Exercises 1-3 are "compulsory" and 4-5 are "bonus problems" (marked always with \dagger or ${ }^{\dagger \dagger \dagger} \dagger$).

Exercise 1. Show that any hull K can be approximated by a sequence of hulls K_{n} such that ∂K_{n} is piecewise analytic and

$$
\lim _{n} f_{K_{n}}(z)=f_{K}(z) \text { for any } z \quad \text { and } \quad \lim _{n} a_{1}\left(K_{n}\right)=a_{1}(K) .
$$

Show also that $f_{K_{n}}$ extends continuously to $\overline{\mathbb{H}}$.

Exercise 2. Define $m(z)=-\bar{z}$ which is an injective antiholomorphic self-map of \mathbb{H}.
(a) Let $\left(K_{t}\right)_{t \in \mathbb{R}_{20}}$ be a locally growing family of hulls with a driving term $\left(W_{t}\right)_{t \in \mathbb{R}_{20}}$. Find the driving term of $\left(m\left(K_{t}\right)\right)_{t \in \mathbb{R}_{20}}$.
(b) Remember that $\operatorname{SLE}(\kappa), \kappa>0$, is a Loewner chain with a stochastic driving term $W_{t}=\sqrt{\kappa} B_{t}$ where $\left(B_{t}\right)_{t \in \mathbb{R}_{20}}$ is a standard one-dimensional Brownian motion. Show that $\operatorname{SLE}(\kappa), \kappa>0$, is symmetric, i.e., $\left(m\left(K_{t}\right)\right)_{t \in \mathbb{R}_{20}}$ and $\left(K_{t}\right)_{t \in \mathbb{R}_{\geq 0}}$ are equal in distribution. Is the random Loewner chain with the driving process $W_{t}=\sqrt{\kappa} B_{t}+\alpha t$ symmetric?

Exercise 3. Let ${ }^{a} \nu= \pm 1, \kappa>0$ and $h_{t}(z)$ be the solution of the differential equation

$$
\partial_{t} h_{t}(z)=\nu \frac{2}{h_{t}(z)-W_{t}}, \quad h_{0}(z)=z
$$

with $W_{t}=-\sqrt{\kappa} B_{t}$ where $\left(B_{t}\right)_{t \in \mathbb{R}_{20}}$ is a standard one-dimensional Brownian motion with respect to a σ-algebra \mathcal{F}_{t}. Fix $z_{0} \in \mathbb{H}$ and set $X_{t}=\operatorname{Re} h_{t}\left(z_{0}\right)-W_{t}, Y_{t}=\operatorname{Im} h_{t}\left(z_{0}\right)$ and $Z_{t}=X_{t}+\mathrm{i} Y_{t}$.
(a) Find expressions for $\mathrm{d} X_{t}$ (Itô differential of a semimartingale), $\partial_{t} Y_{t}$ and $\mathrm{d} Z_{t}$ (Itô differential of a \mathbb{C}-valued semimartingale).
(b) Calculate $\mathrm{d} \log Z_{t}$. Show that if $\theta_{t}=\arg Z_{t}$ and $\rho_{t}=\left|Z_{t}\right|$, then

$$
\mathrm{d} \theta_{t}=\frac{(\kappa-4 \nu) \sin \left(2 \theta_{t}\right)}{2 \rho_{t}^{2}} \mathrm{~d} t+\frac{\sqrt{\kappa} \sin \theta_{t}}{\rho_{t}} \mathrm{~d} B_{t} .
$$

(c) Find all smooth $F:(0, \pi) \rightarrow \mathbb{R}$ such that $M_{t}=F\left(\theta_{t}\right)$ is a martingale.

Set now $\nu=+1$, that is, we consider $\operatorname{SLE}(\kappa)$. Suppose for simplicity that there exists a simple curve $\gamma: \mathbb{R}_{\geq 0} \rightarrow \mathbb{C}$ such that $K_{t}=\gamma[0, t]$ for all t and that $|\gamma(t)| \rightarrow \infty$ as $t \rightarrow \infty$. Then $\mathbb{H} \backslash \gamma\left(\mathbb{R}_{\geq 0}\right)$ consists of two connected non-empty components L and R on the left and on the right of γ, respectively. Fix $z_{0} \in \mathbb{H}$ and let $\tau=\inf \left\{t \geq 0: z_{0} \in K_{t}\right\}$. Suppose that $\tau=\infty$ almost surely.
(d) Define a process $M_{t}=\mathrm{P}\left[z_{0} \in L \mid \mathcal{F}_{t}\right]$. Show that $\left(M_{t}\right)_{t \in \mathbb{R}_{20}}$ is a martingale and that it can be written in the form $M_{t}=F\left(\theta_{t}\right)$.
(e) Suppose that F in (d) is smooth and extends continuously to $[0, \pi]$. Find an expression for M_{0}. For which values of κ this is possible?
${ }^{a}$ The parameter ν is here only for future use. If you wish you can set $\nu=+1$ already at this point.

${ }^{\dagger}$ Exercise 4. Schwarzian derivative

Define the Schwarzian derivative of f at z as

$$
S f(z)=\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

for any function f which is locally conformal near z, that is, f is holomorphic in a neighborhood of z with $f^{\prime}(z) \neq 0$.
(a) Show that S satisfies

$$
(S(f \circ g))(z)=g^{\prime}(z)^{2} S f(g(z))+S g(z)
$$

for any functions f and g that are locally conformal near $g(z)$ and z, respectively.
(b) Show that S satisfies

$$
(S(\phi \circ f \circ \psi))(z)=\psi^{\prime}(z)^{2} S f(\psi(z))
$$

for all Möbius maps ϕ and ψ.
(c) Let A be a hull with $0 \notin A$ and define $\Phi_{A}(z)=g_{A}(z)-g_{A}(0)$. Show that

$$
a_{1}(\tilde{A})=-\frac{1}{6} S \Phi_{A}(0)
$$

where $a_{1}(\tilde{A})$ is the half-plane capacity of the hull $\tilde{A}=\left\{-z^{-1}: z \in A\right\}$. Deduce that $S \Phi_{A}(0)<0$ unless Φ_{A} is a identity map.
${ }^{\dagger}$ Exercise 5. Let g_{t} and W_{t} be as above and let $a_{k}(t)$ be the coefficients in the expansion

$$
g_{t}(z)=z+\sum_{k=1}^{\infty} a_{k}(t) z^{-k} .
$$

In the Loewner equation, expand $2 /\left(g_{t}(z)-W_{t}\right)$ in powers of z near ∞ and find a (closed) system of differential equations satisfied by $a_{k}(t)$ for $k=1,2, \ldots, n$ when $n=5$. Integrate those equations to give explicit formulas for $a_{k}(t)$ in terms of the driving term.

