Schramm Loewner Evolution Spring 2016

Exercise 1. ^{*a*} Suppose that $B = (B_t)_{t\geq 0}$ is a standard Brownian motion and define stochastic processes $W = (W_t^{(k)})_{t\geq 0}$, k = 1, 2, 3, by setting

$$W_t^{(1)} = B_{s+t} - B_s$$
$$W_t^{(2)} = \lambda^{-1/2} B_{\lambda t}$$
$$W_t^{(3)} = B_{T-t} - B_T$$

where $s \ge 0$, $\lambda > 0$, T > 0 are constants. Show that the stochastic processes $W = (W_t^{(k)})_{t\ge 0}$, k = 1, 2, 3, are standard Brownian motions.

Notice that $(W_t^{(3)})_{t \in [0,T]}$ is only defined up to time T (such a process is called BM stopped at time T), and you need to check the properties of BM only for the time interval [0,T].

Exercise 2. Let $B = (B_t)_{t\geq 0}$ be a standard Brownian motion on \mathbb{R} . Denote the probability density of the random variable $B_t \sim \mathcal{N}(0,t)$ by $p_t: \mathbb{R} \to [0,\infty)$.

(a) Consider the function of two variables $(t, x) \mapsto p_t(x)$. Show that it satisfies the partial differential equation $\frac{\partial}{\partial t}p_t(x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}p_t(x)$.

(b) Define the *d*-dimensional standard Brownian motion $(\underline{B}_t)_{t \in [0,\infty)}$ by setting

$$\underline{B}_t = B_t^{(1)} \underline{e}_1 + \dots + B_t^{(d)} \underline{e}_d$$

where the components $B^{(1)}, \ldots, B^{(d)}$ are independent standard Brownian motions on \mathbb{R} . Let $p_t: \mathbb{R}^d \to [0, \infty)$ be the density of the random vector \underline{B}_t . Show that

$$\frac{\partial}{\partial t}p_t(x_1,\ldots,x_d) = \frac{1}{2}\Delta p_t(x_1,\ldots,x_d), \text{ where } \Delta = \sum_{i=1}^d \frac{\partial^2}{\partial x_i^2}.$$
 ("heat equation")

Exercise 3. (a) Calculate explicitly

$$\mathsf{E}\left[\exp\left(\lambda B_{t}\right)\right], \qquad \lambda \in \mathbb{R} \tag{(*)}$$

(b) Develop (*) into series in λ on both sides, change the order of summation and expectation and deduce explicit formulas for the moments $\mathsf{E}[B_t^n]$, $n = 1, 2, 3, \ldots$

^{\dagger ††} **Exercise 4.** ^{*b*} Continue the setup of Exercise 1 and set

$$W_t^{(4)} = \begin{cases} tB_{1/t} & \text{, when } t > 0\\ 0 & \text{, when } t = 0 \end{cases}$$

Show that the stochastic process $W = (W_t^{(4)})_{t \ge 0}$ is a standard Brownian motion.

 $^{^{}a}$ See the course webpage for instructions on the exercise system.

^{*b*}Bonus exercises are marked with † or ††† , the latter ones are harder.

[†] Exercise 5. A Brownian motion $(W_t)_{t\geq 0}$ with an initial distribution $W_0 \sim \mu$, where μ is a probability measure on \mathbb{R} , can be constructed in the following way. Suppose that $(B_t)_{t\geq 0}$ is a standard one-dimensional Brownian motion and Z is an independent random variable with $Z \sim \mu$. Then set $W_t = Z + B_t$. Repeat Exercise 2 (a) for the stochastic process $(W_t)_{t\geq 0}$. *Notice.* Correct answer uses carefully probability theory. Do not forget to justify the change of the order of integration and limit, for instance.