Exercise 1. ${ }^{a}$ Suppose that $B=\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian motion and define stochastic processes $W=\left(W_{t}^{(k)}\right)_{t \geq 0}, k=1,2,3$, by setting

$$
\begin{aligned}
& W_{t}^{(1)}=B_{s+t}-B_{s} \\
& W_{t}^{(2)}=\lambda^{-1 / 2} B_{\lambda t} \\
& W_{t}^{(3)}=B_{T-t}-B_{T}
\end{aligned}
$$

where $s \geq 0, \lambda>0, T>0$ are constants. Show that the stochastic processes $W=\left(W_{t}^{(k)}\right)_{t \geq 0}$, $k=1,2,3$, are standard Brownian motions.
Notice that $\left(W_{t}^{(3)}\right)_{t \in[0, T]}$ is only defined up to time T (such a process is called BM stopped at time T), and you need to check the properties of BM only for the time interval $[0, T]$.

Exercise 2. Let $B=\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion on \mathbb{R}. Denote the probability density of the random variable $B_{t} \sim \mathrm{~N}(0, t)$ by $p_{t}: \mathbb{R} \rightarrow[0, \infty)$.
(a) Consider the function of two variables $(t, x) \mapsto p_{t}(x)$. Show that it satisfies the partial differential equation $\frac{\partial}{\partial t} p_{t}(x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} p_{t}(x)$.
(b) Define the d-dimensional standard Brownian motion $\left(\underline{B}_{t}\right)_{t \in[0, \infty)}$ by setting

$$
\underline{B}_{t}=B_{t}^{(1)} \underline{e}_{1}+\cdots+B_{t}^{(d)} \underline{e}_{d},
$$

where the components $B^{(1)}, \ldots, B^{(d)}$ are independent standard Brownian motions on \mathbb{R}. Let $p_{t}: \mathbb{R}^{d} \rightarrow[0, \infty)$ be the density of the random vector \underline{B}_{t}. Show that

$$
\frac{\partial}{\partial t} p_{t}\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{2} \Delta p_{t}\left(x_{1}, \ldots, x_{d}\right), \text { where } \Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}} . \quad \text { ("heat equation") }
$$

Exercise 3. (a) Calculate explicitly

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(\lambda B_{t}\right)\right], \quad \lambda \in \mathbb{R} \tag{*}
\end{equation*}
$$

(b) Develop ($*$) into series in λ on both sides, change the order of summation and expectation and deduce explicit formulas for the moments $\mathrm{E}\left[B_{t}^{n}\right], n=1,2,3, \ldots$
${ }^{\dagger \dagger \dagger}$ Exercise 4. ${ }^{b}$ Continue the setup of Exercise 1 and set

$$
W_{t}^{(4)}=\left\{\begin{array}{ll}
t B_{1 / t} & , \text { when } t>0 \\
0 & , \text { when } t=0
\end{array} .\right.
$$

Show that the stochastic process $W=\left(W_{t}^{(4)}\right)_{t \geq 0}$ is a standard Brownian motion.

[^0]${ }^{\dagger}$ Exercise 5. A Brownian motion $\left(W_{t}\right)_{t \geq 0}$ with an initial distribution $W_{0} \sim \mu$, where μ is a probability measure on \mathbb{R}, can be constructed in the following way. Suppose that $\left(B_{t}\right)_{t \geq 0}$ is a standard one-dimensional Brownian motion and Z is an independent random variable with $Z \sim \mu$. Then set $W_{t}=Z+B_{t}$. Repeat Exercise 2 (a) for the stochastic process $\left(W_{t}\right)_{t \geq 0}$. Notice. Correct answer uses carefully probability theory. Do not forget to justify the change of the order of integration and limit, for instance.

[^0]: ${ }^{a}$ See the course webpage for instructions on the exercise system.
 ${ }^{b}$ Bonus exercises are marked with ${ }^{\dagger}$ or ${ }^{\dagger \dagger \dagger}$, the latter ones are harder.

