Exercises 1-3 are "compulsory" and 4 is a "bonus problem" (marked always with ${ }^{\dagger}$ or ${ }^{\dagger t \dagger}$).
In Exercise 2 you are asked to solve a Dirichlet problem. Remember that the solution of a Dirichlet problem satisfies a given PDE (here the Laplace equation $\Delta u=0$) and given boundary values $\left.u\right|_{\partial U}=\phi$.

Exercise 1. (a) Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$. Give at least two distinct examples of continuous functions on $\overline{\mathbb{H}}$ that are non-trivial, harmonic in \mathbb{H} and vanish identically on \mathbb{R}.
(b) Let for each $\theta \in \mathbb{R}$ and $z \in \mathbb{D}$

$$
P_{\theta}(z)=\frac{1-|z|^{2}}{\left|z-e^{i \theta}\right|^{2}} .
$$

Calculate ΔP_{θ} to show that P_{θ} is harmonic. Here as usual, $z=x+\mathrm{i} y$ and $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$.
(c) Suppose that h_{n} is a sequence of harmonic functions on a domain $U \subset \mathbb{C}$ such that h_{n} converge uniformly on any compact subset of U. Show that $\lim _{n} h_{n}$ is harmonic. Hint. Use a Poisson kernel.

Exercise 2. (a) Find u_{1} and u_{2} such that $u_{k}, k=1,2$, solves the following Dirichlet problem: u_{k} is harmonic in \mathbb{H} and the boundary values are $\left.u_{k}\right|_{\mathbb{R}}=\phi_{k}$ where

$$
\phi_{1}(x)=\left\{\begin{array}{ll}
\pi & , \text { when } x<0 \\
0 & , \text { when } x>0
\end{array} \quad \text { and } \quad \phi_{2}(x)= \begin{cases}c_{0} & , \text { when } x<x_{1} \\
c_{1} & , \text { when } x \in\left(x_{1}, x_{2}\right) \\
c_{2} & , \text { when } x>x_{2}\end{cases}\right.
$$

(b) Write conformal maps ϕ_{k} from \mathbb{H} onto $U_{k}, k=1,2$, where $U_{1}=\mathbb{R} \times(0, \pi), U_{2}=\mathbb{R} \times(a, b)$ and ϕ_{k} 's satisfy $\phi_{1}(0)=-\infty$ and $\phi_{1}(\infty)=+\infty$ and $\phi_{2}\left(x_{1}\right)=-\infty$ and $\phi_{2}\left(x_{2}\right)=+\infty$. Here $a<b$ and $x_{1}<x_{2}$ are real numbers.
(c) Let $\phi_{3}(z)=1 / z$ and $\phi_{4}(z)=z^{\alpha}, \alpha \in(0,2)$. Verify directly that $\phi_{k}, k=1,2,3,4$, are conformal maps on \mathbb{H}. What are the ranges of $\phi_{k}, k=3,4$? What is the image of U_{2} under the map $z \mapsto e^{z}$? When is that map injective (one-to-one)?
Notice. The quantity z^{α} is defined as $e^{\alpha \log z}$ where we choose the branch of $\log z$ so that $\log x$ is real for $x>0$ and extend continuously to \mathbb{H}.

Exercise 3. Let f be holomorphic and $Z_{t}=X_{t}+i Y_{t}$ be a complex semimartingale, i.e. the real and imaginary parts X_{t} and Y_{t} are semimartingales.
(a) Show that if $\langle Y\rangle_{t}=0$ for all t, then $\mathrm{d} f\left(Z_{t}\right)=f^{\prime}\left(Z_{t}\right) \mathrm{d} Z_{t}+\frac{1}{2} f^{\prime \prime}\left(Z_{t}\right) \mathrm{d}\langle X\rangle_{t}$.
(b) Show that if $\langle X\rangle_{t}=\langle Y\rangle_{t}$ and $\langle X, Y\rangle_{t}=0$ for all t, then $\mathrm{d} f\left(Z_{t}\right)=f^{\prime}\left(Z_{t}\right) \mathrm{d} Z_{t}$.
(c) In the general case, find an expression for $\langle Z\rangle_{t}$ so that Itô's formula can be written as $\mathrm{d} f\left(Z_{t}\right)=f^{\prime}\left(Z_{t}\right) \mathrm{d} Z_{t}+\frac{1}{2} f^{\prime \prime}\left(Z_{t}\right) \mathrm{d}\langle Z\rangle_{t}$.
${ }^{\dagger \dagger \dagger}$ Exercise 4 (Bessel process).
Let $\delta \in \mathbb{R}, x>0$ and let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. A Bessel process with dimension δ started from x is the solution $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$of the stochastic differential equation

$$
\mathrm{d} X_{t}=\mathrm{d} B_{t}+\frac{\delta-1}{2 X_{t}} \mathrm{~d} t, \quad X_{0}=x
$$

The theorem about SDEs from the lecture notes can be applied to show that the solution exists and is unique at least up to the stopping time

$$
\tau=\sup \left\{t \in \mathbb{R}_{+}: \inf _{s \in[0, t]} X_{s}>0\right\}
$$

Denote the law of $\left(X_{t}\right)_{t \in[0, \tau)}$ by P^{x}.
(a) Let $\lambda>0$. Show that the process $Y_{t}=\lambda X_{t / \lambda^{2}}$ is a Bessel process of dimension δ started from λx.
(b) For any $y \geq 0$, let $\sigma_{y}=\inf \left\{t \in[0, \tau]: X_{t}=y\right\}$. Let $0<\varepsilon<x<L$. Find a local martingale of the form $f\left(X_{t}\right)$ such that f is twice differentiable, $f(\varepsilon)=1$ and $f(L)=0$. Show that $M_{t}=f\left(X_{t \wedge \sigma_{\varepsilon} \wedge \sigma_{L}}\right)$ is a bounded martingale.
(c) Consider $X_{t}-B_{t}$ and show that $\sigma_{\varepsilon} \wedge \sigma_{L}$ is almost surely finite. Find $\mathrm{P}^{x}\left(\sigma_{\varepsilon}<\sigma_{L}\right)$ by applying optional stopping theorem to M_{t}.
(d) Use (c) to show that $\tau<\infty$ with positive probability if and only if $\delta<2$. Show also that in that case, $\mathrm{P}(\tau<\infty)=1$ and that $\lim _{t \lambda \tau} X_{t}=0$ almost surely.

Hint. For the last claim, you might need the strong Markov property of diffusions: if τ is an almost surely finite stopping time, then $Y_{t}=X_{\tau+t}$ is the solution of the same SDE with the initial value $Y_{0}=X_{\tau}$.

