UH/Department of Mathematics and Statistics Schramm–Loewner Evolution, Spring 2016

Exercise session 4 16.2.2016

Exercises 1–3 are "compulsory" and 4 is a "bonus problem" (marked always with \dagger or $\dagger \dagger \dagger$).

Exercise 1. We call a expression of the form

$$\mathrm{d}X_t = m_t \,\mathrm{d}t + \sigma_t \,\mathrm{d}B_t \tag{1}$$

the Itô differential of X_t . Let $r, q \in \mathbb{N}$. Find the Itô differentials of the following processes:

(a) $X_t = B_t^q$, (b) $X_t = (\sin B_t)^r$, (c) $X_t = B_t^q (\sin B_t)^r$.

Exercise 2. Let $f : \mathbb{R}_+ \to \mathbb{R}$ be a non-random square-integrable function. Show that

$$X_t = \int_0^t f(s) \, \mathrm{d}B_s$$

is normally distributed. Find the mean and the variance of X_t .

Hint. Do the exercise first for a simple f.

Exercise 3 (Integration by parts).

(a) For for any semimartingales X_t and Y_t , show that the following integration by parts formula holds

$$\int_{0}^{t} X_s \,\mathrm{d}Y_s = X_t Y_t - X_0 Y_0 - \int_{0}^{t} Y_s \,\mathrm{d}X_s - \langle X, Y \rangle_t.$$

Note. As implicitly defined in Itô's formula for semimartingales in the lecture notes, here the definition for the integrals $\int_0^t X_s \, dY_s$ and $\int_0^t Y_s \, dX_s$ is such that

$$\int_0^t f_s \,\mathrm{d}X_s = \int_0^t f_s \,m_s \,\mathrm{d}s + \int_0^t f_s \,\sigma_s \,\mathrm{d}B_s \tag{2}$$

for the semimartingale of the form (1) whenever the two integrals on the right of (2) make sense. For more general semimartingales extend accordingly.

(b) Use Itô's formula for $B_t f(t)$ and $F(B_t)$, where f and F are smooth enough non-random functions, to find two integration by parts formulas for the integrals of types

$$\int_0^t f(s) \mathrm{d}B_s, \qquad \int_0^t f(B_s) \mathrm{d}B_s.$$

Note that this gives a way interpret these integrals in pathwise (ω -by- ω) sense. Why?

[†]**Exercise 4** (Modulus of continuity of Brownian motion). (a) This exercise continues the exercises 2 and 3 of Problem sheet 3. Remember that there we made a construction of a Brownian motion on [0, 1] as a uniformly convergent series

$$B_t = \sum_{n=0}^{\infty} Z_t^{(n)}$$

where $(Z_t^{(n)})_{t \in [0,1]}$ are some piecewise linear processes. Remember also that for each $c > \sqrt{2\log 2}$ there exist an almost surely finite random variable N such that for $n \ge N$,

$$\|Z^{(n)}\|_{\infty} \le c \, 2^{-\frac{n+1}{2}} \sqrt{n}.$$

Show that for any n and h > 0 and $0 \le t \le 1 - h$

$$\left| Z_{t+h}^{(n)} - Z_t^{(n)} \right| \le \min\{h \cdot 2^n, 2\} \, \| Z^{(n)} \|_{\infty}$$

and use this bound to show that there exists a constant C > 0 and a random variable $\Delta > 0$ such that for any $0 < h < \Delta$,

$$|B_{t+h} - B_t| \le C\sqrt{h\log(1/h)}$$

Hint. For the last claim, divide the sum $\sum_{n=0}^{\infty} |Z_{t+h}^{(n)} - Z_t^{(n)}|$ as $\sum_{n=0}^{N-1} + \sum_{n=N}^{l} + \sum_{n=l+1}^{\infty}$ where N is as above. Then choose $\Delta > 0$ such that the first sum is less than $\sqrt{h \log(1/h)}$ and after that optimize over l.

(b) Show that for each $0 < \alpha < 1/2$ there exists an almost surely finite random variable $C_{\alpha} > 0$ such that for any $0 \le s, t \le 1$,

$$|B_t - B_s| \le C_\alpha |t - s|^\alpha.$$