Exercise session 11 26.4.2016

Exercises 1–3 are "compulsory."

Exercise 1. (a) Consider a strip $S_{\pi} = \{z \in \mathbb{C} : 0 < \text{Im } z < \pi\}$. Show that for $c \in \mathbb{R}$ $\phi_c : z \mapsto \log(z - c)$

is a conformal map from \mathbb{H} onto S_{π} . Here we use the choice $\operatorname{Im} \log z \in [0, \pi]$, when $z \in \overline{\mathbb{H}} \setminus \{0\}$, for the branch of log. Show that the image of 0 is in \mathbb{R} if and only if c < 0.

(b) Let $K \subset \overline{\mathbb{H}}$ be a hull. Let $x \in \mathbb{R} \setminus K$ and $x' = g_K(x)$. Show that

$$G = \phi_{x'} \circ g_K \circ \phi$$

satisfies

 $G(z) = z - 2a_0 + o(1), \ z \to -\infty, \qquad G(z) = z + o(1), \ z \to +\infty.$

Find a_0 in terms of g_K and x. Is a_0 positive?

(c) Show that the conformal onto maps $f: S_{\pi} \to S_{\pi}$ with $f(-\infty) = -\infty$ and $f(+\infty) = +\infty$ are of the form f(z) = z + C

where $C \in \mathbb{R}$ is a constant.

(d) Let's call a compact $K \subset \overline{S_{\pi}}$ a *s*-hull or a hull in the strip if $S_{\pi} \smallsetminus K$ is simply connected. Show that for any s-hull K, there exists a unique conformal map G_K from $S_{\pi} \smallsetminus K$ onto S_{π} such that

$$G_K(z) = z - a_0 + o(1), \ z \to -\infty, \qquad G_K(z) = z + a_0 + o(1), \ z \to +\infty$$
(1)

for some constant $a_0 \in \mathbb{R}$. The constant a_0 could be called the *s*-capacity or the strip capasity of K. Show that it is additive when mappings with this form of expansion are composed.

Exercise 2 (Chordal SLE(κ) in the strip S_{π}).

(a) Let c < 0. Let $(g_t)_{t \in \mathbb{R}_+}$ be a Loewner chain (in \mathbb{H}) with the driving term $(W_t)_{t \in \mathbb{R}_+}$. Motivated by the previous exercise define a time-change $\sigma(s)$ (which depends on c and $(W_t)_{t \in \mathbb{R}_+}$) such that

$$-\frac{1}{2}\log g_{\sigma(s)}'(c) = s$$

and define

$$G_s(z) = \log \left[g_{\sigma(s)} \left(c + |c|e^z \right) - g_{\sigma(s)} \left(c \right) \right] + s - \log |c|.$$

Show that G_s is a conformal map from $S_{\pi} \setminus \tilde{K}_s$ onto S_{π} normalized as in (1) where $(\tilde{K}_S)_{s \in \mathbb{R}_+}$ is a growing family of s-hulls and $(G_s)_{s \in \mathbb{R}_+}$ satisfies the Loewner equation of S_{π} , i.e.,

$$\partial_s G_s(z) = \coth \frac{G_s(z) - \tilde{W}_s}{2}, \qquad G_0(z) = z$$
 (2)

where $\tilde{W}_s = \log(W_{\sigma(s)} - g_{\sigma(s)}(c)) + s - \log |c|$.

(b) Show that when g_t is $SLE(\kappa)$, that is, $W_t = \sqrt{\kappa}B_t$, then \tilde{W}_s is a Brownian motion with (linear) drift.

Turn page!

Exercise 3. Reverse the calculations of the previous problems: Suppose that G_s satisfies (2) with a driving process $\tilde{W}_s = \sqrt{\kappa}\tilde{B}_s + \alpha s$ (note that we have general $\kappa \ge 0$ and $\alpha \in \mathbb{R}$ here). Compose G_s (from both sides) with suitably chosen conformal transformations, so that, G_s is transformed to a hydrodynamically normalized conformal map of \mathbb{H} and $+\infty$ is mapped to ∞ , and find the correct time-change so that G_s is transformed to g_t which satisfies the Loewner equation of \mathbb{H} with a driving process W_t . Is g_t well-defined for all t?

Hint. Write first a general form of the transformation leaving free parameters which you then fix so that the resulting map is a hydrodynamically normalized conformal map. Also, the full answer to this exercise should show that W_t satisfies the following system of stochastic differential equations:

$$dW_t = \sqrt{\kappa} dB_t + \frac{\rho}{W_t - C_t} dt$$
$$dC_t = \frac{2}{C_t - W_t} dt$$

where $\rho = \rho(\kappa, \alpha) \in \mathbb{R}$ is a constant. Notice that the equation for dC_t is the Loewner equation of \mathbb{H} .