UH/Department of Mathematics and Statistics Exercise session 6
Schramm-Loewner Evolution, Spring 2016 1.3.2016

FEzercises 1-3 are “compulsory” and 4 is a “bonus problem” (marked always with T or 177).

In FExercise 2 you are asked to solve a Dirichlet problem. Remember that the solution of
a Dirichlet problem satisfies a given PDE (here the Laplace equation Au = 0) and given
boundary values u|gy = ¢.

Exercise 1. (a) Let H={z € C : Imz > 0}. Give at least two distinct examples of continuous
functions on H that are non-trivial, harmonic in H and vanish identically on R.
(b) Let for each # e R and z e D

1- |2
Po(z) = |2 — eif]2’

Calculate AP, to show that Py is harmonic. Here as usual, z =z + iy and A = 0‘9—; + ;—;.

(c) Suppose that h, is a sequence of harmonic functions on a domain U c C such that h,
converge uniformly on any compact subset of U. Show that lim,, h,, is harmonic. Hint. Use
a Poisson kernel.

Exercise 2. (a) Find u; and uy such that uy, k = 1,2, solves the following Dirichlet problem:
uy, is harmonic in H and the boundary values are ug|g = ¢, where
co , when x <

h 0
, when x < and ¢2(3;) ={c¢; ,whenze (513'1,55'2)

o= {;

, when >0
o, when x > x,

(b) Write conformal maps ¢ from H onto Uy, k = 1,2, where U; = R x (0,7), Us = R x (a,b)
and ¢y.’s satisfy ¢1(0) = —co and ¢;(00) = +00 and ¢9(x1) = —c0 and ¢o(x3) = +o0. Here a < b
and x; < z9 are real numbers.

(c) Let ¢3(z) = 1/z and ¢4(2) = 29, a € (0,2). Verify directly that ¢r, k = 1,2,3,4, are
conformal maps on H. What are the ranges of ¢, k = 3,47 What is the image of U; under
the map z ~ e*? When is that map injective (one-to-one)?

Notice. The quantity z® is defined as e*1°¢# where we choose the branch of log z so that log x
is real for > 0 and extend continuously to H.

Exercise 3. Let f be holomorphic and Z; = X; + 1Y, be a complex semimartingale, i.e. the
real and imaginary parts X; and Y; are semimartingales.

(a) Show that if <Y)t =0 for all t, then df(Zt) = f,(Zt)dZt + %f"(Zt)d<X>t

(b) Show that if (X); = (Y); and (X,Y); =0 for all ¢, then df(Z;) = f'(Z;)dZ;.

)
(c) In the general case, find an expression for (Z), so that It6’s formula can be written as
df(Z,) = f(Z)dZ, + 5 ["(Z) A Z ).
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i1t Exercise 4 (Bessel process).

Let § € R, z > 0 and let (B;)«r, be a standard one-dimensional Brownian motion. A Bessel
process with dimension § started from x is the solution (X;).g, of the stochastic differential

equation
0-1
dX; =dB; + —dt Xo =
t t+ 2x, " 0=
The theorem about SDEs from the lecture notes can be applied to show that the solution

exists and is unique at least up to the stopping time
Tzsmp{teR+ : inf XS>O}.
s€[0,t]
Denote the law of (X¢)[0,r) by P?.

(a) Let A > 0. Show that the process Y; = AX,/5> is a Bessel process of dimension ¢ started
from Az.

(b) For any y >0, let o, =inf{t € [0,7] : X; =y}. Let 0<e <2 < L. Find a local martingale
of the form f(X;) such that f is twice differentiable, f(¢) = 1 and f(L) = 0. Show that
M; = f(Xtno.nop ) 18 a bounded martingale.

(c) Consider X; — B; and show that o. A o, is almost surely finite. Find P*(o. < o) by
applying optional stopping theorem to M;.

(d) Use (c) to show that 7 < co with positive probability if and only if § < 2. Show also that
in that case, P(7 < 00) =1 and that lim, ., X; = 0 almost surely.

Hint. For the last claim, you might need the strong Markov property of diffusions: if 7 is an
almost surely finite stopping time, then Y; = X, ,; is the solution of the same SDE with the
initial value Yy = X,



