Exercises 1-3 are "compulsory" and 4-5 are "bonus problems" (marked always with \dagger or ${ }^{\dagger t \dagger}$).

Exercise 1. Let $R>0$ be fixed and let $f(z)=z+R^{2} z^{-1}$.
(a) By a direct calculation, verify that $f(z) \in \mathbb{R}$ if and only if that $z \in \mathbb{R} \backslash\{0\}$ or $|z|=R$.
(b) Show that $f(z)=f(w)$ if and only if $z=w$ or $z w=R^{2}$.
(c) Show that f is a conformal map from $\mathbb{H} \backslash \overline{B(0, R)}$ onto \mathbb{H}.

Exercise 2 (Poisson kernel in $\mathbb{H} \backslash \overline{B(0, R)}$).
(a) Let $R>0$ and let $H_{R}=\mathbb{H} \backslash \overline{B(0, R)}$. Show that any continuous bounded function $u: \overline{H_{R}} \rightarrow \mathbb{R}$ which is harmonic in H_{R} and satisfies $u(x)=0, x \in \mathbb{R} \backslash(-R, R)$, can be represented as an integral

$$
u(z)=\frac{2 R}{\pi} \int_{0}^{\pi} \frac{\operatorname{Im}\left(z+R^{2} z^{-1}\right) \sin \theta}{\left|z+R^{2} z^{-1}-2 R \cos \theta\right|^{2}} u\left(R e^{i \theta}\right) \mathrm{d} \theta
$$

for any $z \in H_{R}$. Hint. Make a conformal transformation to \mathbb{H} and use the Poisson kernel of \mathbb{H}.
(b) Show that

$$
\lim _{y \rightarrow \infty} y u(i y)=\frac{2 R}{\pi} \int_{0}^{\pi} u\left(R e^{i \theta}\right) \sin \theta \mathrm{d} \theta
$$

Exercise 3. Let $\alpha, \beta \in(0,1)$ and $x_{2}<x_{1}$. Let $f(z)=\left(z-x_{1}\right)^{\alpha}\left(z-x_{2}\right)^{\beta}$.
(a) Show that $f: \mathbb{H} \rightarrow \mathbb{C}$ is a Schwarz-Christoffel mapping and consequently that f is conformal.
(b) When $\beta=1-\alpha$, show that f has a simple pole at ∞, that is, show that $f(z)=c_{-1} z+$ $c_{0}+c_{1} z^{-1}+c_{2} z^{-2}+\ldots$ around $z=\infty$. Calculate c_{-1}, c_{0} and c_{1}.
Hint. Notice first that $(1+z)^{\alpha}$ is holomorphic in the unit disc. Expand it around $z=0$.
${ }^{\dagger}$ Exercise 4. Let $n \geq 3$ and $\underline{B}_{t}=\left(B_{t}^{(1)}, \ldots, B_{t}^{(n)}\right)$ be a standard n-dimensional Brownian motion sent from $\underline{x} \neq(0,0, \ldots, 0)$. For a vector $\underline{x} \in \mathbb{R}^{n}$, denote its Euclidian norm by $\|\underline{x}\|$.
(a) Show that $Y_{t}=\left\|\underline{B}_{t}\right\|^{2-n}$ is a local martingale. Hint. Use Exercise 4 of Problem sheet 6. Notice that almost surely $\underline{B}_{t} \neq 0$ everywhere.
(b) Find all those $p>0$ such that $\mathrm{E}\left[Y_{t}^{p}\right]<\infty$.
(c) Show that $\lim _{t \rightarrow \infty} \mathrm{E}\left[Y_{t}\right]=0$. Is $\left(Y_{t}\right)_{t \in \mathbb{R}_{20}}$ a martingale? Hint. Show first that $\mathrm{E}\left[Y_{t} ;\left\|\underline{B}_{t}\right\| \leq\right.$ R] tends to 0 as $t \rightarrow \infty$ for fixed $R>0$.
${ }^{\dagger}$ Exercise 5 (The Riemann sphere $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ and the spherical metric).
Consider the complex plane as a subset of \mathbb{R}^{3} by associating \mathbb{C} with the the subspace of points $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ with $x_{3}=0$. A standard construction of the extended complex plane is through the stereographic projection: each point P on the sphere $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\right.$: $\left.x_{1}^{2}+x_{2}^{2}+\left(x_{3}-1 / 2\right)^{2}=1 / 4\right\} \subset \mathbb{R}^{3}$ other than $N=(0,0,1) \in S$ is projected to the complex plane by the taking the line going through P and N and finding the unique intersection point z_{P} of this line and the complex plane. As the point P approaches $N,\left|z_{P}\right|$ goes to infinity. This defines a mapping from the sphere S to the extended complex plane $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$.
(a) For each $z \in \mathbb{C} \subset \mathbb{R}^{3}$, find $v_{z} \in S$ of the form

$$
v_{z}=\lambda_{z} z+\left(1-\lambda_{z}\right) N
$$

where $0<\lambda_{z} \leq 1$. Show that the map $z \mapsto v_{z}$ defines a smooth map from \mathbb{C} onto $S \backslash\{N\}$ and that $v_{z} \rightarrow N$ as $|z| \rightarrow \infty$.
(b) Show that the map $z \mapsto v_{z}$ is conformal in the sense that the vectors $\partial_{x} v_{z}$ and $\partial_{y} v_{z}$ are orthogonal and have the same length. Here the partial derivatives are with respect to the real and imaginary parts of z.
(c) Find the spherical metric $\rho: \hat{C} \times \hat{C} \rightarrow \mathbb{R}$ defined by

$$
\rho(z, w)=\left|v_{z}-v_{w}\right|, z, w \in \mathbb{C}, \quad \rho(z, \infty)=\left|v_{z}-N\right|, z \in \mathbb{C}, \quad(\rho(\infty, \infty)=0)
$$

where $|\cdot|$ is the Euclidian norm in \mathbb{R}^{3}. Show that the spherical metric is invariant under any map ϕ_{A} (as in Exercise 3 Problem Sheet 5) where $A \in \mathbb{C}^{2 \times 2}$ is unitary, that is, $A A^{*}=I$ where A^{*} is the adjoint (conjugate transpose) of A.

Hint. For each $z \in \mathbb{C}$, define

$$
\tilde{z}=\left[\begin{array}{l}
z \\
1
\end{array}\right] \in \mathbb{C}^{2}
$$

and notice that

$$
\widetilde{\phi_{A}(z)}=\frac{1}{a_{21} z+a_{22}} A \tilde{z} .
$$

What are the norms of \tilde{z} and $\tilde{z}-\tilde{w}$?

