Exercises 1-3 are "compulsory" and 4 is a "bonus problem"

Exercise 1. Continue the setup of Exercise 3 in Problem sheet 9. That is, let $\nu= \pm 1, \kappa>0$ and $h_{t}(z)$ be the solution of the differential equation

$$
\partial_{t} h_{t}(z)=\nu \frac{2}{h_{t}(z)-W_{t}}, \quad h_{0}(z)=z
$$

with $W_{t}=-\sqrt{\kappa} B_{t}$ where $\left(B_{t}\right)_{t \in \mathbb{R}_{20}}$ is a standard one-dimensional Brownian motion with respect to a σ-algebra \mathcal{F}_{t}. Fix $z_{0} \in \mathbb{H}$ and set $X_{t}=\operatorname{Re} h_{t}\left(z_{0}\right)-W_{t}, Y_{t}=\operatorname{Im} h_{t}\left(z_{0}\right)$ and $Z_{t}=X_{t}+\mathrm{i} Y_{t}$. Verify all the following formulas

$$
\begin{gathered}
\mathrm{d} X_{t}=2 \nu \frac{X_{t}}{X_{t}^{2}+Y_{t}^{2}} \mathrm{~d} t+\sqrt{\kappa} \mathrm{d} B_{t}, \quad \partial_{t} Y_{t}=-2 \nu \frac{Y_{t}}{X_{t}^{2}+Y_{t}^{2}}, \quad \partial_{t} \frac{\left|h_{t}^{\prime}(z)\right|}{Y_{t}}=4 \nu \frac{\left|h_{t}^{\prime}(z)\right|}{Y_{t}} \frac{Y_{t}^{2}}{\left(X_{t}^{2}+Y_{t}^{2}\right)^{2}} \\
\operatorname{d} \arg Z_{t}=(\kappa-4 \nu) \frac{X_{t} Y_{t}}{\left(X_{t}^{2}+Y_{t}^{2}\right)^{2}} \mathrm{~d} t-\sqrt{\kappa} \frac{Y_{t}}{X_{t}^{2}+Y_{t}^{2}} \mathrm{~d} B_{t}, \\
\mathrm{~d} \log \left|Z_{t}\right|=-\frac{1}{2}(\kappa-4 \nu) \frac{X_{t}^{2}-Y_{t}^{2}}{\left(X_{t}^{2}+Y_{t}^{2}\right)^{2}} \mathrm{~d} t+\sqrt{\kappa} \frac{X_{t}}{X_{t}^{2}+Y_{t}^{2}} \mathrm{~d} B_{t}, \\
\mathrm{~d} \sin \arg Z_{t}=\left(\sin \arg Z_{t}\right)\left[\frac{(\kappa-4 \nu) X_{t}^{2}-\frac{\kappa}{2} Y_{t}^{2}}{\left(X_{t}^{2}+Y_{t}^{2}\right)^{2}} \mathrm{~d} t-\sqrt{\kappa} \frac{X_{t}}{X_{t}^{2}+Y_{t}^{2}} \mathrm{~d} B_{t}\right]
\end{gathered}
$$

Exercise 2. Show using the Koebe distortion theorem that there exists constants C and r such that for any conformal map $f: \mathbb{H} \rightarrow \mathbb{C}$ and for any $x \in \mathbb{R}, y>0$ and $1 / 2 \leq s \leq 2$

$$
\begin{gathered}
C^{-1}\left|f^{\prime}(i y)\right| \leq\left|f^{\prime}(i s y)\right| \leq C\left|f^{\prime}(i y)\right|, \\
C^{-1}\left(1+x^{2}\right)^{-r}\left|f^{\prime}(i y)\right| \leq\left|f^{\prime}(y(x+i))\right| \leq C\left(1+x^{2}\right)^{r}\left|f^{\prime}(i y)\right| .
\end{gathered}
$$

What is the value of r that you get from the Koebe distortion theorem?

Exercise 3. (a) For a Loewner chain g_{t}, let $f_{t}=g_{t}^{-1}$. By differentiating the Loewner equation of f_{t} with respect to z, find a differential equation for $f_{t}^{\prime}(z)$. Show that for $x \in \mathbb{R}, y>0$

$$
\left|\partial_{t} f_{t}^{\prime}(x+i y)\right| \leq \frac{2\left|f_{t}^{\prime \prime}(x+i y)\right|}{y}+\frac{2\left|f_{t}^{\prime}(x+i y)\right|}{y^{2}} .
$$

(b) Show using the special case $\left|a_{2}\right| \leq 2$ of the Bieberbach-de Branges theorem that there is a constant $c>0$ such that

$$
\left|f^{\prime \prime}(z)\right| \leq \frac{c}{\operatorname{Im} z}\left|f^{\prime}(z)\right|
$$

for any $f: \mathbb{H} \rightarrow \mathbb{C}$ conformal and for any $z \in \mathbb{H}$.
(c) Show that there are constants c_{1}, c_{2}, c_{3} such that following holds for any Loewner chain: for any $t \in \mathbb{R}_{+}, x \in \mathbb{R}$ and $y>0$

$$
\left|\partial_{t} f_{t}^{\prime}(x+i y)\right| \leq \frac{c_{1}\left|f_{t}^{\prime}(x+i y)\right|}{y^{2}}
$$

and if $0 \leq s \leq y^{2}$ then

$$
\left|f_{t+s}^{\prime}(x+i y)\right| \leq c_{2}\left|f_{t}^{\prime}(x+i y)\right|, \quad\left|f_{t+s}(x+i y)-f_{t}(x+i y)\right| \leq c_{3} y\left|f_{t}^{\prime}(x+i y)\right| .
$$

${ }^{\dagger}$ Exercise 4 (Transformation between Loewner chains in \mathbb{H} and \mathbb{D}). Consider an \mathbb{H}-hull $K_{\delta}=[0, \mathrm{i} \delta]$ and a \mathbb{D}-hull $\tilde{K}_{\tilde{\delta}}=[1-\tilde{\delta}, 1]$ where $\delta>0$ and $0<\tilde{\delta}<1$.
(a) Calculate the \mathbb{H}-capacity of K_{δ} and the \mathbb{D}-capacity of $\tilde{K}_{\tilde{\delta}}$.
(b) Fix a Möbius map ψ from \mathbb{H} onto \mathbb{D}. Calculate c in $\operatorname{cap}_{\mathbb{H}}\left(K_{\delta}\right) / \operatorname{cap}_{\mathbb{D}}\left(\psi\left(K_{\delta}\right)\right)=c+\mathcal{O}(\delta)$. What does this tell about transforming Loewner chains from \mathbb{H} to \mathbb{D} ? Consider in your answer also how a length element around 0 transforms as well as a Brownian motion over a short time interval.

