Exercises 1-3 are "compulsory" and 4 is a "bonus problem" (marked always with ${ }^{\dagger}$ or ${ }^{\dagger t \dagger}$).

Exercise 1. We call a expression of the form

$$
\begin{equation*}
\mathrm{d} X_{t}=m_{t} \mathrm{~d} t+\sigma_{t} \mathrm{~d} B_{t} \tag{1}
\end{equation*}
$$

the Itô differential of X_{t}. Let $r, q \in \mathbb{N}$. Find the Itô differentials of the following processes:
(a) $X_{t}=B_{t}^{q}$,
(b) $X_{t}=\left(\sin B_{t}\right)^{r}$,
(c) $X_{t}=B_{t}^{q}\left(\sin B_{t}\right)^{r}$.

Exercise 2. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a non-random square-integrable function. Show that

$$
X_{t}=\int_{0}^{t} f(s) \mathrm{d} B_{s}
$$

is normally distributed. Find the mean and the variance of X_{t}.
Hint. Do the exercise first for a simple f.

Exercise 3 (Integration by parts).
(a) For for any semimartingales X_{t} and Y_{t}, show that the following integration by parts formula holds

$$
\int_{0}^{t} X_{s} \mathrm{~d} Y_{s}=X_{t} Y_{t}-X_{0} Y_{0}-\int_{0}^{t} Y_{s} \mathrm{~d} X_{s}-\langle X, Y\rangle_{t} .
$$

Note. As implicitly defined in Itô's formula for semimartingales in the lecture notes, here the definition for the integrals $\int_{0}^{t} X_{s} \mathrm{~d} Y_{s}$ and $\int_{0}^{t} Y_{s} \mathrm{~d} X_{s}$ is such that

$$
\begin{equation*}
\int_{0}^{t} f_{s} \mathrm{~d} X_{s}=\int_{0}^{t} f_{s} m_{s} \mathrm{~d} s+\int_{0}^{t} f_{s} \sigma_{s} \mathrm{~d} B_{s} \tag{2}
\end{equation*}
$$

for the semimartingale of the form (1) whenever the two integrals on the right of (2) make sense. For more general semimartingales extend accordingly.
(b) Use Itô's formula for $B_{t} f(t)$ and $F\left(B_{t}\right)$, where f and F are smooth enough non-random functions, to find two integration by parts formulas for the integrals of types

$$
\int_{0}^{t} f(s) \mathrm{d} B_{s}, \quad \int_{0}^{t} f\left(B_{s}\right) \mathrm{d} B_{s}
$$

Note that this gives a way interpret these integrals in pathwise (ω-by- ω) sense. Why?
${ }^{\dagger}$ Exercise 4 (Modulus of continuity of Brownian motion). (a) This exercise continues the exercises 2 and 3 of Problem sheet 3. Remember that there we made a construction of a Brownian motion on $[0,1]$ as a uniformly convergent series

$$
B_{t}=\sum_{n=0}^{\infty} Z_{t}^{(n)}
$$

where $\left(Z_{t}^{(n)}\right)_{t \in[0,1]}$ are some piecewise linear processes. Remember also that for each $c>$ $\sqrt{2 \log 2}$ there exist an almost surely finite random variable N such that for $n \geq N$,

$$
\left\|Z^{(n)}\right\|_{\infty} \leq c 2^{-\frac{n+1}{2}} \sqrt{n} .
$$

Show that for any n and $h>0$ and $0 \leq t \leq 1-h$

$$
\left|Z_{t+h}^{(n)}-Z_{t}^{(n)}\right| \leq \min \left\{h \cdot 2^{n}, 2\right\}\left\|Z^{(n)}\right\|_{\infty}
$$

and use this bound to show that there exists a constant $C>0$ and a random variable $\Delta>0$ such that for any $0<h<\Delta$,

$$
\left|B_{t+h}-B_{t}\right| \leq C \sqrt{h \log (1 / h)}
$$

Hint. For the last claim, divide the sum $\sum_{n=0}^{\infty}\left|Z_{t+h}^{(n)}-Z_{t}^{(n)}\right|$ as $\sum_{n=0}^{N-1}+\sum_{n=N}^{l}+\sum_{n=l+1}^{\infty}$ where N is as above. Then choose $\Delta>0$ such that the first sum is less than $\sqrt{h \log (1 / h)}$ and after that optimize over l.
(b) Show that for each $0<\alpha<1 / 2$ there exists an almost surely finite random variable $C_{\alpha}>0$ such that for any $0 \leq s, t \leq 1$,

$$
\left|B_{t}-B_{s}\right| \leq C_{\alpha}|t-s|^{\alpha} .
$$

