − S is stationary (S may also be stationary). By
P (S) we mean the set of all strictly increasing f : α + 1 → ω1 , α < ω1 , such that
rng(f) ∩ S = ∅ and for all limit γ ≤ α , f(γ) = ∪β<γf(β) and we order P (S) by
inverse inclusion.

10.3 Exercise.

(i) Show that for all f : ω<ω1 → ω1 , the set Cf = {α < ω1| f(α
<ω) ⊆ α} is cub.

(ii) Show that P (S) is not hopeless for II. Hint: For a contradiction, suppose that
σ is a winning strategy for I. Then think the case when at each round n < ω , II plays
so that she first chooses some γn < ω1 so that γn > ∪rng(pn) and then answers
by qn = pn ∪ {(dom(pn), γn)} . Then apply (i) to the function f(γ0, ..., γm−1) =
∪rng(pm) , where for all i ≤ m , pi = σ(q0, ..., qi−1) and for all i < m qi = pi ∪
{(dom(pi), γi)} (if for some i < m , qi 6∈ P (S) , let f(γ0, ..., γm−1) = 0).

10.4 Exercise. Let G be P (S) -generic over V and C = rng(∪G) . Show
that C is a cub subset of ω1 and C ∩ S = ∅ (i.e. S is not stationary in V [G]).

In Exercise 10.4 the assumption that ω1 − S is stationary is necessary:

10.5 Exercise. Suppose P is a partial order, G is P -generic over V , C ⊆ ω1

is in V and (ω1)
V = (ω1)

V [G] .
(i) Show that C is a cub subset of ω1 in V iff C is a cub subset of ω1 in V [G] .
(ii) Since it is possible that ω1 − S is not cub, why the direction from right to

left in (i) does not contradict Exercise 10.4?
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