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Exercises 1–3 are “compulsory” and 4 is a “bonus problem”

Exercise 1. Continue the setup of Exercise 3 in Problem sheet 9. That is, let ν = ±1, κ > 0
and ht(z) be the solution of the differential equation
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κBt where (Bt)t∈R≥0 is a standard one-dimensional Brownian motion with

respect to a σ-algebra Ft. Fix z0 ∈ H and set Xt = Reht(z0) −Wt, Yt = Imht(z0) and
Zt =Xt + iYt. Verify all the following formulas
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Exercise 2. Show using the Koebe distortion theorem that there exists constants C and r
such that for any conformal map f ∶ H→ C and for any x ∈ R, y > 0 and 1/2 ≤ s ≤ 2

C−1∣f ′(iy)∣ ≤ ∣f ′(isy)∣ ≤ C ∣f ′(iy)∣,

C−1(1 + x2)−r∣f ′(iy)∣ ≤ ∣f ′(y(x + i))∣ ≤ C(1 + x2)r∣f ′(iy)∣.

What is the value of r that you get from the Koebe distortion theorem?

Exercise 3. (a) For a Loewner chain gt, let ft = g−1t . By differentiating the Loewner equation
of ft with respect to z, find a differential equation for f ′t(z). Show that for x ∈ R, y > 0
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(b) Show using the special case ∣a2∣ ≤ 2 of the Bieberbach–de Branges theorem that there is
a constant c > 0 such that
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for any f ∶ H→ C conformal and for any z ∈ H.
(c) Show that there are constants c1, c2, c3 such that following holds for any Loewner chain:
for any t ∈ R+, x ∈ R and y > 0
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and if 0 ≤ s ≤ y2 then
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† Exercise 4 (Transformation between Loewner chains in H and D). Consider an H-hull
Kδ = [0, iδ] and a D-hull K̃δ̃ = [1 − δ̃,1] where δ > 0 and 0 < δ̃ < 1.

(a) Calculate the H-capacity of Kδ and the D-capacity of K̃δ̃.

(b) Fix a Möbius map ψ from H onto D. Calculate c in capH(Kδ)/capD(ψ(Kδ)) = c +O(δ).
What does this tell about transforming Loewner chains from H to D? Consider in your
answer also how a length element around 0 transforms as well as a Brownian motion over a
short time interval.


