UH/Department of Mathematics and Statistics Schramm–Loewner Evolution, Spring 2016

Exercise session 12 3.5.2016

Exercises 1-3 are "compulsory" and 4 is a "bonus problem"

Exercise 1. Continue the setup of Exercise 3 in Problem sheet 9. That is, let $\nu = \pm 1$, $\kappa > 0$ and $h_t(z)$ be the solution of the differential equation

$$\partial_t h_t(z) = \nu \frac{2}{h_t(z) - W_t}, \qquad h_0(z) = z$$

with $W_t = -\sqrt{\kappa}B_t$ where $(B_t)_{t \in \mathbb{R}_{\geq 0}}$ is a standard one-dimensional Brownian motion with respect to a σ -algebra \mathcal{F}_t . Fix $z_0 \in \mathbb{H}$ and set $X_t = \operatorname{Re} h_t(z_0) - W_t$, $Y_t = \operatorname{Im} h_t(z_0)$ and $Z_t = X_t + iY_t$. Verify all the following formulas

$$dX_{t} = 2\nu \frac{X_{t}}{X_{t}^{2} + Y_{t}^{2}} dt + \sqrt{\kappa} dB_{t}, \qquad \partial_{t}Y_{t} = -2\nu \frac{Y_{t}}{X_{t}^{2} + Y_{t}^{2}}, \qquad \partial_{t} \frac{|h_{t}'(z)|}{Y_{t}} = 4\nu \frac{|h_{t}'(z)|}{Y_{t}} \frac{Y_{t}^{2}}{(X_{t}^{2} + Y_{t}^{2})^{2}} dt = 4\nu \frac{|h_{t}'(z)|}{(X_{t}^{2} + Y_{t}^{2})^{2}} dt = 4\nu \frac{|$$

Exercise 2. Show using the Koebe distortion theorem that there exists constants C and r such that for any conformal map $f : \mathbb{H} \to \mathbb{C}$ and for any $x \in \mathbb{R}$, y > 0 and $1/2 \le s \le 2$

$$C^{-1}|f'(iy)| \le |f'(isy)| \le C|f'(iy)|,$$

$$C^{-1}(1+x^2)^{-r}|f'(iy)| \le |f'(y(x+i))| \le C(1+x^2)^r|f'(iy)|.$$

What is the value of r that you get from the Koebe distortion theorem?

Exercise 3. (a) For a Loewner chain g_t , let $f_t = g_t^{-1}$. By differentiating the Loewner equation of f_t with respect to z, find a differential equation for $f'_t(z)$. Show that for $x \in \mathbb{R}$, y > 0

$$|\partial_t f'_t(x+iy)| \le \frac{2|f''_t(x+iy)|}{y} + \frac{2|f'_t(x+iy)|}{y^2}$$

(b) Show using the special case $|a_2| \le 2$ of the Bieberbach–de Branges theorem that there is a constant c > 0 such that

$$|f''(z)| \le \frac{c}{\operatorname{Im} z} |f'(z)|$$

for any $f : \mathbb{H} \to \mathbb{C}$ conformal and for any $z \in \mathbb{H}$.

(c) Show that there are constants c_1, c_2, c_3 such that following holds for any Loewner chain: for any $t \in \mathbb{R}_+$, $x \in \mathbb{R}$ and y > 0

$$\left|\partial_t f'_t(x+iy)\right| \le \frac{c_1 |f'_t(x+iy)|}{y^2}$$

and if $0 \le s \le y^2$ then

$$|f_{t+s}'(x+iy)| \le c_2 |f_t'(x+iy)|, \qquad |f_{t+s}(x+iy) - f_t(x+iy)| \le c_3 y |f_t'(x+iy)|.$$

Turn page!

[†] Exercise 4 (Transformation between Loewner chains in \mathbb{H} and \mathbb{D}). Consider an \mathbb{H} -hull $K_{\delta} = [0, i\delta]$ and a \mathbb{D} -hull $\tilde{K}_{\tilde{\delta}} = [1 - \tilde{\delta}, 1]$ where $\delta > 0$ and $0 < \tilde{\delta} < 1$.

(a) Calculate the \mathbb{H} -capacity of K_{δ} and the \mathbb{D} -capacity of $\tilde{K}_{\tilde{\delta}}$.

(b) Fix a Möbius map ψ from \mathbb{H} onto \mathbb{D} . Calculate c in $\operatorname{cap}_{\mathbb{H}}(K_{\delta})/\operatorname{cap}_{\mathbb{D}}(\psi(K_{\delta})) = c + \mathcal{O}(\delta)$. What does this tell about transforming Loewner chains from \mathbb{H} to \mathbb{D} ? Consider in your answer also how a length element around 0 transforms as well as a Brownian motion over a short time interval.