UH/Department of Mathematics and Statistics Schramm–Loewner Evolution, Spring 2016

Exercise session 2 2.2.2016

Exercises 1-3 are "compulsory" and 4-5 "bonus problems" (marked always with † or †††).

Exercise 1. (a) Let $(B_t)_{t \in \mathbb{R}_+}$ be a standard one-dimensional Brownian motion. Show that $Cov[B_t, B_s] = \min\{t, s\}.$

Hint. For s < t, use $B_t = B_s + (B_t - B_s)$.

(b) Let $0 \le t < s$. Show that for any $\lambda \in (0,1)$, the random variable

$$Y_{\lambda} = B_{\lambda t + (1 - \lambda)s} - \lambda B_t - (1 - \lambda)B_s$$

is independent from $\sigma(B_u, 0 \le u \le t)$ and $\sigma(B_u, u \ge s)$.

Hint. It is sufficient to check independence of Y_{λ} and single B_u for any $u \notin (t, s)$. Use properties of multivariate normal distributions.

(c) Show that $\mathsf{E}[Y_{\lambda}^2] = \lambda(1-\lambda)|s-t|$.

Exercise 2. (a) Let $(B_t)_{t \in \mathbb{R}_+}$ be a standard one-dimensional Brownian motion. For any 0 < t < s, find the conditional density of B_t given B_s in the sense of Exercise 5 below. Illustrate this distribution by drawing its mean and standard deviation as functions of t.

(b) Conclude from (a) and Exercise 1 that for any $0 \le r < s$ and $x, y \in \mathbb{R}$, conditionally on $B_r = x$ and $B_s = y$ the processes $(B_t)_{t \in [0,r)}$, $(B_t)_{t \in (r,s)}$ and $(B_t)_{t \in (s,\infty)}$ are independent. Lastly, when $0 = s_0 < s_1 < \ldots < s_n$ and $x_k \in \mathbb{R}$ and $t_k \in (s_{k-1}, s_k)$ for $k = 1, 2, \ldots, n$, describe the law of $(B_{t_1}, B_{t_2}, \ldots, B_{t_n})$ given $B_{s_1} = x_1, B_{s_2} = x_2, \ldots, B_{s_n} = x_n$.

Exercise 3. (a) Let X be a Gaussian random variable with mean 0 and variance 1. Show that for any x > 0,

$$\frac{x}{\sqrt{2\pi}(1+x^2)} \exp\left(-\frac{x^2}{2}\right) \le \mathsf{P}\big[X \ge x\big] \le \frac{1}{\sqrt{2\pi}\,x} \exp\left(-\frac{x^2}{2}\right).$$

(b) Let $X_n \sim N(\mu_n, \sigma_n^2)$ be a sequence of Gaussian random variables such that $X_n \to X$ almost surely and $\mu_n \to \mu$ and $\sigma_n^2 \to \sigma^2$ as $n \to \infty$. Show that $X \sim N(\mu, \sigma^2)$. (Here, as usual, $X \sim N(\mu, \sigma^2)$ means that X is distributed normally with mean μ and variance σ^2 .)

Hint. Recall different ways to characterize a probability distribution.

[†] Exercise 4. (a) Let \mathcal{A} be a σ -algebra such that for all $A \in \mathcal{A}$, P[A] = 0 or 1. Show that $E[X|\mathcal{A}] = E[X]$ for any $X \in L^1$.

(b) Let $\Omega_1, \Omega_2, \ldots$ be a finite or countably infinite partition of Ω into \mathcal{F} -measurable sets, i.e., $\Omega_j \cap \Omega_k = \emptyset$ when $j \neq k$ and $\bigcup_{k=1}^{\infty} \Omega_k = \Omega$. Assume that each Ω_k has positive probability. Let \mathcal{G} be the σ -algebra generated by $\Omega_1, \Omega_2, \ldots$ Show that

$$\mathsf{E}[X|\mathcal{G}] = \frac{\mathsf{E}[X;\Omega_k]}{\mathsf{P}[\Omega_k]}$$
 on Ω_k .

Here we use the standard notation $E[X; E] = \int_E X dP$.

[†] Exercise 5. Let X and Y be two random variables that have a joint density f(x,y) in the sense that for any bounded, Borel (measurable) function ϕ on \mathbb{R}^2

$$\mathsf{E}[\phi(X,Y)] = \int_{\mathbb{R}^2} \phi(x,y) f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Define the marginal density of Y by

$$f_Y(y) = \int_{\mathbb{R}} f(x, y) \, \mathrm{d}x$$

and let

$$f(x|y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & , \text{ if } f_Y(y) > 0\\ 0 & , \text{ if } f_Y(y) = 0. \end{cases}$$

We call the quantity f(x|y) the conditional density of X given Y = y.

(a) Show that $f(x|y)f_Y(y) = f(x,y)$ for almost every (x,y) with respect to the Lebesgue measure on \mathbb{R}^2 .

Hint: Prove first that the Lebesgue measure of $\{x: f(x|y)f_Y(y) \neq f(x,y)\}$ is zero for each y and then use Fubini's theorem.

(b) Show that f(x|y) can be seen as the conditional density of X given Y = y in the sense that

$$\mathsf{E}[h(X)|Y](\omega) = \int_{\mathbb{R}} h(x)f(x|Y(\omega))\mathrm{d}x$$

for any bounded Borel function h on \mathbb{R} .