Exercises 1-3 are"compulsory" and 4-5"bonus problems" (marked always with \dagger or ${ }^{\dagger t \dagger}$).

Exercise 1. (a) Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. Show that $\operatorname{Cov}\left[B_{t}, B_{s}\right]=\min \{t, s\}$.
Hint. For $s<t$, use $B_{t}=B_{s}+\left(B_{t}-B_{s}\right)$.
(b) Let $0 \leq t<s$. Show that for any $\lambda \in(0,1)$, the random variable

$$
Y_{\lambda}=B_{\lambda t+(1-\lambda) s}-\lambda B_{t}-(1-\lambda) B_{s}
$$

is independent from $\sigma\left(B_{u}, 0 \leq u \leq t\right)$ and $\sigma\left(B_{u}, u \geq s\right)$.
Hint. It is sufficient to check independence of Y_{λ} and single B_{u} for any $u \notin(t, s)$. Use properties of multivariate normal distributions.
(c) Show that $\mathrm{E}\left[Y_{\lambda}^{2}\right]=\lambda(1-\lambda)|s-t|$.

Exercise 2. (a) Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. For any $0<t<s$, find the conditional density of B_{t} given B_{s} in the sense of Exercise 5 below. Illustrate this distribution by drawing its mean and standard deviation as functions of t.
(b) Conclude from (a) and Exercise 1 that for any $0 \leq r<s$ and $x, y \in \mathbb{R}$, conditionally on $B_{r}=x$ and $B_{s}=y$ the processes $\left(B_{t}\right)_{t \in[0, r)},\left(B_{t}\right)_{t \in(r, s)}$ and $\left(B_{t}\right)_{t \in(s, \infty)}$ are independent. Lastly, when $0=s_{0}<s_{1}<\ldots<s_{n}$ and $x_{k} \in \mathbb{R}$ and $t_{k} \in\left(s_{k-1}, s_{k}\right)$ for $k=1,2, \ldots, n$, describe the law of $\left(B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{n}}\right)$ given $B_{s_{1}}=x_{1}, B_{s_{2}}=x_{2}, \ldots, B_{s_{n}}=x_{n}$.

Exercise 3. (a) Let X be a Gaussian random variable with mean 0 and variance 1. Show that for any $x>0$,

$$
\frac{x}{\sqrt{2 \pi}\left(1+x^{2}\right)} \exp \left(-\frac{x^{2}}{2}\right) \leq \mathrm{P}[X \geq x] \leq \frac{1}{\sqrt{2 \pi} x} \exp \left(-\frac{x^{2}}{2}\right) .
$$

(b) Let $X_{n} \sim N\left(\mu_{n}, \sigma_{n}^{2}\right)$ be a sequence of Gaussian random variables such that $X_{n} \rightarrow X$ almost surely and $\mu_{n} \rightarrow \mu$ and $\sigma_{n}^{2} \rightarrow \sigma^{2}$ as $n \rightarrow \infty$. Show that $X \sim N\left(\mu, \sigma^{2}\right)$. (Here, as usual, $X \sim N\left(\mu, \sigma^{2}\right)$ means that X is distributed normally with mean μ and variance σ^{2}.)

Hint. Recall different ways to characterize a probability distribution.
${ }^{\dagger}$ Exercise 4. (a) Let \mathcal{A} be a σ-algebra such that for all $A \in \mathcal{A}, \mathrm{P}[A]=0$ or 1 . Show that $\mathrm{E}[X \mid \mathcal{A}]=\mathrm{E}[X]$ for any $X \in L^{1}$.
(b) Let $\Omega_{1}, \Omega_{2}, \ldots$ be a finite or countably infinite partition of Ω into \mathcal{F}-measurable sets, i.e., $\Omega_{j} \cap \Omega_{k}=\varnothing$ when $j \neq k$ and $\cup_{k=1}^{\infty} \Omega_{k}=\Omega$. Assume that each Ω_{k} has positive probability. Let \mathcal{G} be the σ-algebra generated by $\Omega_{1}, \Omega_{2}, \ldots$ Show that

$$
\mathrm{E}[X \mid \mathcal{G}]=\frac{\mathrm{E}\left[X ; \Omega_{k}\right]}{\mathrm{P}\left[\Omega_{k}\right]} \text { on } \Omega_{k} \text {. }
$$

Here we use the standard notation $\mathrm{E}[X ; E]=\int_{E} X \mathrm{dP}$.
${ }^{\dagger}$ Exercise 5. Let X and Y be two random variables that have a joint density $f(x, y)$ in the sense that for any bounded, Borel (measurable) function ϕ on \mathbb{R}^{2}

$$
\mathrm{E}[\phi(X, Y)]=\int_{\mathbb{R}^{2}} \phi(x, y) f(x, y) \mathrm{d} x \mathrm{~d} y .
$$

Define the marginal density of Y by

$$
f_{Y}(y)=\int_{\mathbb{R}} f(x, y) \mathrm{d} x
$$

and let

$$
f(x \mid y)= \begin{cases}\frac{f(x, y)}{f_{Y}(y)} & , \text { if } f_{Y}(y)>0 \\ 0 & , \text { if } f_{Y}(y)=0\end{cases}
$$

We call the quantity $f(x \mid y)$ the conditional density of X given $Y=y$.
(a) Show that $f(x \mid y) f_{Y}(y)=f(x, y)$ for almost every (x, y) with respect to the Lebesgue measure on \mathbb{R}^{2}.

Hint: Prove first that the Lebesgue measure of $\left\{x: f(x \mid y) f_{Y}(y) \neq f(x, y)\right\}$ is zero for each y and then use Fubini's theorem.
(b) Show that $f(x \mid y)$ can be seen as the conditional density of X given $Y=y$ in the sense that

$$
\mathrm{E}[h(X) \mid Y](\omega)=\int_{\mathbb{R}} h(x) f(x \mid Y(\omega)) \mathrm{d} x
$$

for any bounded Borel function h on \mathbb{R}.

