Exercises 1-3 are "compulsory" and 4-5 are "bonus problems" (marked always with \dagger or ${ }^{\dagger \dagger \dagger} \dagger$). In Exercises 1 and 4, you are supposed to solve stochastic differential equations (SDE). Read more about SDEs from the lecture notes. Quite often, the best method for solving SDEs is to write a good guess and to apply Itô's formula.

Exercise 1 (Orstein-Uhlenbeck process). Let $\alpha, \sigma \in \mathbb{R}$ be positive and let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion.
(a) Solve the stochastic differential equation

$$
\mathrm{d} X_{t}=-\alpha X_{t} \mathrm{~d} t+\sigma \mathrm{d} B_{t}, \quad X_{0}=x_{0} \in \mathbb{R}
$$

by trying a solution of the form $X_{t}=a(t)\left(x_{0}+\int_{0}^{t} b(s) \mathrm{d} B_{s}\right)$ where a and b are smooth enough functions on \mathbb{R}_{+}. This guess is motivated by the fact that we expect a Gaussian solution.
(b) Suppose that $X_{0}=Z$ is a square-integrable random variable which is independent of $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$. Find $\mathrm{E}\left[X_{t}\right]$ and $\operatorname{Var}\left[X_{t}\right]$.

Exercise 2. Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. For $x \in \mathbb{R}$ define $\tau_{x}=\inf \left\{t \in \mathbb{R}_{+}: B_{t}=x\right\}$.
(a) Let $a<0<b$. Show that $\mathrm{P}\left(\tau_{a} \wedge \tau_{b}<\infty\right)=1$ by considering $\mathrm{P}\left(B_{t}<a\right.$ or $\left.B_{t}>b\right)$.
(b) Apply the optional stopping theorem to $\mathrm{E}\left(B_{\tau_{a} \wedge \tau_{b}}\right)$ and find the probabilities of the events $\left\{B_{\tau_{a} \wedge \tau_{b}}=a\right\}$ and $\left\{B_{\tau_{a} \wedge \tau_{b}}=b\right\}$ for $a<0<b$.
(c) Show that for all $x \in \mathbb{R}, \tau_{x}<\infty$ almost surely.

Exercise 3. (a) For $A \in \mathbb{C}^{2 \times 2}$ with $\operatorname{det} A \neq 0$, define a Möbius map by

$$
\phi_{A}(z)=\frac{a_{11} z+a_{12}}{a_{21} z+a_{22}}
$$

where $A_{i j}=a_{i j}$. Show that

$$
\phi_{A} \circ \phi_{B}=\phi_{A B}
$$

and that $\phi_{A}^{-1}=\phi_{A^{-1}}$. Write an explicit formula for the inverse $\phi_{A^{-1}}(z)$ in terms of the elements of A and simplify it.
(b) Show that a map $\phi: \mathbb{D} \rightarrow \mathbb{D}$ is conformal and onto if and only if

$$
\phi(z)=e^{i \theta} \frac{z-a}{1-\bar{a} z}
$$

for some $\theta \in \mathbb{R}$ and $a \in \mathbb{D}$. Hint. Use Schwarz lemma for the "only if" claim.
${ }^{\dagger}$ Exercise 4. Let $x_{0}, x_{1} \in \mathbb{R}$ and let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. Find the solution of

$$
\mathrm{d} X_{t}=\frac{x_{1}-X_{t}}{1-t} \mathrm{~d} t+\mathrm{d} B_{t}, \quad t \in[0,1), \quad X_{0}=x_{0}
$$

by slightly adapting the guess solution of Exercise 1. Find the mean $\mathrm{E}\left(X_{t}\right)$ and the covariance $\mathrm{E}\left[\left(X_{s}-\mathrm{E}\left(X_{s}\right)\right)\left(X_{t}-\mathrm{E}\left(X_{t}\right)\right)\right]$ of this process.
${ }^{\dagger}$ Exercise 5 (Time change of a semimartingale).
(a) Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space with a filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$and let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion with respect to $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$. Let $a(t, \omega)$ be a continuous, positive, adepted process. Define a random time-change by setting:

$$
S(t, \omega)=\int_{0}^{t} a(r, \omega)^{2} \mathrm{~d} r, \quad \sigma(s, \omega)=\inf \left\{t \in \mathbb{R}_{+}: S(t, \omega) \geq s\right\}
$$

Let

$$
\tilde{B}_{s}(\omega)=\int_{0}^{\sigma(s)} a(r, \omega) \mathrm{d} B_{r}(\omega)
$$

By the theorem on time changes of local martingales in the lecture notes, $\left(\tilde{B}_{s}\right)_{s \in \mathbb{R}_{+}}$is a standard one-dimensional Brownian motion with respect to $\left(\mathcal{F}_{\sigma(s)}\right)_{s \in \mathbb{R}_{+}}$and therefore we know how to construct Itô integral with respect to \tilde{B}_{s}. Show that the following time-change formula holds: for continuous, adapted process $v(t, \omega)$

$$
\int_{0}^{s} v(\sigma(q), \omega) \mathrm{d} \tilde{B}_{q}(\omega)=\int_{0}^{\sigma(s)} v(r, \omega) a(r, \omega) \mathrm{d} B_{r}(\omega)
$$

Hint. Check this first for $v(r, \omega)=\mathbb{1}_{\left[\sigma\left(s_{1}\right), \sigma\left(s_{2}\right)\right)}(r)$.
(b) Let X_{t} be a semimartingale

$$
\mathrm{d} X_{t}(\omega)=u(t, \omega) \mathrm{d} t+v(t, \omega) \mathrm{d} B_{t}(\omega) .
$$

Show that the process $\left(\tilde{X}_{s}\right)_{s \in \mathbb{R}_{+}}$defined by

$$
\tilde{X}_{s}=X_{\sigma(s)}
$$

is a semimartingale with respect to $\left(\mathcal{F}_{\sigma(s)}\right)_{s \in \mathbb{R}_{+}}$and $\left(\tilde{B}_{s}\right)_{s \in \mathbb{R}_{+}}$and satisfies

$$
\mathrm{d} \tilde{X}_{s}=\frac{u(\sigma(s))}{a(\sigma(s))^{2}} \mathrm{~d} s+\frac{v(\sigma(s))}{a(\sigma(s))} \mathrm{d} \tilde{B}_{s} .
$$

